Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
e3c7348f
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e3c7348f
编写于
9月 05, 2018
作者:
D
Dang Qingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update quantize_transpiler
上级
1d0353f1
变更
3
展开全部
隐藏空白更改
内联
并排
Showing
3 changed file
with
805 addition
and
0 deletion
+805
-0
python/paddle/fluid/tests/transpiler/CMakeLists.txt
python/paddle/fluid/tests/transpiler/CMakeLists.txt
+6
-0
python/paddle/fluid/tests/transpiler/test_quantize_transpiler.py
...paddle/fluid/tests/transpiler/test_quantize_transpiler.py
+254
-0
python/paddle/fluid/transpiler/quantize_transpiler.py
python/paddle/fluid/transpiler/quantize_transpiler.py
+545
-0
未找到文件。
python/paddle/fluid/tests/transpiler/CMakeLists.txt
0 → 100644
浏览文件 @
e3c7348f
file
(
GLOB TEST_OPS RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"test_*.py"
)
string
(
REPLACE
".py"
""
TEST_OPS
"
${
TEST_OPS
}
"
)
foreach
(
src
${
TEST_OPS
}
)
py_test
(
${
src
}
SRCS
${
src
}
.py
)
endforeach
()
python/paddle/fluid/tests/transpiler/test_quantize_transpiler.py
0 → 100644
浏览文件 @
e3c7348f
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import
numpy
as
np
import
unittest
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.transpiler.quantize_transpiler
import
_original_var_name
def
linear_fc
(
num
):
data
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
1
,
32
,
32
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
hidden
=
data
for
_
in
xrange
(
num
):
hidden
=
fluid
.
layers
.
fc
(
hidden
,
size
=
128
,
act
=
'relu'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
hidden
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
def
residual_block
(
num
):
def
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
stride
,
padding
,
act
=
'relu'
,
bias_attr
=
False
):
tmp
=
fluid
.
layers
.
conv2d
(
input
=
input
,
filter_size
=
filter_size
,
num_filters
=
ch_out
,
stride
=
stride
,
padding
=
padding
,
act
=
None
,
bias_attr
=
bias_attr
)
return
fluid
.
layers
.
batch_norm
(
input
=
tmp
,
act
=
act
)
data
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
1
,
32
,
32
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
hidden
=
data
for
_
in
xrange
(
num
):
conv
=
conv_bn_layer
(
hidden
,
16
,
3
,
1
,
1
,
act
=
None
,
bias_attr
=
True
)
short
=
conv_bn_layer
(
hidden
,
16
,
1
,
1
,
0
,
act
=
None
)
hidden
=
fluid
.
layers
.
elementwise_add
(
x
=
conv
,
y
=
short
,
act
=
'relu'
)
fc
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
10
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
fc
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
def
conv_net
(
img
,
label
):
conv_pool_1
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
img
,
filter_size
=
5
,
num_filters
=
20
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
conv_pool_1
=
fluid
.
layers
.
batch_norm
(
conv_pool_1
)
conv_pool_2
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
conv_pool_1
,
filter_size
=
5
,
num_filters
=
50
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
prediction
=
fluid
.
layers
.
fc
(
input
=
conv_pool_2
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
return
avg_loss
class
TestQuantizeTranspiler
(
unittest
.
TestCase
):
def
setUp
(
self
):
# since quant_op and dequant_op is not ready, use cos and sin for test
self
.
weight_quant_op_type
=
'fake_quantize_abs_max'
self
.
dequant_op_type
=
'fake_dequantize_max_abs'
self
.
quantizable_op_and_inputs
=
{
'conv2d'
:
[
'Input'
,
'Filter'
],
'depthwise_conv2d'
:
[
'Input'
,
'Filter'
],
'mul'
:
[
'X'
,
'Y'
]
}
self
.
quantizable_op_grad_and_inputs
=
{
'conv2d_grad'
:
[
'Input'
,
'Filter'
],
'depthwise_conv2d_grad'
:
[
'Input'
,
'Filter'
],
'mul_grad'
:
[
'X'
,
'Y'
]
}
def
check_program
(
self
,
program
):
quantized_ops
=
{}
persistable_vars
=
[
v
.
name
for
v
in
filter
(
lambda
var
:
var
.
persistable
,
program
.
list_vars
())
]
for
block
in
program
.
blocks
:
for
idx
,
op
in
enumerate
(
block
.
ops
):
# check forward
if
op
.
type
in
self
.
quantizable_op_and_inputs
:
for
i
,
arg_name
in
enumerate
(
op
.
input_arg_names
):
quant_op_type
=
self
.
weight_quant_op_type
if
\
_original_var_name
(
arg_name
)
\
in
persistable_vars
else
self
.
act_quant_op_type
self
.
assertTrue
(
arg_name
.
endswith
(
'.quantized.dequantized'
))
if
arg_name
not
in
quantized_ops
:
self
.
assertEqual
(
block
.
ops
[
idx
-
2
*
i
-
1
].
type
,
self
.
dequant_op_type
)
self
.
assertEqual
(
block
.
ops
[
idx
-
2
*
i
-
2
].
type
,
quant_op_type
)
quantized_ops
[
arg_name
]
=
block
.
ops
[
idx
-
2
*
i
-
2
]
else
:
op_idx
=
block
.
ops
.
index
(
quantized_ops
[
arg_name
])
self
.
assertLess
(
op_idx
,
idx
)
# check backward
if
op
.
type
in
self
.
quantizable_op_grad_and_inputs
:
for
pname
in
self
.
quantizable_op_grad_and_inputs
[
op
.
type
]:
arg_name
=
op
.
input
(
pname
)[
0
]
self
.
assertTrue
(
arg_name
.
endswith
(
'.quantized.dequantized'
))
self
.
assertTrue
(
arg_name
in
quantized_ops
)
def
linear_fc_quant
(
self
,
quant_type
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
loss
=
linear_fc
(
3
)
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
opt
.
minimize
(
loss
)
t
=
fluid
.
QuantizeTranspiler
(
activation_quantize_type
=
quant_type
)
t
.
training_transpile
(
main
)
self
.
check_program
(
main
)
def
test_linear_fc_quant_abs_max
(
self
):
self
.
act_quant_op_type
=
'fake_quantize_abs_max'
self
.
linear_fc_quant
(
'abs_max'
)
def
test_linear_fc_quant_range_abs_max
(
self
):
self
.
act_quant_op_type
=
'fake_quantize_range_abs_max'
self
.
linear_fc_quant
(
'range_abs_max'
)
def
residual_block_quant
(
self
,
quant_type
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
loss
=
residual_block
(
2
)
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
opt
.
minimize
(
loss
)
t
=
fluid
.
QuantizeTranspiler
(
activation_quantize_type
=
quant_type
)
t
.
training_transpile
(
main
)
self
.
check_program
(
main
)
def
test_residual_block_abs_max
(
self
):
self
.
act_quant_op_type
=
'fake_quantize_abs_max'
self
.
residual_block_quant
(
'abs_max'
)
def
test_residual_block_range_abs_max
(
self
):
self
.
act_quant_op_type
=
'fake_quantize_range_abs_max'
self
.
residual_block_quant
(
'range_abs_max'
)
def
freeze_program
(
self
,
use_cuda
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
quant_transpiler
=
fluid
.
QuantizeTranspiler
()
with
fluid
.
program_guard
(
main
,
startup
):
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
loss
=
conv_net
(
img
,
label
)
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
opt
.
minimize
(
loss
)
quant_transpiler
.
training_transpile
(
main
)
test_program
=
main
.
clone
()
with
fluid
.
program_guard
(
test_program
):
test_program
=
fluid
.
io
.
get_inference_program
(
loss
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
iter
=
5
batch_size
=
8
class_num
=
10
exe
.
run
(
startup
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train
(),
buf_size
=
500
),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
batch_size
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
img
,
label
],
place
=
place
)
for
_
in
range
(
iter
):
data
=
train_reader
().
next
()
loss_v
=
exe
.
run
(
program
=
main
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
loss
])
test_data
=
test_reader
().
next
()
f_var
=
fluid
.
framework
.
get_var
(
'conv2d_1.tmp_0'
,
test_program
)
w_var
=
fluid
.
framework
.
get_var
(
'conv2d_1.w_0.quantized'
,
test_program
)
# Testing during training
test_loss1
,
f_v1
,
w_quant
=
exe
.
run
(
program
=
test_program
,
feed
=
feeder
.
feed
(
test_data
),
fetch_list
=
[
loss
,
f_var
,
w_var
])
# Freeze program for inference, but the weight of fc/conv is still float type.
quant_transpiler
.
freeze_program
(
test_program
,
place
)
fv2
=
fluid
.
framework
.
get_var
(
'conv2d_1.tmp_0.dequantized'
,
test_program
)
test_loss2
,
f_v2
=
exe
.
run
(
program
=
test_program
,
feed
=
feeder
.
feed
(
test_data
),
fetch_list
=
[
loss
,
fv2
])
self
.
assertAlmostEqual
(
test_loss1
,
test_loss2
,
delta
=
1e-5
)
self
.
assertAlmostEqual
(
f_v1
.
all
(),
f_v2
.
all
(),
delta
=
1e-5
)
w_freeze
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
'conv2d_1.w_0'
)
.
get_tensor
())
self
.
assertEqual
(
np
.
sum
(
w_freeze
),
np
.
sum
(
w_quant
))
# Convert parameter to 8-bit.
quant_transpiler
.
convert_to_int8
(
test_program
,
place
)
# Save the 8-bit parameter and model file.
fluid
.
io
.
save_inference_model
(
'model_8bit'
,
[
'image'
,
'label'
],
[
loss
],
exe
,
test_program
)
# Test whether the 8-bit parameter and model file can be loaded successfully.
[
infer
,
feed
,
fetch
]
=
fluid
.
io
.
load_inference_model
(
'model_8bit'
,
exe
)
# Check the loaded 8-bit weight.
w_8bit
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
'conv2d_1.w_0.int8'
)
.
get_tensor
())
self
.
assertEqual
(
w_8bit
.
dtype
,
np
.
int8
)
self
.
assertEqual
(
np
.
sum
(
w_8bit
),
np
.
sum
(
w_freeze
))
def
test_freeze_program_cuda
(
self
):
self
.
freeze_program
(
True
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/transpiler/quantize_transpiler.py
0 → 100644
浏览文件 @
e3c7348f
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录