Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
e35ad3ee
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e35ad3ee
编写于
9月 03, 2020
作者:
D
danleifeng
提交者:
GitHub
9月 03, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
【paddle.fleet】support running python train.py for fleet tasks (#26249)
* support running python train.py for fleet-task; test=develop
上级
9cb57f94
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
149 addition
and
8 deletion
+149
-8
python/paddle/distributed/fleet/base/fleet_base.py
python/paddle/distributed/fleet/base/fleet_base.py
+39
-2
python/paddle/distributed/fleet/base/role_maker.py
python/paddle/distributed/fleet/base/role_maker.py
+30
-6
python/paddle/fluid/tests/unittests/test_fleet_base.py
python/paddle/fluid/tests/unittests/test_fleet_base.py
+80
-0
未找到文件。
python/paddle/distributed/fleet/base/fleet_base.py
浏览文件 @
e35ad3ee
...
@@ -13,7 +13,9 @@
...
@@ -13,7 +13,9 @@
# limitations under the License.
# limitations under the License.
from
__future__
import
print_function
from
__future__
import
print_function
import
warnings
import
paddle
import
paddle
from
paddle.fluid
import
compiler
from
.role_maker
import
UserDefinedRoleMaker
,
PaddleCloudRoleMaker
,
RoleMakerBase
from
.role_maker
import
UserDefinedRoleMaker
,
PaddleCloudRoleMaker
,
RoleMakerBase
from
.strategy_compiler
import
StrategyCompiler
from
.strategy_compiler
import
StrategyCompiler
from
.distributed_strategy
import
DistributedStrategy
from
.distributed_strategy
import
DistributedStrategy
...
@@ -35,7 +37,24 @@ def _inited_runtime_handler_(func):
...
@@ -35,7 +37,24 @@ def _inited_runtime_handler_(func):
return
__impl__
return
__impl__
def
_is_non_distributed_check_
(
func
):
def
__impl__
(
*
args
,
**
kwargs
):
cls
=
args
[
0
]
if
cls
.
_role_maker
is
not
None
and
cls
.
_role_maker
.
_is_non_distributed
(
)
is
True
:
warnings
.
warn
(
"%s() function doesn't work when use non_distributed fleet."
%
(
func
.
__name__
))
return
return
func
(
*
args
,
**
kwargs
)
return
__impl__
inited_runtime_handler
=
wrap_decorator
(
_inited_runtime_handler_
)
inited_runtime_handler
=
wrap_decorator
(
_inited_runtime_handler_
)
is_non_distributed_check
=
wrap_decorator
(
_is_non_distributed_check_
)
class
Fleet
(
object
):
class
Fleet
(
object
):
...
@@ -367,6 +386,7 @@ class Fleet(object):
...
@@ -367,6 +386,7 @@ class Fleet(object):
"""
"""
self
.
_role_maker
.
barrier_worker
()
self
.
_role_maker
.
barrier_worker
()
@
is_non_distributed_check
@
inited_runtime_handler
@
inited_runtime_handler
def
init_worker
(
self
):
def
init_worker
(
self
):
"""
"""
...
@@ -391,6 +411,7 @@ class Fleet(object):
...
@@ -391,6 +411,7 @@ class Fleet(object):
"""
"""
self
.
_runtime_handle
.
_init_worker
()
self
.
_runtime_handle
.
_init_worker
()
@
is_non_distributed_check
@
inited_runtime_handler
@
inited_runtime_handler
def
init_server
(
self
,
*
args
,
**
kwargs
):
def
init_server
(
self
,
*
args
,
**
kwargs
):
"""
"""
...
@@ -416,6 +437,7 @@ class Fleet(object):
...
@@ -416,6 +437,7 @@ class Fleet(object):
"""
"""
self
.
_runtime_handle
.
_init_server
(
*
args
,
**
kwargs
)
self
.
_runtime_handle
.
_init_server
(
*
args
,
**
kwargs
)
@
is_non_distributed_check
@
inited_runtime_handler
@
inited_runtime_handler
def
run_server
(
self
):
def
run_server
(
self
):
"""
"""
...
@@ -440,6 +462,7 @@ class Fleet(object):
...
@@ -440,6 +462,7 @@ class Fleet(object):
"""
"""
self
.
_runtime_handle
.
_run_server
()
self
.
_runtime_handle
.
_run_server
()
@
is_non_distributed_check
@
inited_runtime_handler
@
inited_runtime_handler
def
stop_worker
(
self
):
def
stop_worker
(
self
):
"""
"""
...
@@ -593,8 +616,8 @@ class Fleet(object):
...
@@ -593,8 +616,8 @@ class Fleet(object):
tuple: tuple (optimize_ops, params_grads), A list of operators appended
tuple: tuple (optimize_ops, params_grads), A list of operators appended
by minimize and a list of (param, grad) variable pairs, param is
by minimize and a list of (param, grad) variable pairs, param is
``Parameter``, grad is the gradient value corresponding to the parameter.
``Parameter``, grad is the gradient value corresponding to the parameter.
The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
indicate program pruning. If so, the program will be pruned by ``feed`` and
indicate program pruning. If so, the program will be pruned by ``feed`` and
``fetch_list`` before run, see details in ``Executor``.
``fetch_list`` before run, see details in ``Executor``.
Examples:
Examples:
...
@@ -672,6 +695,20 @@ class Fleet(object):
...
@@ -672,6 +695,20 @@ class Fleet(object):
optimize_ops
=
[]
optimize_ops
=
[]
params_grads
=
[]
params_grads
=
[]
if
self
.
_role_maker
.
_is_non_distributed
()
and
not
self
.
_is_collective
:
if
self
.
_runtime_handle
is
None
:
self
.
_runtime_handle
=
RuntimeFactory
().
_create_runtime
(
context
)
compiled_program
=
compiler
.
CompiledProgram
(
self
.
origin_main_program
).
with_data_parallel
(
loss_name
=
loss
.
name
,
share_vars_from
=
None
)
loss
.
block
.
program
.
_graph
=
compiled_program
return
self
.
user_defined_optimizer
.
minimize
(
loss
,
startup_program
=
startup_program
,
parameter_list
=
parameter_list
,
no_grad_set
=
no_grad_set
)
if
meta_optimizer
:
if
meta_optimizer
:
optimize_ops
,
params_grads
=
meta_optimizer
.
minimize
(
optimize_ops
,
params_grads
=
meta_optimizer
.
minimize
(
loss
,
loss
,
...
...
python/paddle/distributed/fleet/base/role_maker.py
浏览文件 @
e35ad3ee
...
@@ -232,6 +232,8 @@ class PaddleCloudRoleMaker(RoleMakerBase):
...
@@ -232,6 +232,8 @@ class PaddleCloudRoleMaker(RoleMakerBase):
self
.
_node_type_comm
=
None
self
.
_node_type_comm
=
None
self
.
_all_comm
=
None
self
.
_all_comm
=
None
self
.
_non_distributed
=
False
if
not
self
.
_is_collective
:
if
not
self
.
_is_collective
:
self
.
_hdfs_name
=
kwargs
.
get
(
"hdfs_name"
,
""
)
self
.
_hdfs_name
=
kwargs
.
get
(
"hdfs_name"
,
""
)
self
.
_hdfs_ugi
=
kwargs
.
get
(
"hdfs_ugi"
,
""
)
self
.
_hdfs_ugi
=
kwargs
.
get
(
"hdfs_ugi"
,
""
)
...
@@ -373,6 +375,15 @@ class PaddleCloudRoleMaker(RoleMakerBase):
...
@@ -373,6 +375,15 @@ class PaddleCloudRoleMaker(RoleMakerBase):
self
.
generate_role
()
self
.
generate_role
()
return
self
.
_server_endpoints
return
self
.
_server_endpoints
def
_is_non_distributed
(
self
):
"""
Return True if indispensable environment for fleetrun is not found
(use python-run to launch fleet-code directly)
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
return
self
.
_non_distributed
def
_heter_worker_num
(
self
):
def
_heter_worker_num
(
self
):
"""
"""
get heter worker nums
get heter worker nums
...
@@ -409,13 +420,22 @@ class PaddleCloudRoleMaker(RoleMakerBase):
...
@@ -409,13 +420,22 @@ class PaddleCloudRoleMaker(RoleMakerBase):
try
:
try
:
# Environment variable PADDLE_PSERVERS_IP_PORT_LIST must be set
# Environment variable PADDLE_PSERVERS_IP_PORT_LIST must be set
# format: string(ip:port,ip:port), eg. 127.0.0.1:6001,127.0.0.1:6002
# format: string(ip:port,ip:port), eg. 127.0.0.1:6001,127.0.0.1:6002
self
.
_server_endpoints
=
os
.
getenv
(
"PADDLE_PSERVERS_IP_PORT_LIST"
,
self
.
_server_endpoints
=
os
.
getenv
(
"PADDLE_PSERVERS_IP_PORT_LIST"
)
""
).
split
(
","
)
assert
self
.
_server_endpoints
!=
""
self
.
_worker_endpoints
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
,
self
.
_worker_endpoints
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
,
""
).
split
(
","
)
""
).
split
(
","
)
assert
self
.
_server_endpoints
!=
""
if
self
.
_server_endpoints
is
None
:
# back to non_distributed execution.
self
.
_server_endpoints
=
""
self
.
_trainers_num
=
1
self
.
_role
=
Role
.
WORKER
self
.
_current_id
=
0
self
.
_node_num
=
1
self
.
_heter_trainers_num
=
0
self
.
_heter_trainer_endpoints
=
None
self
.
_non_distributed
=
True
return
self
.
_server_endpoints
=
self
.
_server_endpoints
.
split
(
","
)
trainers_num
=
int
(
os
.
environ
[
"PADDLE_TRAINERS_NUM"
])
trainers_num
=
int
(
os
.
environ
[
"PADDLE_TRAINERS_NUM"
])
training_role
=
os
.
environ
[
"TRAINING_ROLE"
]
training_role
=
os
.
environ
[
"TRAINING_ROLE"
]
...
@@ -488,7 +508,11 @@ class PaddleCloudRoleMaker(RoleMakerBase):
...
@@ -488,7 +508,11 @@ class PaddleCloudRoleMaker(RoleMakerBase):
assert
(
self
.
_training_role
==
"TRAINER"
)
assert
(
self
.
_training_role
==
"TRAINER"
)
self
.
_worker_endpoints
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
)
self
.
_worker_endpoints
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
)
self
.
_cur_endpoint
=
os
.
getenv
(
"PADDLE_CURRENT_ENDPOINT"
)
self
.
_cur_endpoint
=
os
.
getenv
(
"PADDLE_CURRENT_ENDPOINT"
)
assert
self
.
_worker_endpoints
is
not
None
,
"can't find PADDLE_TRAINER_ENDPOINTS"
if
self
.
_worker_endpoints
is
None
:
# back to non_distributed execution.
self
.
_worker_endpoints
=
"127.0.0.1:6170"
self
.
_cur_endpoint
=
self
.
_worker_endpoints
self
.
_non_distributed
=
True
self
.
_worker_endpoints
=
self
.
_worker_endpoints
.
split
(
","
)
self
.
_worker_endpoints
=
self
.
_worker_endpoints
.
split
(
","
)
self
.
_trainers_num
=
len
(
self
.
_worker_endpoints
)
self
.
_trainers_num
=
len
(
self
.
_worker_endpoints
)
self
.
_node_num
=
len
(
self
.
_node_num
=
len
(
...
...
python/paddle/fluid/tests/unittests/test_fleet_base.py
浏览文件 @
e35ad3ee
...
@@ -18,6 +18,7 @@ import paddle.distributed.fleet as fleet
...
@@ -18,6 +18,7 @@ import paddle.distributed.fleet as fleet
import
paddle.distributed.fleet.base.role_maker
as
role_maker
import
paddle.distributed.fleet.base.role_maker
as
role_maker
import
os
import
os
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
numpy
as
np
class
TestFleetBase
(
unittest
.
TestCase
):
class
TestFleetBase
(
unittest
.
TestCase
):
...
@@ -125,5 +126,84 @@ class TestFleetBase(unittest.TestCase):
...
@@ -125,5 +126,84 @@ class TestFleetBase(unittest.TestCase):
self
.
assertRaises
(
Exception
,
fleet
.
init_worker
)
self
.
assertRaises
(
Exception
,
fleet
.
init_worker
)
class
TestFleetBaseSingleRunCollective
(
unittest
.
TestCase
):
def
setUp
(
self
):
os
.
environ
.
pop
(
"PADDLE_TRAINER_ENDPOINTS"
)
def
gen_data
(
self
):
return
{
"x"
:
np
.
random
.
random
(
size
=
(
128
,
32
)).
astype
(
'float32'
),
"y"
:
np
.
random
.
randint
(
2
,
size
=
(
128
,
1
)).
astype
(
'int64'
)
}
def
test_single_run_collective_minimize
(
self
):
input_x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
-
1
,
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
static
.
data
(
name
=
"y"
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
input_x
,
size
=
64
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
)
avg_cost
=
paddle
.
mean
(
x
=
cost
)
fleet
.
init
(
is_collective
=
True
)
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
)
optimizer
.
minimize
(
avg_cost
)
place
=
fluid
.
CUDAPlace
(
0
)
if
paddle
.
fluid
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
paddle
.
static
.
default_startup_program
())
for
i
in
range
(
10
):
cost_val
=
exe
.
run
(
feed
=
self
.
gen_data
(),
fetch_list
=
[
avg_cost
.
name
])
print
(
"cost of step[{}] = {}"
.
format
(
i
,
cost_val
))
class
TestFleetBaseSingleRunPS
(
unittest
.
TestCase
):
def
setUp
(
self
):
os
.
environ
.
pop
(
"PADDLE_PSERVERS_IP_PORT_LIST"
)
def
gen_data
(
self
):
return
{
"x"
:
np
.
random
.
random
(
size
=
(
128
,
32
)).
astype
(
'float32'
),
"y"
:
np
.
random
.
randint
(
2
,
size
=
(
128
,
1
)).
astype
(
'int64'
)
}
def
test_single_run_ps_minimize
(
self
):
input_x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
-
1
,
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
static
.
data
(
name
=
"y"
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
input_x
,
size
=
64
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
)
avg_cost
=
paddle
.
mean
(
x
=
cost
)
fleet
.
init
()
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
avg_cost
)
if
fleet
.
is_server
():
fleet
.
init_server
()
fleet
.
run_server
()
elif
fleet
.
is_worker
():
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
paddle
.
static
.
default_startup_program
())
step
=
100
for
i
in
range
(
step
):
cost_val
=
exe
.
run
(
program
=
fluid
.
default_main_program
(),
feed
=
self
.
gen_data
(),
fetch_list
=
[
avg_cost
.
name
])
print
(
"worker_index: %d, step%d cost = %f"
%
(
fleet
.
worker_index
(),
i
,
cost_val
[
0
]))
fleet
.
save_persistables
(
exe
,
"fleet_single_model/"
)
print
(
"save fleet models done."
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录