未验证 提交 de53f2bf 编写于 作者: F furnace 提交者: GitHub

[NPU] add reduce_max (#34179)

* [NPU] add reduce_max

* [NPU] delete skipIf

* [NPU] add atrrs support or check

* [NPU] add attr out_dtype

* [NPU] delete debug codes
上级 508b40ec
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */
#include "paddle/fluid/operators/npu_op_runner.h"
#include "paddle/fluid/operators/reduce_ops/reduce_min_max_op.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
class ReduceMaxNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* out = ctx.Output<Tensor>("Out");
auto dims = ctx.Attr<std::vector<int>>("dim");
bool keep_dim = ctx.Attr<bool>("keep_dim");
bool reduce_all = ctx.Attr<bool>("reduce_all");
int out_dtype = ctx.Attr<int>("out_dtype");
auto place = ctx.GetPlace();
framework::Tensor cast_out(x->type());
cast_out.Resize(out->dims());
cast_out.mutable_data<T>(place);
auto cast_out_dtype = x->type();
if (out_dtype != -1) {
cast_out_dtype = static_cast<framework::proto::VarType::Type>(out_dtype);
}
if (x->type() != cast_out_dtype) {
if (cast_out_dtype == framework::proto::VarType::FP32) {
out->mutable_data<float>(place);
} else if (cast_out_dtype == framework::proto::VarType::FP16) {
out->mutable_data<paddle::platform::float16>(place);
} else if (cast_out_dtype == framework::proto::VarType::INT16) {
out->mutable_data<int16_t>(place);
} else if (cast_out_dtype == framework::proto::VarType::INT32) {
out->mutable_data<int32_t>(place);
} else if (cast_out_dtype == framework::proto::VarType::INT64) {
out->mutable_data<int64_t>(place);
} else if (cast_out_dtype == framework::proto::VarType::FP64) {
out->mutable_data<double>(place);
} else if (cast_out_dtype == framework::proto::VarType::BOOL) {
out->mutable_data<bool>(place);
}
} else {
out->ShareDataWith(cast_out);
}
framework::NPUAttributeMap attr_input = {{"axes", dims},
{"keep_dims", keep_dim}};
if (reduce_all) {
std::vector<int> dim_vec;
for (int i = 0; i < x->dims().size(); i++) {
dim_vec.push_back(i);
}
attr_input = {{"axes", dim_vec}, {"keep_dims", keep_dim}};
}
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
const auto& runner =
NpuOpRunner("ReduceMaxD", {*x}, {cast_out}, attr_input);
runner.Run(stream);
if (x->type() != cast_out_dtype) {
auto dst_dtype = ConvertToNpuDtype(cast_out_dtype);
const auto& runner_cast =
NpuOpRunner("Cast", {cast_out}, {*out},
{{"dst_type", static_cast<int>(dst_dtype)}});
runner_cast.Run(stream);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_NPU_KERNEL(
reduce_max, ops::ReduceMaxNPUKernel<plat::NPUDeviceContext, float>,
ops::ReduceMaxNPUKernel<plat::NPUDeviceContext, plat::float16>);
......@@ -532,9 +532,11 @@ class ReduceOp : public framework::OperatorWithKernel {
#endif
if (input_data_type == framework::proto::VarType::FP16) {
PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()) ||
platform::is_npu_place(ctx.GetPlace()),
true,
platform::errors::InvalidArgument(
"float16 can only be used on GPU place"));
"float16 can only be used on GPU or NPU place"));
}
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from paddle.fluid.tests.unittests.op_test import OpTest, skip_check_grad_ci
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
from paddle.fluid.framework import convert_np_dtype_to_dtype_
paddle.enable_static()
@skip_check_grad_ci(
reason="reduce_max is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework.")
class TestNPUReduceMaxOp(OpTest):
"""Remove Max with subgradient from gradient check to confirm the success of CI."""
def setUp(self):
self.op_type = "reduce_max"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {'dim': [-1]}
self.outputs = {
'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim']))
}
def test_check_output(self):
self.check_output_with_place(self.place)
def set_npu(self):
self.__class__.use_npu = True
self.place = paddle.NPUPlace(0)
def init_dtype(self):
self.dtype = np.float32
@skip_check_grad_ci(
reason="reduce_max is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework.")
class TestReduceMaxOpMultiAxises(TestNPUReduceMaxOp):
"""Remove Max with subgradient from gradient check to confirm the success of CI."""
def setUp(self):
self.op_type = "reduce_max"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {'dim': [-2, -1]}
self.outputs = {
'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim']))
}
@skip_check_grad_ci(
reason="reduce_max is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework.")
class TestReduceAll(TestNPUReduceMaxOp):
"""Remove Max with subgradient from gradient check to confirm the success of CI."""
def setUp(self):
self.op_type = "reduce_max"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {'reduce_all': True}
self.outputs = {'Out': self.inputs['X'].max()}
@skip_check_grad_ci(
reason="reduce_max is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework.")
class TestReduceMaxOpWithOutDtype_bool(TestNPUReduceMaxOp):
"""Remove Max with subgradient from gradient check to confirm the success of CI."""
def setUp(self):
self.op_type = "reduce_max"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {
'dim': [-2, -1],
'out_dtype': int(core.VarDesc.VarType.BOOL)
}
self.outputs = {
'Out':
self.inputs['X'].max(axis=tuple(self.attrs['dim'])).astype(np.bool)
}
@skip_check_grad_ci(
reason="reduce_max is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework.")
class TestReduceMaxOpWithOutDtype_int16(TestNPUReduceMaxOp):
"""Remove Max with subgradient from gradient check to confirm the success of CI."""
def setUp(self):
self.op_type = "reduce_max"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {
'dim': [-2, -1],
'out_dtype': int(core.VarDesc.VarType.INT16)
}
self.out = self.inputs['X'].max(axis=tuple(self.attrs['dim']))
self.outputs = {
'Out':
self.inputs['X'].max(axis=tuple(self.attrs['dim'])).astype(np.int16)
}
@skip_check_grad_ci(
reason="reduce_max is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework.")
class TestReduceMaxOpWithOutDtype_int32(TestNPUReduceMaxOp):
"""Remove Max with subgradient from gradient check to confirm the success of CI."""
def setUp(self):
self.op_type = "reduce_max"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {
'dim': [-2, -1],
'out_dtype': int(core.VarDesc.VarType.INT32)
}
self.outputs = {
'Out':
self.inputs['X'].max(axis=tuple(self.attrs['dim'])).astype(np.int32)
}
@skip_check_grad_ci(
reason="reduce_max is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework.")
class TestReduceMaxOpWithOutDtype_int64(TestNPUReduceMaxOp):
"""Remove Max with subgradient from gradient check to confirm the success of CI."""
def setUp(self):
self.op_type = "reduce_max"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {
'dim': [-2, -1],
'out_dtype': int(core.VarDesc.VarType.INT64)
}
self.outputs = {
'Out':
self.inputs['X'].max(axis=tuple(self.attrs['dim'])).astype(np.int64)
}
@skip_check_grad_ci(
reason="reduce_max is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework.")
class TestReduceMaxOpWithOutDtype_fp16(TestNPUReduceMaxOp):
"""Remove Max with subgradient from gradient check to confirm the success of CI."""
def setUp(self):
self.op_type = "reduce_max"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {
'dim': [-2, -1],
'out_dtype': int(core.VarDesc.VarType.FP16)
}
self.out = self.inputs['X'].max(axis=tuple(self.attrs['dim']))
self.outputs = {
'Out': self.inputs['X'].max(
axis=tuple(self.attrs['dim'])).astype(np.float16)
}
def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-3)
@skip_check_grad_ci(
reason="reduce_max is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework.")
class TestReduceMaxOpWithOutDtype_fp32(TestNPUReduceMaxOp):
"""Remove Max with subgradient from gradient check to confirm the success of CI."""
def setUp(self):
self.op_type = "reduce_max"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {
'dim': [-2, -1],
'out_dtype': int(core.VarDesc.VarType.FP32)
}
self.outputs = {
'Out': self.inputs['X'].max(
axis=tuple(self.attrs['dim'])).astype(np.float32)
}
@skip_check_grad_ci(
reason="reduce_max is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework.")
class TestReduceMaxOpWithOutDtype_fp64(TestNPUReduceMaxOp):
"""Remove Max with subgradient from gradient check to confirm the success of CI."""
def setUp(self):
self.op_type = "reduce_max"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {
'dim': [-2, -1],
'out_dtype': int(core.VarDesc.VarType.FP64)
}
self.outputs = {
'Out': self.inputs['X'].max(
axis=tuple(self.attrs['dim'])).astype(np.float64)
}
@skip_check_grad_ci(
reason="reduce_max is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework.")
class TestReduceMaxOpWithOutDtype_fp32_2(TestNPUReduceMaxOp):
"""Remove Max with subgradient from gradient check to confirm the success of CI."""
def setUp(self):
self.op_type = "reduce_max"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {
'dim': [-2, -1],
'out_dtype': int(core.VarDesc.VarType.FP32)
}
self.outputs = {
'Out': self.inputs['X'].max(
axis=tuple(self.attrs['dim'])).astype(np.float32)
}
def init_dtype(self):
self.dtype = np.float16
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册