提交 db92e3c8 编写于 作者: Q qiaolongfei

refine code

上级 6b80c2b4
...@@ -256,38 +256,3 @@ sum_cost = __convert_to_v2__( ...@@ -256,38 +256,3 @@ sum_cost = __convert_to_v2__(
'sum_cost', name_prefix='sum_cost', parent_names=['input']) 'sum_cost', name_prefix='sum_cost', parent_names=['input'])
huber_cost = __convert_to_v2__( huber_cost = __convert_to_v2__(
'huber_cost', name_prefix='huber_cost', parent_names=['input', 'label']) 'huber_cost', name_prefix='huber_cost', parent_names=['input', 'label'])
if __name__ == '__main__':
pixel = data(name='pixel', type=data_type.dense_vector(784))
label = data(name='label', type=data_type.integer_value(10))
weight = data(name='weight', type=data_type.dense_vector(10))
score = data(name='score', type=data_type.dense_vector(1))
hidden = fc(input=pixel,
size=100,
act=activation.Sigmoid(),
param_attr=attr.Param(name='hidden'))
inference = fc(input=hidden, size=10, act=activation.Softmax())
maxid = max_id(input=inference)
cost1 = classification_cost(input=inference, label=label)
cost2 = classification_cost(input=inference, label=label, weight=weight)
cost3 = cross_entropy_cost(input=inference, label=label)
cost4 = cross_entropy_with_selfnorm_cost(input=inference, label=label)
cost5 = regression_cost(input=inference, label=label)
cost6 = regression_cost(input=inference, label=label, weight=weight)
cost7 = multi_binary_label_cross_entropy_cost(input=inference, label=label)
cost8 = rank_cost(left=score, right=score, label=score)
cost9 = lambda_cost(input=inference, score=score)
cost10 = sum_cost(input=inference)
cost11 = huber_cost(input=score, label=label)
# print parse_network(cost1)
# print parse_network(cost2)
# print parse_network(cost1, cost2)
# print parse_network(cost2)
# print parse_network(inference, maxid)
print parse_network(cost1, cost2)
print parse_network(cost3, cost4)
print parse_network(cost5, cost6)
print parse_network(cost7, cost8, cost9, cost10, cost11)
print parse_network(inference, maxid)
...@@ -16,9 +16,9 @@ import unittest ...@@ -16,9 +16,9 @@ import unittest
import paddle.trainer_config_helpers as conf_helps import paddle.trainer_config_helpers as conf_helps
import paddle.v2.activation as activation import paddle.v2.activation as activation
import paddle.v2.attr as attr
import paddle.v2.data_type as data_type import paddle.v2.data_type as data_type
import paddle.v2.layer as layer import paddle.v2.layer as layer
import paddle.v2.attr as attr
from paddle.trainer_config_helpers.config_parser_utils import \ from paddle.trainer_config_helpers.config_parser_utils import \
parse_network_config as parse_network parse_network_config as parse_network
...@@ -95,8 +95,9 @@ class RNNTest(unittest.TestCase): ...@@ -95,8 +95,9 @@ class RNNTest(unittest.TestCase):
data1 = layer.data( data1 = layer.data(
name="word", type=data_type.integer_value(dict_dim)) name="word", type=data_type.integer_value(dict_dim))
embd = layer.embedding(input=data1, size=word_dim) embd = layer.embedding(input=data1, size=word_dim)
aaa = layer.recurrent_group(name="rnn", step=new_step, input=embd) rnn_layer = layer.recurrent_group(
return str(layer.parse_network(aaa)) name="rnn", step=new_step, input=embd)
return str(layer.parse_network(rnn_layer))
diff = difflib.unified_diff(test_old_rnn().splitlines(1), diff = difflib.unified_diff(test_old_rnn().splitlines(1),
test_new_rnn().splitlines(1)) test_new_rnn().splitlines(1))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册