Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
e4458933
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e4458933
编写于
6月 23, 2019
作者:
S
sangoly
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add lite model debug tools test=develop
上级
cdd63eb4
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
1081 addition
and
20 deletion
+1081
-20
paddle/fluid/lite/CMakeLists.txt
paddle/fluid/lite/CMakeLists.txt
+1
-0
paddle/fluid/lite/api/cxx_api.cc
paddle/fluid/lite/api/cxx_api.cc
+8
-4
paddle/fluid/lite/api/cxx_api.h
paddle/fluid/lite/api/cxx_api.h
+5
-3
paddle/fluid/lite/core/program.h
paddle/fluid/lite/core/program.h
+2
-0
paddle/fluid/lite/kernels/use_kernels.h
paddle/fluid/lite/kernels/use_kernels.h
+1
-0
paddle/fluid/lite/tools/CMakeLists.txt
paddle/fluid/lite/tools/CMakeLists.txt
+1
-0
paddle/fluid/lite/tools/build.sh
paddle/fluid/lite/tools/build.sh
+14
-6
paddle/fluid/lite/tools/debug/CMakeLists.txt
paddle/fluid/lite/tools/debug/CMakeLists.txt
+12
-0
paddle/fluid/lite/tools/debug/analysis_tool.py
paddle/fluid/lite/tools/debug/analysis_tool.py
+403
-0
paddle/fluid/lite/tools/debug/check_model.sh
paddle/fluid/lite/tools/debug/check_model.sh
+182
-0
paddle/fluid/lite/tools/debug/debug_utils.cc
paddle/fluid/lite/tools/debug/debug_utils.cc
+15
-0
paddle/fluid/lite/tools/debug/debug_utils.h
paddle/fluid/lite/tools/debug/debug_utils.h
+329
-0
paddle/fluid/lite/tools/debug/model_debug_tool.cc
paddle/fluid/lite/tools/debug/model_debug_tool.cc
+94
-0
paddle/fluid/lite/utils/string.h
paddle/fluid/lite/utils/string.h
+14
-7
未找到文件。
paddle/fluid/lite/CMakeLists.txt
浏览文件 @
e4458933
...
...
@@ -187,6 +187,7 @@ add_subdirectory(model_parser)
add_subdirectory
(
utils
)
add_subdirectory
(
api
)
add_subdirectory
(
gen_code
)
add_subdirectory
(
tools
)
if
(
WITH_TESTING
)
...
...
paddle/fluid/lite/api/cxx_api.cc
浏览文件 @
e4458933
...
...
@@ -50,18 +50,22 @@ const lite::Tensor *Predictor::GetOutput(size_t offset) {
}
void
Predictor
::
Build
(
const
std
::
string
&
model_path
,
const
Place
&
prefer_place
,
const
std
::
vector
<
Place
>
&
valid_places
)
{
const
std
::
vector
<
Place
>
&
valid_places
,
const
std
::
vector
<
std
::
string
>
&
passes
)
{
LoadModel
(
model_path
,
scope_
.
get
(),
&
program_desc_
);
Build
(
program_desc_
,
prefer_place
,
valid_places
);
Build
(
program_desc_
,
prefer_place
,
valid_places
,
passes
);
}
const
framework
::
proto
::
ProgramDesc
&
Predictor
::
program_desc
()
const
{
return
program_desc_
;
}
const
RuntimeProgram
&
Predictor
::
runtime_program
()
const
{
return
*
program_
;
}
void
Predictor
::
Build
(
const
framework
::
proto
::
ProgramDesc
&
desc
,
const
Place
&
prefer_place
,
const
std
::
vector
<
Place
>
&
valid_places
)
{
const
std
::
vector
<
Place
>
&
valid_places
,
const
std
::
vector
<
std
::
string
>
&
passes
)
{
program_desc_
=
desc
;
Program
program
(
desc
,
scope_
,
valid_places
);
...
...
@@ -69,7 +73,7 @@ void Predictor::Build(const framework::proto::ProgramDesc &desc,
core
::
KernelPickFactor
factor
;
factor
.
ConsiderTarget
();
factor
.
ConsiderPrecision
();
optimizer_
.
Run
(
std
::
move
(
program
),
valid_places
,
factor
);
optimizer_
.
Run
(
std
::
move
(
program
),
valid_places
,
factor
,
passes
);
program_
=
optimizer_
.
GenRuntimeProgram
();
}
...
...
paddle/fluid/lite/api/cxx_api.h
浏览文件 @
e4458933
...
...
@@ -39,10 +39,12 @@ class Predictor {
// Build from a model, with places set for hardware config.
void
Build
(
const
std
::
string
&
model_path
,
const
Place
&
prefer_place
,
const
std
::
vector
<
Place
>&
valid_places
);
const
std
::
vector
<
Place
>&
valid_places
,
const
std
::
vector
<
std
::
string
>&
passes
=
{});
void
Build
(
const
framework
::
proto
::
ProgramDesc
&
desc
,
const
Place
&
prefer_place
,
const
std
::
vector
<
Place
>&
valid_places
);
const
Place
&
prefer_place
,
const
std
::
vector
<
Place
>&
valid_places
,
const
std
::
vector
<
std
::
string
>&
passes
=
{});
// Run the predictor for a single batch of data.
void
Run
()
{
program_
->
Run
();
}
...
...
@@ -53,9 +55,9 @@ class Predictor {
// Get offset-th col of fetch results.
const
lite
::
Tensor
*
GetOutput
(
size_t
offset
);
// Return the program desc for debug.
const
framework
::
proto
::
ProgramDesc
&
program_desc
()
const
;
const
lite
::
Tensor
*
GetTensor
(
const
std
::
string
&
name
)
const
;
const
RuntimeProgram
&
runtime_program
()
const
;
// This method is disabled in mobile, for unnecessary dependencies required.
void
SaveModel
(
const
std
::
string
&
dir
);
...
...
paddle/fluid/lite/core/program.h
浏览文件 @
e4458933
...
...
@@ -154,6 +154,8 @@ class RuntimeProgram {
size_t
num_instructions
()
const
{
return
instructions_
.
size
();
}
const
std
::
vector
<
Instruction
>&
instructions
()
const
{
return
instructions_
;
}
protected:
std
::
string
SerializeProgram
(
const
framework
::
proto
::
ProgramDesc
&
desc
);
void
SaveParams
(
const
std
::
string
&
dir
,
...
...
paddle/fluid/lite/kernels/use_kernels.h
浏览文件 @
e4458933
...
...
@@ -37,6 +37,7 @@ USE_LITE_KERNEL(pool2d, kARM, kFloat, kNCHW, def);
USE_LITE_KERNEL
(
relu
,
kARM
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
transpose
,
kARM
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
transpose2
,
kARM
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
batch_norm
,
kARM
,
kFloat
,
kNCHW
,
def
);
#endif
#ifdef LITE_WITH_X86
...
...
paddle/fluid/lite/tools/CMakeLists.txt
0 → 100644
浏览文件 @
e4458933
add_subdirectory
(
debug
)
paddle/fluid/lite/tools/build.sh
浏览文件 @
e4458933
...
...
@@ -10,10 +10,17 @@ NUM_CORES_FOR_COMPILE=8
# for code gen, a source file is generated after a test, but is dependended by some targets in cmake.
# here we fake an empty file to make cmake works.
function
prepare_
for_codegen
{
function
prepare_
workspace
{
# in build directory
mkdir
-p
./paddle/fluid/lite/gen_code
touch
./paddle/fluid/lite/gen_code/__generated_code__.cc
# 1. Prepare gen_code file
GEN_CODE_PATH_PREFIX
=
paddle/fluid/lite/gen_code
mkdir
-p
./
${
GEN_CODE_PATH_PREFIX
}
touch
./
${
GEN_CODE_PATH_PREFIX
}
/__generated_code__.cc
# 2.Prepare debug tool
DEBUG_TOOL_PATH_PREFIX
=
paddle/fluid/lite/tools/debug
mkdir
-p
./
${
DEBUG_TOOL_PATH_PREFIX
}
cp
../
${
DEBUG_TOOL_PATH_PREFIX
}
/analysis_tool.py ./
${
DEBUG_TOOL_PATH_PREFIX
}
/
}
function
check_need_ci
{
...
...
@@ -21,7 +28,7 @@ function check_need_ci {
}
function
cmake_x86
{
prepare_
for_codegen
prepare_
workspace
cmake ..
-DWITH_GPU
=
OFF
-DWITH_MKLDNN
=
OFF
-DLITE_WITH_X86
=
ON
${
common_flags
}
}
...
...
@@ -44,7 +51,7 @@ function cmake_opencl {
# This method is only called in CI.
function
cmake_x86_for_CI
{
prepare_
for_codegen
# fake an empty __generated_code__.cc to pass cmake.
prepare_
workspace
# fake an empty __generated_code__.cc to pass cmake.
cmake ..
-DWITH_GPU
=
OFF
-DWITH_MKLDNN
=
OFF
-DLITE_WITH_X86
=
ON
${
common_flags
}
-DLITE_WITH_PROFILE
=
ON
# Compile and execute the gen_code related test, so it will generate some code, and make the compilation reasonable.
...
...
@@ -56,7 +63,7 @@ function cmake_x86_for_CI {
}
function
cmake_gpu
{
prepare_
for_codegen
prepare_
workspace
cmake ..
" -DWITH_GPU=ON {common_flags} -DLITE_WITH_GPU=ON"
}
...
...
@@ -164,6 +171,7 @@ function test_arm_model {
}
function
cmake_arm
{
prepare_workspace
# $1: ARM_TARGET_OS in "android" , "armlinux"
# $2: ARM_TARGET_ARCH_ABI in "armv8", "armv7" ,"armv7hf"
# $3: ARM_TARGET_LANG in "gcc" "clang"
...
...
paddle/fluid/lite/tools/debug/CMakeLists.txt
0 → 100644
浏览文件 @
e4458933
cc_library
(
debug_utils_lite SRCS debug_utils.cc
)
lite_cc_binary
(
lite_model_debug_tool SRCS model_debug_tool.cc
DEPS
cxx_api_lite
debug_utils_lite
model_parser_lite
target_wrapper_host
mir_passes
${
ops_lite
}
${
host_kernels
}
X86_DEPS
${
x86_kernels
}
ARM_DEPS
${
arm_kernels
}
)
paddle/fluid/lite/tools/debug/analysis_tool.py
0 → 100644
浏览文件 @
e4458933
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''
Fluid model analysis tools
'''
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
argparse
import
logging
import
os
import
subprocess
import
sys
from
collections
import
OrderedDict
from
operator
import
mul
# Simple logging config
logging
.
basicConfig
(
level
=
logging
.
DEBUG
,
format
=
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger
=
logging
.
getLogger
(
__name__
)
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.fluid
import
debugger
from
paddle.fluid
import
core
# Command arguments
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"--model_dir"
,
type
=
str
,
required
=
True
,
help
=
"Model dir path"
)
parser
.
add_argument
(
"--input_file"
,
default
=
""
,
type
=
str
,
help
=
"Input datas file path"
)
parser
.
add_argument
(
"--topo_file"
,
type
=
str
,
required
=
True
,
help
=
"Runtime topology order output file path"
)
parser
.
add_argument
(
"--tensor_file"
,
default
=
""
,
type
=
str
,
required
=
True
,
help
=
"Tensor file path"
)
parser
.
add_argument
(
"--tensor_names"
,
default
=
""
,
type
=
str
,
help
=
"If tensor_names is not empty, then only this tensors will be compare"
)
parser
.
add_argument
(
"--separator"
,
default
=
","
,
type
=
str
,
help
=
"Deafult separator, use in string split"
)
parser
.
add_argument
(
"--output_tensor"
,
default
=
0
,
type
=
int
,
help
=
"dump fluid runntime tensors or not"
)
parser
.
add_argument
(
"--tensor_output_file"
,
default
=
"./tensor_output_py"
,
type
=
str
,
help
=
"dump fluid runntime tensors filepath"
)
parser
.
add_argument
(
"--tensor_output_length"
,
default
=-
1
,
type
=
int
,
help
=
"Output tensor data length, dims size will be used if tensor_output_length < 0"
)
parser
.
add_argument
(
"--only_first"
,
default
=
1
,
type
=
int
,
help
=
"If only output the first mismatch vars info or not"
)
parser
.
add_argument
(
"--output_file"
,
default
=
"./diff.txt"
,
type
=
str
,
help
=
"dump diff info filepath"
)
parser
.
add_argument
(
"--threshold"
,
default
=
1e-5
,
type
=
float
,
help
=
"float value diff threshold"
)
# Help functions
def
load_file
(
filename
,
delim
=
None
):
"""
Load file help function
"""
with
open
(
filename
)
as
fd
:
for
line
in
fd
:
line
=
line
.
strip
()
assert
len
(
line
)
!=
""
if
delim
:
line
=
line
.
split
(
delim
)
yield
line
class
FluidModelExecutor
(
object
):
"""
A fluid inference model executeor
"""
def
__init__
(
self
,
model_dir
,
input_file
):
self
.
model_dir
=
model_dir
self
.
place
=
fluid
.
CPUPlace
()
self
.
exe
=
fluid
.
Executor
(
self
.
place
)
self
.
scope
=
fluid
.
core
.
Scope
()
self
.
input_data
=
self
.
_load_input_file
(
input_file
)
self
.
program
,
self
.
feed_target_names
,
self
.
fetch_targets
=
self
.
_load_inference_model
(
)
def
infer_var_list
(
self
,
arg_names
=
None
,
out_data_len
=-
1
,
dump_tensor
=
False
,
dump_tensor_file
=
''
):
"""
Get variables' tensor in var_list
"""
with
fluid
.
scope_guard
(
self
.
scope
):
global_block
=
self
.
program
.
global_block
()
feed_list
=
self
.
_prepare_feed_data
(
global_block
,
self
.
feed_target_names
)
fetch_targets
=
self
.
_fetch_tmp_vars
(
global_block
,
arg_names
)
results
=
self
.
exe
.
run
(
program
=
self
.
program
,
feed
=
feed_list
,
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
return
self
.
_get_results
(
results
,
fetch_targets
,
arg_names
=
arg_names
,
need_save
=
dump_tensor
,
save_path
=
dump_tensor_file
,
out_data_len
=
out_data_len
)
def
draw_graph
(
self
,
output_path
=
'./'
,
filename
=
'debug'
):
"""
Draw graph with graphviz
"""
dot_path
=
os
.
path
.
join
([
output_path
,
filename
+
'.dot'
])
pdf_path
=
os
.
path
.
join
([
output_path
,
filename
+
'.pdf'
])
debugger
.
draw_block_graphviz
(
self
.
program
.
global_block
(),
path
=
dot_path
)
cmd
=
[
"dot"
,
"-Tpdf"
,
dot_path
,
"-o"
,
pdf_path
]
subprocess
.
Popen
(
cmd
,
stdin
=
subprocess
.
PIPE
,
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
)
def
_prepare_feed_data
(
self
,
block
,
feed_target_names
):
feed_dict
=
dict
()
def
fill_data
(
np_dtype
,
col
,
shape
):
if
self
.
input_data
:
input_size
=
reduce
(
mul
,
shape
)
assert
len
(
self
.
input_data
[
0
])
>
col
data
=
self
.
input_data
[
0
][
col
].
split
(
' '
)
assert
len
(
data
)
==
input_size
return
np
.
array
(
map
(
np_dtype
,
data
),
dtype
=
np_dtype
).
reshape
(
shape
)
else
:
return
np
.
ones
(
shape
,
dtype
=
np_dtype
)
# TODO(sangoly): support multiple feed fields
assert
len
(
feed_target_names
)
==
1
for
idx
,
name
in
enumerate
(
feed_target_names
):
var
=
block
.
var
(
name
)
np_shape
=
list
(
var
.
shape
)
# TODO(sangoly): support batch
if
np_shape
[
0
]
==
-
1
:
np_shape
[
0
]
=
1
if
var
.
dtype
==
core
.
VarDesc
.
VarType
.
INT32
:
feed_dict
[
name
]
=
fill_data
(
np
.
int32
,
idx
,
np_shape
)
elif
var
.
dtype
==
core
.
VarDesc
.
VarType
.
INT64
:
feed_dict
[
name
]
=
fill_data
(
np
.
int64
,
idx
,
np_shape
)
elif
var
.
dtype
==
core
.
VarDesc
.
VarType
.
FP16
:
feed_dict
[
name
]
=
fill_data
(
np
.
float16
,
idx
,
np_shape
)
elif
var
.
dtype
==
core
.
VarDesc
.
VarType
.
FP32
:
feed_dict
[
name
]
=
fill_data
(
np
.
float32
,
idx
,
np_shape
)
elif
var
.
dtype
==
core
.
VarDesc
.
VarType
.
FP64
:
feed_dict
[
name
]
=
fill_data
(
np
.
float64
,
idx
,
np_shape
)
else
:
raise
TypeError
(
"Data type is not supported"
)
return
feed_dict
def
_load_input_file
(
self
,
input_file
=
None
):
input_data
=
[]
if
not
input_file
:
return
input_data
logger
.
info
(
"Loading input file %s ..."
%
input_file
)
for
line
in
load_file
(
input_file
,
"
\t
"
):
input_data
.
append
(
line
)
return
input_data
def
_load_inference_model
(
self
):
with
fluid
.
scope_guard
(
self
.
scope
):
model_abs_path
=
os
.
path
.
join
(
self
.
model_dir
,
'model'
)
param_abs_path
=
os
.
path
.
join
(
self
.
model_dir
,
'params'
)
if
os
.
path
.
exists
(
model_abs_path
)
and
os
.
path
.
exists
(
param_abs_path
):
return
fluid
.
io
.
load_inference_model
(
self
.
model_dir
,
exe
,
'model'
,
'params'
)
else
:
return
fluid
.
io
.
load_inference_model
(
self
.
model_dir
,
self
.
exe
)
def
_fetch_tmp_vars
(
self
,
block
,
var_names_list
=
None
):
fetch_var
=
block
.
var
(
'fetch'
)
old_fetch_names
=
set
([
var
.
name
for
var
in
self
.
fetch_targets
])
new_fetch_vars
=
[
block
.
var
(
name
)
for
name
in
old_fetch_names
]
i
=
len
(
new_fetch_vars
)
if
var_names_list
is
None
:
var_names_list
=
block
.
vars
.
keys
()
for
var_name
in
var_names_list
:
if
var_name
in
old_fetch_names
:
continue
new_fetch_vars
.
append
(
block
.
var
(
var_name
))
block
.
append_op
(
type
=
'fetch'
,
inputs
=
{
'X'
:
[
var_name
]},
outputs
=
{
'Out'
:
[
fetch_var
]},
attrs
=
{
'col'
:
i
})
i
=
i
+
1
return
new_fetch_vars
def
_get_results
(
self
,
results
,
new_fetch_targets
,
need_save
=
False
,
arg_names
=
None
,
save_path
=
''
,
out_data_len
=
10
):
res
=
OrderedDict
()
old_fetch_names
=
set
([
var
.
name
for
var
in
self
.
fetch_targets
])
if
need_save
:
out_fd
=
open
(
save_path
,
'w'
)
for
result
in
results
:
idx
=
results
.
index
(
result
)
name
=
new_fetch_targets
[
idx
].
name
dim
=
[
v
if
v
>=
0
else
1
for
v
in
new_fetch_targets
[
idx
].
shape
]
size
=
min
(
reduce
(
mul
,
dim
),
out_data_len
)
if
out_data_len
>
0
else
reduce
(
mul
,
dim
)
values
=
list
(
np
.
array
(
result
).
flatten
())[:
size
]
res
[
name
]
=
{
"dim"
:
dim
,
"values"
:
values
}
if
need_save
:
if
arg_names
and
name
not
in
arg_names
:
continue
dim_str
=
'{'
+
','
.
join
(
map
(
str
,
dim
))
+
'}'
out_fd
.
write
(
'
\t
'
.
join
(
[
name
,
dim_str
,
' '
.
join
(
map
(
str
,
values
))])
+
'
\n
'
)
if
need_save
:
out_fd
.
close
()
return
res
class
Analyser
(
object
):
"""
A FLuid model analysis tool
"""
def
__init__
(
self
,
args
):
self
.
args
=
args
self
.
tensors
=
OrderedDict
()
self
.
topo
=
{}
self
.
input
=
[]
logger
.
info
(
"Loading fluid inference model %s ..."
%
args
.
model_dir
)
self
.
predictor
=
FluidModelExecutor
(
args
.
model_dir
,
args
.
input_file
)
def
analysis
(
self
):
"""
Analyser work function
"""
self
.
_load_topo_file
()
self
.
_load_tensor_file
()
arg_names
=
self
.
args
.
tensor_names
.
split
(
','
)
if
self
.
args
.
tensor_names
!=
""
\
else
self
.
tensors
.
keys
()
infer_results
=
self
.
predictor
.
infer_var_list
(
out_data_len
=
self
.
args
.
tensor_output_length
,
arg_names
=
arg_names
,
dump_tensor
=
self
.
args
.
output_tensor
,
dump_tensor_file
=
self
.
args
.
tensor_output_file
)
if
self
.
args
.
tensor_names
==
""
:
self
.
_check_diff_nodes
(
infer_results
)
def
_parse_topo_field
(
self
,
field
):
params
=
[
item
.
split
(
':'
)[
1
].
strip
()
for
item
in
field
[
1
:
-
1
].
split
(
' '
)]
params
=
[
item
.
split
(
'#'
)
for
item
in
params
if
item
!=
""
]
return
[
item
for
lst
in
params
for
item
in
lst
]
def
_load_topo_file
(
self
):
if
self
.
args
.
topo_file
==
""
:
raise
ValueError
(
"Topo file path in empty"
)
logger
.
info
(
"Loading topo file %s ..."
%
self
.
args
.
topo_file
)
for
line
in
load_file
(
self
.
args
.
topo_file
,
'
\t
'
):
op_type
,
inputs
,
outputs
=
line
for
name
in
self
.
_parse_topo_field
(
outputs
):
if
name
not
in
self
.
topo
:
self
.
topo
[
name
]
=
[]
self
.
topo
[
name
].
append
(
line
)
def
_load_tensor_file
(
self
):
if
self
.
args
.
tensor_file
==
""
:
raise
ValueError
(
"Tensor file path in empty"
)
logger
.
info
(
"Loading tensor file %s ..."
%
args
.
tensor_file
)
for
line
in
load_file
(
args
.
tensor_file
,
"
\t
"
):
name
,
dim
,
values
=
line
dim
=
map
(
int
,
dim
[
1
:
-
1
].
split
(
','
))
values
=
map
(
float
,
values
.
split
(
' '
))
dim_size
=
reduce
(
mul
,
dim
)
value_size
=
len
(
values
)
assert
dim_size
==
value_size
,
\
"Dim size mismatch with data: %d vs %d"
%
(
dim_size
,
value_size
)
self
.
tensors
[
name
]
=
{
"dim"
:
dim
,
"values"
:
values
}
def
_check_diff_nodes
(
self
,
results
):
"""
NOTE: The tensor output by c++ debug tool is according to runtime topology order,
so we can find the first ops (may be one of them) with error results
"""
assert
len
(
self
.
tensors
)
==
len
(
results
),
\
"FLuid output tensor'size mismatch with `tensor_file`"
diff_vars
=
[]
flag
=
False
for
k
in
self
.
tensors
:
if
k
not
in
results
:
raise
KeyError
(
"Have not found infer result for `%s`"
%
k
)
if
len
(
self
.
tensors
[
k
][
'values'
])
!=
len
(
results
[
k
][
'values'
]):
raise
ValueError
(
"Argname: %s size mismatch with `tensor_file`: %d vs %d"
%
(
k
,
len
(
self
.
tensors
[
k
][
'values'
]),
len
(
results
[
k
][
'values'
])))
for
i
in
range
(
len
(
self
.
tensors
[
k
][
'values'
])):
if
abs
(
self
.
tensors
[
k
][
'values'
][
i
]
-
results
[
k
][
'values'
][
i
])
>
args
.
threshold
:
diff_vars
.
append
(
k
)
if
args
.
only_first
:
flag
=
True
break
if
flag
:
break
self
.
_output_diff_nodes
(
results
,
diff_vars
)
def
_output_diff_nodes
(
self
,
results
,
diff_vars
):
logger
.
info
(
'is here'
)
def
output_param_info
(
inputs
,
outputs
,
infos
,
fd
):
def
tensor_repr
(
name
):
return
'
\t
'
.
join
([
name
,
'{'
+
','
.
join
(
map
(
str
,
infos
[
name
][
'dim'
]))
+
'}'
,
' '
.
join
(
map
(
str
,
infos
[
name
][
'values'
]))
])
for
name
in
self
.
_parse_topo_field
(
inputs
):
if
name
not
in
infos
:
continue
fd
.
write
(
tensor_repr
(
name
)
+
'
\n
'
)
for
name
in
self
.
_parse_topo_field
(
outputs
):
if
name
not
in
infos
:
continue
fd
.
write
(
tensor_repr
(
name
)
+
'
\n
'
)
if
len
(
diff_vars
)
==
0
:
logger
.
info
(
"No diff found. Congratulation!"
)
return
logger
.
info
(
"Total diff vars: %d"
%
len
(
diff_vars
))
with
open
(
self
.
args
.
output_file
,
'w'
)
as
fd
:
for
var
in
diff_vars
:
if
var
not
in
self
.
topo
:
raise
KeyError
(
"%s not in any op's output params, "
%
var
+
"please check your model and input"
)
fd
.
write
(
'>>>>>>>>>>>>>>>>>>DIFF VARIABLE: %s<<<<<<<<<<<<<<<<<<<
\n
'
%
var
)
for
idx
,
(
op_type
,
inputs
,
outputs
)
in
enumerate
(
self
.
topo
[
var
]):
op_repr
=
'
\t
'
.
join
([
op_type
,
inputs
,
outputs
])
logger
.
info
(
"dump diff info: ------------ %s"
%
op_repr
)
fd
.
write
(
op_repr
+
'
\n
'
)
fd
.
write
(
"--------------- Tensor File info ---------------
\n
"
)
output_param_info
(
inputs
,
outputs
,
self
.
tensors
,
fd
)
fd
.
write
(
"--------------- Fluid Tensor info ---------------
\n
"
)
output_param_info
(
inputs
,
outputs
,
results
,
fd
)
fd
.
write
(
"
\n\n
"
)
if
__name__
==
"__main__"
:
args
=
parser
.
parse_args
()
analyser
=
Analyser
(
args
)
analyser
.
analysis
()
paddle/fluid/lite/tools/debug/check_model.sh
0 → 100755
浏览文件 @
e4458933
#!/bin/bash
############################# Arguments ############################
# For both cpp & python
BUILD_ROOT_DIR
=
""
# Cmake build root path, for LD_LIBRARY_PATH
MODEL_DIR
=
""
# Model dir path
INPUT_FILE
=
""
# Input data file, only the first record will be used.
# If the path is empty, then all-ones input will be used.
CPP_TOPO_FILE
=
./topo_file.txt
# Runtime program topology info. Write by Cpp-debug-tool and Read by Py-debug-tool
CPP_TENSOR_FILE
=
./tensor_cpp.txt
# Store Cpp-debug-tool's tensor outputs int runtime topology order.
# Write by Cpp-debug-tool and Read by Py-debug-tool
TENSOR_NAMES
=
""
# If is not empty, then only dump the tensor fo arguments whoes name is
# in tensor names. Separate by ','.
TENSOR_OUTPUT_LENGTH
=
-1
# Output tensor data length. Tensor's dim size will be used if this value < 0.
# For Cpp debug tools
CPP_OUTPUT_TOPO
=
1
# If output topology info or not.
CPP_OUTPUT_VARS
=
1
# If output TmpVar' tensor or not.
CPP_OUTPUT_WEIGHTS
=
1
# If output WeightVar' tensor or not.
CPP_ARM_THREAD_NUM
=
1
# ARM thread num. Used by ARM device info.
# Only be used by compile option - LITE_WITH_ARM
# For python debug tools
PY_THRESHOLD
=
0.00001
# The numerical lower bound be used to judge [Cpp vs Py] runtime model diff.
PY_TENSOR_FILE
=
./tensor_py.txt
# Store Py-debug-tool's tensor outputs.
PY_OUTPUT_FILE
=
./diff.txt
# Store model different op/var info for debug.
PY_ONLY_OUTPUT_FIRST_DIFF
=
1
# If only output the first different var's info in runtime topology order or not.
PY_OUTPUT_TENSOR
=
1
# If output var' tensor in CPP_TENSOR_FILE/TENSOR_NAMES or not.
############################# MAIN #################################
function
print_usage
{
echo
-e
"
\n
USAGE:"
echo
-e
"debug_cpp_stage -> debug_py_stage"
echo
echo
"----------------------------------------"
echo
-e
"debug_cpp_stage:"
echo
-e
"run_debug.sh [--option=value]* debug_cpp_stage"
echo
-e
"See run_debug.sh#run_cpp_debug_tool for detail"
echo
echo
-e
"debug_py_stage:"
echo
-e
"run_debug.sh [--option=value]* debug_py_stage"
echo
-e
"See run_debug.sh#run_py_debug_tool for detail"
echo
"----------------------------------------"
}
function
check_enviroment
{
if
[
"X
${
BUILD_ROOT_DIR
}
"
==
"X"
]
;
then
echo
-e
"
\n
Option: --build_root_dir=xxx is required.
\n
"
;
exit
1
fi
if
[
"X
${
MODEL_DIR
}
"
==
"X"
]
;
then
echo
-e
"
\n
Option: --model_dir=xxx is required.
\n
"
;
exit
1
fi
}
function
run_cpp_debug_tool
{
check_enviroment
local
tool_name
=
"lite_model_debug_tool"
local
tool_path
=
$(
find
${
BUILD_ROOT_DIR
}
-type
f
-name
${
tool_name
}
)
if
[
"X
${
tool_path
}
"
==
"X"
]
;
then
echo
-e
"
\n
ERROR:
${
tool_name
}
not found in
${
BUILD_ROOT_DIR
}
.
\n
"
exit
1
fi
echo
"Find Cpp-debug-tool path:
${
tool_path
}
"
export
LD_LIBRARY_PATH
=
"
$LD_LIBRARY_PATH
:
$BUILD_ROOT_DIR
/third_party/install/mklml/lib"
${
tool_path
}
\
--model_dir
=
$MODEL_DIR
\
--input_file
=
$INPUT_FILE
\
--topo_output_file
=
$CPP_TOPO_FILE
\
--output_topo
=
$CPP_OUTPUT_TOPO
\
--tensor_output_file
=
$CPP_TENSOR_FILE
\
--output_vars
=
$CPP_OUTPUT_VARS
\
--output_weights
=
$CPP_OUTPUT_WEIGHTS
\
--tensor_names
=
$TENSOR_NAMES
\
--tensor_output_length
=
$TENSOR_OUTPUT_LENGTH
\
--arm_thread_num
=
$CPP_ARM_THREAD_NUM
}
function
run_py_debug_tool
{
check_enviroment
local
tool_name
=
"analysis_tool.py"
local
tool_path
=
$(
find
${
BUILD_ROOT_DIR
}
-type
f
-name
${
tool_name
}
)
if
[
"X
${
tool_path
}
"
==
"X"
]
;
then
echo
-e
"
\n
ERROR:
${
tool_name
}
not found in
${
BUILD_ROOT_DIR
}
.
\n
"
return
fi
echo
"Find Py-debug-tool path:
${
tool_path
}
"
python
${
tool_path
}
\
--model_dir
=
$MODEL_DIR
\
--input_file
=
$INPUT_FILE
\
--topo_file
=
$CPP_TOPO_FILE
\
--tensor_file
=
$CPP_TENSOR_FILE
\
--tensor_names
=
$TENSOR_NAMES
\
--output_tensor
=
$PY_OUTPUT_TENSOR
\
--tensor_output_file
=
$PY_TENSOR_FILE
\
--tensor_output_length
=
$TENSOR_OUTPUT_LENGTH
\
--only_first
=
$PY_ONLY_OUTPUT_FIRST_DIFF
\
--output_file
=
$PY_OUTPUT_FILE
\
--threshold
=
$PY_THRESHOLD
}
function
main
{
# Parse command line.
for
i
in
"
$@
"
;
do
case
$i
in
--model_dir
=
*
)
MODEL_DIR
=
"
${
i
#*=
}
"
shift
;;
--input_file
=
*
)
INPUT_FILE
=
"
${
i
#*=
}
"
shift
;;
--cpp_topo_file
=
*
)
CPP_TOPO_FILE
=
"
${
i
#*=
}
"
shift
;;
--cpp_tensor_file
=
*
)
CPP_TENSOR_FILE
=
"
${
i
#*=
}
"
shift
;;
--tensor_names
=
*
)
TENSOR_NAMES
=
"
${
i
#*=
}
"
shift
;;
--tensor_output_length
=
*
)
TENSOR_OUTPUT_LENGTH
=
"
${
i
#*=
}
"
shift
;;
--cpp_output_vars
=
*
)
CPP_OUTPUT_VARS
=
"
${
i
#*=
}
"
shift
;;
--cpp_output_weights
=
*
)
CPP_OUTPUT_WEIGHTS
=
"
${
i
#*=
}
"
shift
;;
--py_threshold
=
*
)
PY_THRESHOLD
=
"
${
i
#*=
}
"
shift
;;
--py_tensor_file
=
*
)
PY_TENSOR_FILE
=
"
${
i
#*=
}
"
shift
;;
--py_output_file
=
*
)
PY_OUTPUT_FILE
=
"
${
i
#*=
}
"
shift
;;
--py_only_output_first_diff
=
*
)
PY_ONLY_OUTPUT_FIRST_DIFF
=
"
${
i
#*=
}
"
shift
;;
--py_output_tensor
=
*
)
PY_OUTPUT_TENSOR
=
"
${
i
#*=
}
"
shift
;;
--build_root_dir
=
*
)
BUILD_ROOT_DIR
=
"
${
i
#*=
}
"
shift
;;
debug_cpp_stage
)
run_cpp_debug_tool
shift
;;
debug_py_stage
)
run_py_debug_tool
shift
;;
*
)
# unknown option
print_usage
exit
1
;;
esac
done
}
main
$@
paddle/fluid/lite/tools/debug/debug_utils.cc
0 → 100644
浏览文件 @
e4458933
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/tools/debug/debug_utils.h"
paddle/fluid/lite/tools/debug/debug_utils.h
0 → 100644
浏览文件 @
e4458933
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <gflags/gflags.h>
#include <algorithm>
#include <fstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "paddle/fluid/lite/api/cxx_api.h"
#include "paddle/fluid/lite/core/compatible_tensor.h"
#include "paddle/fluid/lite/utils/string.h"
DEFINE_string
(
model_dir
,
""
,
"Model dir path"
);
DEFINE_string
(
input_file
,
""
,
"Input datas file path"
);
DEFINE_string
(
topo_output_file
,
""
,
"Runtime topology order output file path"
);
DEFINE_bool
(
output_topo
,
true
,
"Dump runtime topology or not"
);
DEFINE_string
(
tensor_output_file
,
""
,
"Tensor output file path"
);
DEFINE_bool
(
output_vars
,
true
,
"Dump vars or not"
);
DEFINE_bool
(
output_weights
,
true
,
"Dump weight tensors or not"
);
DEFINE_string
(
tensor_names
,
""
,
"If tensor_names is not empty, then only this tensors will be dump"
);
DEFINE_int32
(
tensor_output_length
,
-
1
,
"Output tensor data length, dims size will be used if "
"output_tensor_length < 0"
);
DEFINE_int32
(
arm_thread_num
,
1
,
"Arm thread nums, 1 as default"
);
DEFINE_string
(
separator
,
","
,
"Deafult separator, use in string split"
);
namespace
paddle
{
namespace
lite
{
namespace
tools
{
namespace
debug
{
struct
DebugConfig
{
// arguments
std
::
string
model_dir
;
std
::
string
topo_output_file
;
std
::
string
tensor_output_file
;
std
::
string
input_file
;
std
::
vector
<
std
::
string
>
tensor_names
;
bool
output_weights
;
bool
output_topo
;
bool
output_vars
;
int
tensor_output_length
;
int
arm_thread_num
;
std
::
unordered_map
<
std
::
string
,
lite
::
VarDesc
>
var_descs
;
std
::
vector
<
std
::
vector
<
std
::
string
>>
input_values
;
};
template
<
typename
T
>
std
::
vector
<
T
>
Split2Vector
(
const
std
::
string
&
input
,
const
std
::
string
&
separator
)
{
std
::
vector
<
T
>
tgt
;
std
::
vector
<
std
::
string
>
inputs
=
Split
(
input
,
separator
);
tgt
.
resize
(
inputs
.
size
());
std
::
stringstream
ss
;
for
(
int
i
=
0
;
i
<
inputs
.
size
();
++
i
)
{
ss
<<
inputs
[
i
]
<<
" "
;
}
for
(
int
i
=
0
;
i
<
inputs
.
size
();
++
i
)
{
ss
>>
tgt
[
i
];
}
return
tgt
;
}
void
CollectFeedVarsInfo
(
std
::
unordered_map
<
int
,
std
::
string
>*
feed_vars_info
,
const
framework
::
proto
::
ProgramDesc
&
desc
)
{
CHECK
(
feed_vars_info
);
for
(
const
auto
&
proto_op_desc
:
desc
.
blocks
(
0
).
ops
())
{
lite
::
OpDesc
op_desc
(
proto_op_desc
);
auto
op_type
=
op_desc
.
Type
();
if
(
op_type
==
"feed"
)
{
(
*
feed_vars_info
)
.
emplace
(
op_desc
.
GetAttr
<
int
>
(
"col"
),
op_desc
.
Output
(
"Out"
).
front
());
}
}
}
template
<
typename
T
>
void
FillTensorData
(
lite
::
Tensor
*
tensor
,
const
DebugConfig
&
conf
,
int
col
)
{
CHECK
(
tensor
);
auto
dim_size
=
tensor
->
dims
().
production
();
auto
*
data
=
tensor
->
mutable_data
<
T
>
();
if
(
conf
.
input_values
.
size
()
>
0
)
{
CHECK
(
col
<
conf
.
input_values
[
0
].
size
())
<<
"Input data fields out of index. field_len: "
<<
conf
.
input_values
[
0
].
size
()
<<
" col: "
<<
col
;
std
::
vector
<
T
>
input_data
(
std
::
move
(
Split2Vector
<
T
>
(
conf
.
input_values
[
0
][
col
],
" "
)));
CHECK
(
input_data
.
size
()
==
dim_size
)
<<
"Input data field["
<<
col
<<
"] mismatch TensorDim: "
<<
input_data
.
size
()
<<
" vs "
<<
dim_size
;
for
(
int
i
=
0
;
i
<
dim_size
;
i
++
)
{
data
[
i
]
=
input_data
[
i
];
}
}
else
{
LOG
(
INFO
)
<<
"------------> Use all-ones input"
;
for
(
int
i
=
0
;
i
<
dim_size
;
i
++
)
{
data
[
i
]
=
1
;
}
}
}
void
CheckDim
(
std
::
vector
<
DDim
::
value_type
>*
dim
)
{
CHECK
(
dim
);
for
(
int
i
=
0
;
i
<
dim
->
size
();
++
i
)
{
if
((
*
dim
)[
i
]
<
0
)
(
*
dim
)[
i
]
=
-
(
*
dim
)[
i
];
}
}
void
PrepareModelInputTensor
(
const
DebugConfig
&
conf
,
lite
::
Scope
*
scope
,
const
framework
::
proto
::
ProgramDesc
&
desc
)
{
CHECK
(
scope
);
std
::
unordered_map
<
int
,
std
::
string
>
feed_vars_info
;
CollectFeedVarsInfo
(
&
feed_vars_info
,
desc
);
auto
*
feed_var
=
scope
->
FindVar
(
"feed"
)
->
GetMutable
<
std
::
vector
<
lite
::
Tensor
>>
();
feed_var
->
resize
(
feed_vars_info
.
size
());
for
(
auto
&
item
:
feed_vars_info
)
{
auto
&
var_desc
=
conf
.
var_descs
.
at
(
item
.
second
);
auto
val_type
=
var_desc
.
GetDataType
();
auto
dim
=
var_desc
.
GetShape
();
CheckDim
(
&
dim
);
auto
*
input_tensor
=
&
feed_var
->
at
(
item
.
first
);
input_tensor
->
Resize
(
DDim
(
dim
));
switch
(
val_type
)
{
#define FILL_TENSOR_BY_TYPE_ONCE(pb_type__, type__) \
case framework::proto::VarType::pb_type__: \
FillTensorData<type__>(input_tensor, conf, item.first); \
break
FILL_TENSOR_BY_TYPE_ONCE
(
UINT8
,
uint8_t
);
FILL_TENSOR_BY_TYPE_ONCE
(
INT8
,
int8_t
);
FILL_TENSOR_BY_TYPE_ONCE
(
INT16
,
int16_t
);
FILL_TENSOR_BY_TYPE_ONCE
(
INT32
,
int32_t
);
FILL_TENSOR_BY_TYPE_ONCE
(
INT64
,
int64_t
);
FILL_TENSOR_BY_TYPE_ONCE
(
FP32
,
float
);
FILL_TENSOR_BY_TYPE_ONCE
(
FP64
,
double
);
default:
LOG
(
FATAL
)
<<
"Unsupported data type: "
<<
static_cast
<
int
>
(
val_type
);
#undef FILL_TENSOR_BY_TYPE_ONCE
}
}
}
void
ParseInputFile
(
DebugConfig
*
conf
)
{
CHECK
(
conf
);
if
(
conf
->
input_file
.
empty
())
return
;
auto
&
inputs
=
conf
->
input_values
;
std
::
ifstream
fd
(
conf
->
input_file
);
CHECK
(
fd
.
is_open
())
<<
"Open input file: "
<<
conf
->
input_file
<<
" failed!"
;
std
::
string
line
;
while
(
std
::
getline
(
fd
,
line
))
{
inputs
.
emplace_back
(
std
::
move
(
Split
(
line
,
FLAGS_separator
)));
}
LOG
(
INFO
)
<<
"Load data:"
<<
inputs
.
size
()
<<
" items"
;
}
void
ParseConfig
(
DebugConfig
*
conf
)
{
CHECK
(
conf
);
#define CHECK_NON_EMPTY(name__) \
CHECK(!FLAGS_##name__.empty()) << "Option " << #name__ << " can't be empty."
CHECK_NON_EMPTY
(
model_dir
);
if
(
FLAGS_output_topo
)
{
CHECK_NON_EMPTY
(
topo_output_file
);
}
if
(
FLAGS_output_vars
||
FLAGS_output_weights
)
{
CHECK_NON_EMPTY
(
tensor_output_file
);
}
#undef CHECK_NON_EMPTY
conf
->
model_dir
=
FLAGS_model_dir
;
conf
->
topo_output_file
=
FLAGS_topo_output_file
;
conf
->
tensor_output_file
=
FLAGS_tensor_output_file
;
conf
->
input_file
=
FLAGS_input_file
;
conf
->
output_weights
=
FLAGS_output_weights
;
conf
->
output_vars
=
FLAGS_output_vars
;
conf
->
output_topo
=
FLAGS_output_topo
;
conf
->
tensor_output_length
=
FLAGS_tensor_output_length
;
conf
->
arm_thread_num
=
FLAGS_arm_thread_num
;
if
(
!
FLAGS_tensor_names
.
empty
())
{
conf
->
tensor_names
=
Split
(
FLAGS_tensor_names
,
FLAGS_separator
);
}
ParseInputFile
(
conf
);
}
void
CollectAndDumpTopoInfo
(
const
std
::
vector
<
Instruction
>&
instructions
,
const
DebugConfig
&
conf
)
{
if
(
!
conf
.
output_topo
)
return
;
LOG
(
INFO
)
<<
"----------------- dump topo file"
;
std
::
ofstream
os
(
conf
.
topo_output_file
);
CHECK
(
os
.
is_open
());
for
(
auto
&
inst
:
instructions
)
{
auto
*
op_info
=
inst
.
op
()
->
op_info
();
CHECK
(
op_info
);
os
<<
op_info
->
Type
()
<<
"
\t
"
;
os
<<
"("
;
#define DUMP_TOPO_INFO_ONCE(name__) \
{ \
auto argnames = op_info->name__##ArgumentNames(); \
for (int i = 0; i < argnames.size(); ++i) { \
os << argnames[i] << ":"; \
auto vars = op_info->name__(argnames[i]); \
for (int j = 0; j < vars.size(); ++j) { \
os << vars[j]; \
if (j != vars.size() - 1) os << "#"; \
} \
if (i != argnames.size() - 1) os << " "; \
} \
}
DUMP_TOPO_INFO_ONCE
(
Input
);
os
<<
")
\t
("
;
DUMP_TOPO_INFO_ONCE
(
Output
);
os
<<
")
\n
"
;
#undef DUMP_TOPO_INFO_ONCE
}
os
.
close
();
}
void
CollectVarDescs
(
std
::
unordered_map
<
std
::
string
,
lite
::
VarDesc
>*
var_descs
,
const
framework
::
proto
::
ProgramDesc
&
desc
)
{
CHECK
(
var_descs
);
CHECK
(
!
desc
.
blocks
().
empty
());
std
::
unordered_set
<
std
::
string
>
weights
;
for
(
auto
proto_var_desc
:
desc
.
blocks
(
0
).
vars
())
{
lite
::
VarDesc
var_desc
(
proto_var_desc
);
(
*
var_descs
).
emplace
(
var_desc
.
Name
(),
std
::
move
(
var_desc
));
}
}
std
::
unordered_set
<
std
::
string
>
CollectUnusedVars
(
const
std
::
vector
<
Instruction
>&
instructions
)
{
std
::
unordered_set
<
std
::
string
>
unused
;
std
::
unordered_set
<
std
::
string
>
all_inputs
;
for
(
auto
&
inst
:
instructions
)
{
for
(
const
auto
&
name
:
inst
.
op
()
->
op_info
()
->
input_names
())
{
all_inputs
.
insert
(
name
);
}
}
for
(
auto
&
inst
:
instructions
)
{
for
(
const
auto
&
name
:
inst
.
op
()
->
op_info
()
->
output_names
())
{
if
(
all_inputs
.
count
(
name
)
==
0
)
unused
.
insert
(
name
);
}
}
return
unused
;
}
std
::
string
GetTensorRepr
(
const
lite
::
Tensor
&
tensor
,
int
out_data_len
)
{
std
::
stringstream
ss
;
auto
size
=
tensor
.
dims
().
production
();
if
(
out_data_len
>=
0
)
{
size
=
std
::
min
(
size
,
static_cast
<
DDim
::
value_type
>
(
out_data_len
));
}
for
(
int
i
=
0
;
i
<
size
;
i
++
)
{
ss
<<
tensor
.
template
data
<
float
>()[
i
];
if
(
i
!=
size
-
1
)
ss
<<
" "
;
}
return
ss
.
str
();
}
void
CollectAndDumpTensorInfo
(
const
std
::
vector
<
Instruction
>&
instructions
,
const
framework
::
proto
::
ProgramDesc
&
desc
,
const
DebugConfig
&
conf
)
{
CHECK
(
instructions
.
size
()
>
0
)
<<
"No instruction found"
;
const
auto
*
scope
=
const_cast
<
lite
::
OpLite
*>
(
instructions
[
0
].
op
())
->
scope
();
std
::
ofstream
os
(
conf
.
tensor_output_file
);
CHECK
(
os
.
is_open
());
std
::
unordered_set
<
std
::
string
>
dump_vars
;
#define DUMP_TENSOR_ONCE(name__) \
LOG(INFO) << "----------------- dump tensor: " << name__; \
auto& tensor = scope->FindVar(name__)->Get<lite::Tensor>(); \
os << name__ << "\t" << tensor.dims() << "\t" \
<< GetTensorRepr(tensor, conf.tensor_output_length) << "\n"; \
dump_vars.insert(name__)
#define DUMP_OP_TENSOR_ONCE(name__, skip__) \
for (const auto& name : inst.op()->op_info()->name__##_names()) { \
bool is_weight = conf.var_descs.at(name).Persistable(); \
if (unused.count(name) != 0 || name == #skip__ || \
(!conf.output_weights && is_weight) || \
(!conf.output_vars && !is_weight) || dump_vars.count(name) != 0) \
continue; \
DUMP_TENSOR_ONCE(name); \
}
if
(
conf
.
tensor_names
.
size
()
==
0
)
{
std
::
unordered_set
<
std
::
string
>
unused
(
std
::
move
(
CollectUnusedVars
(
instructions
)));
for
(
auto
&
inst
:
instructions
)
{
DUMP_OP_TENSOR_ONCE
(
input
,
feed
);
DUMP_OP_TENSOR_ONCE
(
output
,
fetch
);
}
}
else
{
for
(
const
auto
&
name
:
conf
.
tensor_names
)
{
DUMP_TENSOR_ONCE
(
name
);
}
}
#undef DUMP_OP_TENSOR_ONCE
#undef DUMP_TENSOR_ONCE
os
.
close
();
}
}
// namespace debug
}
// namespace tools
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/tools/debug/model_debug_tool.cc
0 → 100644
浏览文件 @
e4458933
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sstream>
#include <string>
#include <vector>
#include "paddle/fluid/lite/api/cxx_api.h"
#include "paddle/fluid/lite/core/mir/use_passes.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/kernels/use_kernels.h"
#include "paddle/fluid/lite/operators/use_ops.h"
#include "paddle/fluid/lite/tools/debug/debug_utils.h"
namespace
paddle
{
namespace
lite
{
namespace
tools
{
namespace
debug
{
void
Run
(
DebugConfig
*
conf
)
{
CHECK
(
conf
);
#ifdef LITE_WITH_ARM
DeviceInfo
::
Init
();
DeviceInfo
::
Global
().
SetRunMode
(
LITE_POWER_HIGH
,
conf
->
arm_thread_num
);
#endif
lite
::
Predictor
predictor
;
std
::
vector
<
Place
>
valid_places
({
Place
{
TARGET
(
kHost
),
PRECISION
(
kFloat
)},
#ifdef LITE_WITH_ARM
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
)},
#endif
#ifdef LITE_WITH_X86
Place
{
TARGET
(
kX86
),
PRECISION
(
kFloat
)},
#endif
});
std
::
vector
<
std
::
string
>
passes
{{
"static_kernel_pick_pass"
,
"variable_place_inference_pass"
,
"type_target_transform_pass"
,
"variable_place_inference_pass"
,
"io_copy_kernel_pick_pass"
,
"variable_place_inference_pass"
,
"runtime_context_assign_pass"
,
}};
predictor
.
Build
(
conf
->
model_dir
,
#ifdef LITE_WITH_ARM
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
)},
#endif
#ifdef LITE_WITH_X86
Place
{
TARGET
(
kX86
),
PRECISION
(
kFloat
)},
#endif
valid_places
,
passes
);
auto
&
instructions
=
predictor
.
runtime_program
().
instructions
();
auto
&
program_desc
=
predictor
.
program_desc
();
auto
*
scope
=
const_cast
<
lite
::
OpLite
*>
(
instructions
[
0
].
op
())
->
scope
();
CollectVarDescs
(
&
(
conf
->
var_descs
),
program_desc
);
PrepareModelInputTensor
(
*
conf
,
scope
,
program_desc
);
predictor
.
Run
();
CollectAndDumpTopoInfo
(
instructions
,
*
conf
);
CollectAndDumpTensorInfo
(
instructions
,
program_desc
,
*
conf
);
// TODO(sangoly): Maybe add some profile info here
auto
*
out
=
predictor
.
GetOutput
(
0
);
LOG
(
INFO
)
<<
out
<<
" memory size "
<<
out
->
data_size
();
LOG
(
INFO
)
<<
"out "
<<
out
->
data
<
float
>
()[
0
];
LOG
(
INFO
)
<<
"dims "
<<
out
->
dims
();
LOG
(
INFO
)
<<
"out data size: "
<<
out
->
data_size
();
}
}
// namespace debug
}
// namespace tools
}
// namespace lite
}
// namespace paddle
int
main
(
int
argc
,
char
**
argv
)
{
google
::
ParseCommandLineFlags
(
&
argc
,
&
argv
,
true
);
paddle
::
lite
::
tools
::
debug
::
DebugConfig
conf
;
paddle
::
lite
::
tools
::
debug
::
ParseConfig
(
&
conf
);
paddle
::
lite
::
tools
::
debug
::
Run
(
&
conf
);
return
0
;
}
paddle/fluid/lite/utils/string.h
浏览文件 @
e4458933
...
...
@@ -74,14 +74,21 @@ static std::string Repr(const std::vector<std::string>& v) {
return
"{"
+
Join
(
tmp
,
","
)
+
"}"
;
}
static
std
::
vector
<
std
::
string
>
Split
(
const
std
::
string
&
s
,
char
delim
)
{
std
::
stringstream
ss
(
s
);
std
::
string
line
;
std
::
vector
<
std
::
string
>
res
;
while
(
std
::
getline
(
ss
,
line
,
delim
))
{
res
.
push_back
(
line
);
static
std
::
vector
<
std
::
string
>
Split
(
const
std
::
string
&
original
,
const
std
::
string
&
separator
)
{
std
::
vector
<
std
::
string
>
results
;
std
::
string
::
size_type
pos1
,
pos2
;
pos2
=
original
.
find
(
separator
);
pos1
=
0
;
while
(
std
::
string
::
npos
!=
pos2
)
{
results
.
push_back
(
original
.
substr
(
pos1
,
pos2
-
pos1
));
pos1
=
pos2
+
separator
.
size
();
pos2
=
original
.
find
(
separator
,
pos1
);
}
return
res
;
if
(
pos1
!=
original
.
length
())
{
results
.
push_back
(
original
.
substr
(
pos1
));
}
return
results
;
}
}
// namespace lite
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录