未验证 提交 e157f2af 编写于 作者: S Siming Dai 提交者: GitHub

[Phi]Add diag_v2 grad kernel (#40447)

* Add diag grad kernel

* fix unittest case

* add float16, remove const &

* delete diag_grad in op_utils.h
上级 3149e399
...@@ -12,8 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,8 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <algorithm>
#include "paddle/fluid/framework/infershape_utils.h" #include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/infermeta/unary.h" #include "paddle/phi/infermeta/unary.h"
...@@ -58,15 +56,56 @@ class DiagV2OpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -58,15 +56,56 @@ class DiagV2OpMaker : public framework::OpProtoAndCheckerMaker {
} }
}; };
class DiagV2GradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "X", "X", "DiagV2Grad");
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
framework::GradVarName("X"), "DiagV2Grad");
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.GetPlace());
}
};
template <typename T>
class DiagV2GradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> grad_op) const override {
grad_op->SetType("diag_v2_grad");
grad_op->SetInput("X", this->Input("X"));
grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
grad_op->SetAttrMap(this->Attrs());
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERER(DiagGradV2NoNeedBufferVarsInferer, "X");
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(diag_v2, DiagInferShapeFunctor, DECLARE_INFER_SHAPE_FUNCTOR(diag_v2, DiagInferShapeFunctor,
PD_INFER_META(phi::DiagInferMeta)); PD_INFER_META(phi::DiagInferMeta));
REGISTER_OPERATOR( REGISTER_OPERATOR(diag_v2, ops::DiagV2Op, ops::DiagV2OpMaker,
diag_v2, ops::DiagV2Op, ops::DiagV2OpMaker, ops::DiagV2GradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>, ops::DiagV2GradOpMaker<paddle::imperative::OpBase>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>, DiagInferShapeFunctor);
DiagInferShapeFunctor);
REGISTER_OPERATOR(diag_v2_grad, ops::DiagV2GradOp,
ops::DiagGradV2NoNeedBufferVarsInferer);
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/diag_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/diag_functor.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace phi {
template <typename T, typename Context>
void DiagGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out_grad,
int offset,
DenseTensor* x_grad) {
T* dx_data = dev_ctx.template Alloc<T>(x_grad);
const T* dout_data = out_grad.data<T>();
auto dx_dims = x_grad->dims();
auto dout_dims = out_grad.dims();
if (dx_dims.size() == 1) {
auto dx_length = dx_dims[0];
int dx_stride = phi::funcs::ComputeStride(0, dx_dims);
auto dout_stride_0 = phi::funcs::ComputeStride(0, dout_dims);
auto dout_stride_1 = phi::funcs::ComputeStride(1, dout_dims);
dout_data +=
(offset >= 0 ? offset * dout_stride_1 : -offset * dout_stride_0);
for (int i = 0; i < dx_length; i++) {
dx_data[i * dx_stride] = dout_data[i * (dout_stride_0 + dout_stride_1)];
}
} else {
phi::funcs::SetConstant<Context, T> set_padding_value;
set_padding_value(dev_ctx, x_grad, static_cast<T>(0));
int dx_stride_0 = phi::funcs::ComputeStride(0, dx_dims);
int dx_stride_1 = phi::funcs::ComputeStride(1, dx_dims);
auto dout_stride_0 = phi::funcs::ComputeStride(0, dout_dims);
dx_data += (offset >= 0 ? offset * dx_stride_1 : -offset * dx_stride_0);
auto dout_length = dout_dims[0];
for (int i = 0; i < dout_length; i++) {
dx_data[i * (dx_stride_0 + dx_stride_1)] = dout_data[i * dout_stride_0];
}
}
}
} // namespace phi
PD_REGISTER_KERNEL(diag_grad,
CPU,
ALL_LAYOUT,
phi::DiagGradKernel,
phi::dtype::float16,
int,
int64_t,
float,
double) {}
...@@ -62,5 +62,12 @@ void DiagKernel(const Context& dev_ctx, ...@@ -62,5 +62,12 @@ void DiagKernel(const Context& dev_ctx,
} // namespace phi } // namespace phi
PD_REGISTER_KERNEL( PD_REGISTER_KERNEL(diag,
diag, CPU, ALL_LAYOUT, phi::DiagKernel, int, float, double, int64_t) {} CPU,
ALL_LAYOUT,
phi::DiagKernel,
phi::dtype::float16,
int,
float,
double,
int64_t) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void DiagGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out_grad,
int offset,
DenseTensor* x_grad);
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/diag_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/diag_functor.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace phi {
// Extract the diagonal of a matrix 'dout' to a matrix 'dx'
template <typename T>
__global__ void ExtractDiagonalKernel(const T* dout,
T* dx,
std::ptrdiff_t start,
std::ptrdiff_t dx_length,
const std::ptrdiff_t sumStride,
const std::ptrdiff_t xStride) {
for (std::ptrdiff_t idx = blockIdx.x * blockDim.x + threadIdx.x;
idx < dx_length;
idx += gridDim.x * blockDim.x) {
const std::ptrdiff_t outOffset = start + sumStride * idx;
dx[xStride * idx] = dout[outOffset];
}
}
// Paste a vector 'dout' to the diagonal of a matrix 'dx'
template <typename T>
__global__ void PasteDiagonalKernel(const T* dout,
T* dx,
std::ptrdiff_t start,
std::ptrdiff_t size,
const std::ptrdiff_t sumStride,
const std::ptrdiff_t outStride) {
for (std::ptrdiff_t idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size;
idx += gridDim.x * blockDim.x) {
std::ptrdiff_t xOffset = start + sumStride * idx;
dx[xOffset] = dout[outStride * idx];
}
}
template <typename T, typename Context>
void DiagGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out_grad,
int offset,
DenseTensor* x_grad) {
T* dx_data = dev_ctx.template Alloc<T>(x_grad);
auto* dout_data = out_grad.data<T>();
auto dx_dims = x_grad->dims();
auto dout_dims = out_grad.dims();
auto GetBlockGridSize = [&dev_ctx](int64_t size) {
const int64_t block_size =
std::min(size, static_cast<int64_t>(dev_ctx.GetMaxThreadsPerBlock()));
int64_t max_threads = dev_ctx.GetMaxPhysicalThreadCount();
const int64_t max_blocks =
std::max(((max_threads - 1) / block_size + 1), static_cast<int64_t>(1));
const int64_t grid_size =
std::min(max_blocks, (size + block_size - 1) / block_size);
return std::tuple<int64_t, int64_t>{block_size, grid_size};
};
if (dx_dims.size() == 1) {
auto dx_length = dx_dims[0];
auto size = (offset > 0) ? dx_length + offset : dx_length - offset;
int dx_stride = phi::funcs::ComputeStride(0, dx_dims);
if (size > 0) {
auto dout_stride_0 = phi::funcs::ComputeStride(0, dout_dims);
auto dout_stride_1 = phi::funcs::ComputeStride(1, dout_dims);
auto start =
(offset >= 0 ? offset * dout_stride_1 : -offset * dout_stride_0);
std::tuple<int64_t, int64_t> block_grid_size = GetBlockGridSize(size);
ExtractDiagonalKernel<T><<<std::get<1>(block_grid_size),
std::get<0>(block_grid_size),
0,
dev_ctx.stream()>>>(
dout_data,
dx_data,
start,
dx_length,
dout_stride_0 + dout_stride_1,
dx_stride);
}
} else {
phi::funcs::SetConstant<Context, T> set_padding_value;
set_padding_value(dev_ctx, x_grad, static_cast<T>(0));
int dx_stride_0 = phi::funcs::ComputeStride(0, dx_dims);
int dx_stride_1 = phi::funcs::ComputeStride(1, dx_dims);
int64_t size;
if (offset > 0) {
size = std::min(dx_dims[0], dx_dims[1] - offset);
} else {
size = std::min(dx_dims[0] + offset, dx_dims[1]);
}
if (size > 0) {
auto start = (offset >= 0 ? offset * dx_stride_1 : -offset * dx_stride_0);
auto dout_stride_0 = phi::funcs::ComputeStride(0, dout_dims);
std::tuple<int64_t, int64_t> block_grid_size = GetBlockGridSize(size);
PasteDiagonalKernel<T><<<std::get<1>(block_grid_size),
std::get<0>(block_grid_size),
0,
dev_ctx.stream()>>>(dout_data,
dx_data,
start,
size,
dx_stride_0 + dx_stride_1,
dout_stride_0);
}
}
}
} // namespace phi
PD_REGISTER_KERNEL(diag_grad,
GPU,
ALL_LAYOUT,
phi::DiagGradKernel,
phi::dtype::float16,
int,
int64_t,
float,
double) {}
...@@ -130,5 +130,12 @@ void DiagKernel(const Context& dev_ctx, ...@@ -130,5 +130,12 @@ void DiagKernel(const Context& dev_ctx,
} // namespace phi } // namespace phi
PD_REGISTER_KERNEL( PD_REGISTER_KERNEL(diag,
diag, GPU, ALL_LAYOUT, phi::DiagKernel, int, int64_t, float, double) {} GPU,
ALL_LAYOUT,
phi::DiagKernel,
phi::dtype::float16,
int,
int64_t,
float,
double) {}
...@@ -20,8 +20,15 @@ KernelSignature DiagOpArgumentMapping(const ArgumentMappingContext& ctx) { ...@@ -20,8 +20,15 @@ KernelSignature DiagOpArgumentMapping(const ArgumentMappingContext& ctx) {
return KernelSignature("diag", {"X"}, {"offset", "padding_value"}, {"Out"}); return KernelSignature("diag", {"X"}, {"offset", "padding_value"}, {"Out"});
} }
KernelSignature DiagGradOpArgumentMapping(const ArgumentMappingContext& ctx) {
return KernelSignature(
"diag_grad", {"X", GradVarName("Out")}, {"offset"}, {GradVarName("X")});
}
} // namespace phi } // namespace phi
PD_REGISTER_BASE_KERNEL_NAME(diag_v2, diag); PD_REGISTER_BASE_KERNEL_NAME(diag_v2, diag);
PD_REGISTER_BASE_KERNEL_NAME(diag_v2_grad, diag_grad);
PD_REGISTER_ARG_MAPPING_FN(diag_v2, phi::DiagOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(diag_v2, phi::DiagOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(diag_v2_grad, phi::DiagGradOpArgumentMapping);
...@@ -44,6 +44,10 @@ class TestDiagV2Op(OpTest): ...@@ -44,6 +44,10 @@ class TestDiagV2Op(OpTest):
paddle.enable_static() paddle.enable_static()
self.check_output(check_eager=True) self.check_output(check_eager=True)
def test_check_grad(self):
paddle.enable_static()
self.check_grad(['X'], 'Out', check_eager=True)
def init_config(self): def init_config(self):
pass pass
...@@ -62,14 +66,14 @@ class TestDiagV2OpCase2(TestDiagV2Op): ...@@ -62,14 +66,14 @@ class TestDiagV2OpCase2(TestDiagV2Op):
class TestDiagV2OpCase3(TestDiagV2Op): class TestDiagV2OpCase3(TestDiagV2Op):
def init_config(self): def init_config(self):
self.x = np.random.randint(-10, 10, size=(10, 10)) self.x = np.random.randint(-10, 10, size=(10, 10)).astype("float64")
self.out = np.diag(self.x, self.offset) self.out = np.diag(self.x, self.offset)
class TestDiagV2OpCase4(TestDiagV2Op): class TestDiagV2OpCase4(TestDiagV2Op):
def init_config(self): def init_config(self):
self.x = np.random.rand(100) self.x = np.random.rand(100)
self.padding_value = 8 self.padding_value = 2
n = self.x.size n = self.x.size
self.out = self.padding_value * np.ones((n, n)) + np.diag( self.out = self.padding_value * np.ones((n, n)) + np.diag(
self.x, self.offset) - np.diag(self.padding_value * np.ones(n)) self.x, self.offset) - np.diag(self.padding_value * np.ones(n))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册