提交 e0c3c56b 编写于 作者: T tangwei12

add nce remote ut, test=develop

上级 aed3872c
...@@ -27,6 +27,45 @@ from paddle.fluid.op import Operator ...@@ -27,6 +27,45 @@ from paddle.fluid.op import Operator
from paddle.fluid.framework import Program, program_guard from paddle.fluid.framework import Program, program_guard
def nce(input, weight, bias, sample_weight, labels, num_classes,
num_sample_class):
samples = []
sample_labels = []
batch_size = input.shape[0]
num_true_class = labels.shape[1]
for i in range(batch_size):
w = 1 if sample_weight is None else sample_weight[i]
for label in labels[i]:
samples.append((i, label, True, w))
sample_labels.append(label)
for num in range(num_sample_class):
samples.append((i, num, False, w))
sample_labels.append(num)
# forward bias
sample_out = np.zeros(len(samples)).astype(np.float32)
if bias is not None:
for i in range(len(samples)):
sample_out[i] = bias[samples[i][1]]
# forward weight
for i in range(len(samples)):
sample_out[i] += np.dot(input[samples[i][0]], weight[samples[i][1]])
# forward activation
sample_out = 1.0 / (1.0 + np.exp(-sample_out))
# forward cost
out = np.zeros(batch_size).astype(np.float32)
b = 1.0 / num_classes * num_sample_class
for i in range(len(samples)):
o = sample_out[i]
cost = -np.log(o / (o + b)) if samples[i][2] else -np.log(b / (o + b))
out[samples[i][0]] += cost * samples[i][3]
return (out[:, np.newaxis], np.array(sample_out).reshape(
batch_size, num_sample_class + num_true_class),
np.array(sample_labels).reshape(batch_size,
num_sample_class + num_true_class))
def run_pserver(pserver_id, use_cuda, sync_mode): def run_pserver(pserver_id, use_cuda, sync_mode):
scope = fluid.core.Scope() scope = fluid.core.Scope()
program = Program() program = Program()
...@@ -94,11 +133,11 @@ class TestListenAndServOp(unittest.TestCase): ...@@ -94,11 +133,11 @@ class TestListenAndServOp(unittest.TestCase):
with fluid.scope_guard(scope): with fluid.scope_guard(scope):
with program_guard(program, startup_program=Program()): with program_guard(program, startup_program=Program()):
x = scope.var('Input').get_tensor() x = scope.var('Input').get_tensor()
x_array = np.random.random((4, 8)).astype("float32") * 2 x_array = np.random.random((4, 8)).astype("float32")
x.set(x_array, place) x.set(x_array, place)
# create and initialize Param Variable # create and initialize Param Variable
param = scope.var('Weight').get_tensor() param = scope.var('Weight').get_tensor()
param_array = np.zeros((5, 8)).astype("float32") * 2 param_array = np.zeros((5, 8)).astype("float32")
param.set(param_array, place) param.set(param_array, place)
bias = scope.var('Bias').get_tensor() bias = scope.var('Bias').get_tensor()
...@@ -110,7 +149,7 @@ class TestListenAndServOp(unittest.TestCase): ...@@ -110,7 +149,7 @@ class TestListenAndServOp(unittest.TestCase):
sample_w.set(sample_weight, place) sample_w.set(sample_weight, place)
label = scope.var('Label').get_tensor() label = scope.var('Label').get_tensor()
label_array = np.array([0, 1, 4, 5]) label_array = np.array([[0], [1], [4], [3]])
label.set(label_array, place) label.set(label_array, place)
cost = scope.var('Cost').get_tensor() cost = scope.var('Cost').get_tensor()
...@@ -122,7 +161,7 @@ class TestListenAndServOp(unittest.TestCase): ...@@ -122,7 +161,7 @@ class TestListenAndServOp(unittest.TestCase):
sample_l.set(sample_l_w, place) sample_l.set(sample_l_w, place)
sample_la = scope.var('SampleLabels').get_tensor() sample_la = scope.var('SampleLabels').get_tensor()
sample_la_w = np.zeros((4, 3)).astype("float32") sample_la_w = np.zeros((4, 3)).astype("int")
sample_la.set(sample_la_w, place) sample_la.set(sample_la_w, place)
emaps = ['127.0.0.1:' + str(port0), '127.0.0.1:' + str(port1)] emaps = ['127.0.0.1:' + str(port0), '127.0.0.1:' + str(port1)]
...@@ -139,11 +178,12 @@ class TestListenAndServOp(unittest.TestCase): ...@@ -139,11 +178,12 @@ class TestListenAndServOp(unittest.TestCase):
Cost='Cost', Cost='Cost',
SampleLogits='SampleLogits', SampleLogits='SampleLogits',
SampleLabels='SampleLabels', SampleLabels='SampleLabels',
SampleWeight='SampleWeight',
num_total_classes=5, num_total_classes=5,
num_neg_samples=2, num_neg_samples=2,
custom_neg_classes=list(range(2)), custom_neg_classes=list(range(2)),
sampler=0, sampler=0,
seed=1, seed=0,
is_sparse=True, is_sparse=True,
remote_prefetch=True, remote_prefetch=True,
epmap=emaps, epmap=emaps,
...@@ -153,9 +193,21 @@ class TestListenAndServOp(unittest.TestCase): ...@@ -153,9 +193,21 @@ class TestListenAndServOp(unittest.TestCase):
nce_op.run(scope, place) nce_op.run(scope, place)
# get and compare result # get and compare result
o_cost = np.array(cost_w) o_cost = np.array(scope.var('Cost').get_tensor())
o_logits = np.array(sample_l) o_logits = np.array(scope.var('SampleLogits').get_tensor())
o_labels = np.array(sample_la) o_labels = np.array(scope.var('SampleLabels').get_tensor())
param_array = np.ones((5, 8)).astype("float32")
for i in range(2):
param_array[i] *= param_array[i] * i + 0 * 10 + 1
for i in range(2, 5):
param_array[i] *= param_array[i] * i + 1 * 10 + 1
out = nce(x_array, param_array, bias_array, sample_weight,
label_array, 5, 2)
self.assertAlmostEqual(o_cost.all(), out[0].all(), delta=1e-6)
self.assertAlmostEqual(o_logits.all(), out[1].all(), delta=1e-6)
self.assertAlmostEqual(o_labels.all(), out[2].all(), delta=1e-6)
def test_nce_op_remote(self): def test_nce_op_remote(self):
os.environ['PADDLE_ENABLE_REMOTE_PREFETCH'] = "1" os.environ['PADDLE_ENABLE_REMOTE_PREFETCH'] = "1"
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册