Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
e3d02c95
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e3d02c95
编写于
10月 20, 2020
作者:
X
xiaoting
提交者:
GitHub
10月 20, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
rm max_input in conv2d for kunlun, test=kunlun (#28062)
上级
a21b5710
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
41 addition
and
42 deletion
+41
-42
paddle/fluid/operators/conv_op_xpu.cc
paddle/fluid/operators/conv_op_xpu.cc
+41
-42
未找到文件。
paddle/fluid/operators/conv_op_xpu.cc
浏览文件 @
e3d02c95
...
...
@@ -27,10 +27,10 @@ class GemmConvXPUKernel : public framework::OpKernel<T> {
// that avoids modifying the variable in the Scope.
Tensor
filter
=
*
context
.
Input
<
Tensor
>
(
"Filter"
);
Tensor
*
output
=
context
.
Output
<
Tensor
>
(
"Output"
);
Tensor
*
max_input
=
context
.
Output
<
Tensor
>
(
"MaxInput"
);
Tensor
*
max_filter
=
context
.
Output
<
Tensor
>
(
"MaxFilter"
);
max_input
->
mutable_data
<
T
>
(
context
.
GetPlace
());
max_filter
->
mutable_data
<
T
>
(
context
.
GetPlace
());
//
Tensor* max_input = context.Output<Tensor>("MaxInput");
//
Tensor* max_filter = context.Output<Tensor>("MaxFilter");
//
max_input->mutable_data<T>(context.GetPlace());
//
max_filter->mutable_data<T>(context.GetPlace());
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
groups
=
context
.
Attr
<
int
>
(
"groups"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
...
...
@@ -47,28 +47,28 @@ class GemmConvXPUKernel : public framework::OpKernel<T> {
dilations
[
0
]
==
1
&&
dilations
[
1
]
==
1
,
true
,
platform
::
errors
::
InvalidArgument
(
"XPU only support dilation == 1."
));
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
PADDLE_ENFORCE_EQ
(
xpu
::
findmax
(
dev_ctx
.
x_context
(),
input
->
data
<
T
>
(),
input
->
numel
(),
max_input
->
data
<
T
>
())
==
xpu
::
Error_t
::
SUCCESS
,
true
,
platform
::
errors
::
InvalidArgument
(
"XPU conv kernel error,can not finde max_input,please "
"check whether Baidu Kunlun "
"Card is properly installed."
));
PADDLE_ENFORCE_EQ
(
xpu
::
findmax
(
dev_ctx
.
x_context
(),
filter
.
data
<
T
>
(),
filter
.
numel
(),
max_filter
->
data
<
T
>
())
==
xpu
::
Error_t
::
SUCCESS
,
true
,
platform
::
errors
::
InvalidArgument
(
"XPU conv kernel error,can not find max_filter,please "
"check whether Baidu Kunlun "
"Card is properly installed."
));
//
PADDLE_ENFORCE_EQ(
//
xpu::findmax(dev_ctx.x_context(), input->data<T>(), input->numel(),
//
max_input->data<T>()) == xpu::Error_t::SUCCESS,
//
true, platform::errors::InvalidArgument(
//
"XPU conv kernel error,can not finde max_input,please "
//
"check whether Baidu Kunlun "
//
"Card is properly installed."));
//
PADDLE_ENFORCE_EQ(
//
xpu::findmax(dev_ctx.x_context(), filter.data<T>(), filter.numel(),
//
max_filter->data<T>()) == xpu::Error_t::SUCCESS,
//
true, platform::errors::InvalidArgument(
//
"XPU conv kernel error,can not find max_filter,please "
//
"check whether Baidu Kunlun "
//
"Card is properly installed."));
if
(
groups
==
1
)
{
int
r
=
xpu
::
conv2d_forward_int16
<
float
,
float
,
float
,
float
>
(
dev_ctx
.
x_context
(),
batch_size
,
img_c
,
img_h
,
img_w
,
f
,
win_h
,
win_w
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
],
dilations
[
0
],
dilations
[
1
],
groups
,
input
->
data
<
float
>
(),
filter
.
data
<
float
>
(),
output
->
data
<
float
>
(),
nullptr
,
nullptr
,
xpu
::
Activation_t
::
LINEAR
,
//
nullptr, nullptr);
max_input
->
data
<
float
>
(),
max_filter
->
data
<
float
>
());
nullptr
,
nullptr
);
//
max_input->data<float>(), max_filter->data<float>());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU conv kernel return wrong value[%d], "
...
...
@@ -80,8 +80,8 @@ class GemmConvXPUKernel : public framework::OpKernel<T> {
dev_ctx
.
x_context
(),
input
->
data
<
float
>
(),
filter
.
data
<
float
>
(),
output
->
data
<
float
>
(),
batch_size
,
img_c
,
img_h
,
img_w
,
f
,
win_h
,
win_w
,
groups
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
],
//
nullptr, nullptr);
max_input
->
data
<
float
>
(),
max_filter
->
data
<
float
>
());
nullptr
,
nullptr
);
//
max_input->data<float>(), max_filter->data<float>());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU conv kernel return wrong value[%d], "
...
...
@@ -96,9 +96,9 @@ class GemmConvGradXPUKernel : public framework::OpKernel<T> {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
const
Tensor
*
max_input
=
context
.
Input
<
Tensor
>
(
"MaxInput"
);
const
Tensor
*
max_filter
=
context
.
Input
<
Tensor
>
(
"MaxFilter"
);
Tensor
*
max_output_grad
=
context
.
Output
<
Tensor
>
(
"MaxOutputGrad"
);
//
const Tensor* max_input = context.Input<Tensor>("MaxInput");
//
const Tensor* max_filter = context.Input<Tensor>("MaxFilter");
//
Tensor* max_output_grad = context.Output<Tensor>("MaxOutputGrad");
const
Tensor
*
output_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
Tensor
*
input_grad
=
...
...
@@ -133,25 +133,25 @@ class GemmConvGradXPUKernel : public framework::OpKernel<T> {
filter_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
}
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
max_output_grad
->
Resize
({
4
});
max_output_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
PADDLE_ENFORCE_EQ
(
xpu
::
findmax
(
dev_ctx
.
x_context
(),
output_grad
->
data
<
T
>
(),
output_grad
->
numel
(),
max_output_grad
->
data
<
T
>
())
==
xpu
::
Error_t
::
SUCCESS
,
true
,
platform
::
errors
::
External
(
"XPU conv kernel error, can not find max_output_grad, please check "
"whether Baidu Kunlun Card is "
"properly installed."
));
// max_output_grad->Resize({4});
// max_output_grad->mutable_data<T>(context.GetPlace());
// PADDLE_ENFORCE_EQ(
// xpu::findmax(dev_ctx.x_context(), output_grad->data<T>(),
// output_grad->numel(),
// max_output_grad->data<T>()) == xpu::Error_t::SUCCESS,
// true,
// platform::errors::External(
// "XPU conv kernel error, can not find max_output_grad, please
// check "
// "whether Baidu Kunlun Card is "
// "properly installed."));
if
(
input_grad
)
{
int
r
=
xpu
::
conv2d_backward_int16
(
dev_ctx
.
x_context
(),
batch_size
,
img_c
,
img_h
,
img_w
,
f
,
win_h
,
win_w
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
],
dilations
[
0
],
dilations
[
1
],
groups
,
output_grad
->
data
<
float
>
(),
filter
.
data
<
float
>
(),
input_grad
->
data
<
float
>
(),
// nullptr, nullptr,
max_output_grad
->
data
<
float
>
(),
max_filter
->
data
<
float
>
());
filter
.
data
<
float
>
(),
input_grad
->
data
<
float
>
(),
nullptr
,
nullptr
);
// max_output_grad->data<float>(), max_filter->data<float>());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU conv kernel return wrong value[%d], "
...
...
@@ -164,9 +164,8 @@ class GemmConvGradXPUKernel : public framework::OpKernel<T> {
dev_ctx
.
x_context
(),
batch_size
,
img_c
,
img_h
,
img_w
,
f
,
win_h
,
win_w
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
],
dilations
[
0
],
dilations
[
1
],
groups
,
output_grad
->
data
<
float
>
(),
input
->
data
<
float
>
(),
filter_grad
->
data
<
float
>
(),
// nullptr, nullptr,
max_output_grad
->
data
<
float
>
(),
max_input
->
data
<
float
>
());
input
->
data
<
float
>
(),
filter_grad
->
data
<
float
>
(),
nullptr
,
nullptr
);
// max_output_grad->data<float>(), max_input->data<float>());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU conv kernel return wrong value[%d], "
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录