Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
db468d7d
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
db468d7d
编写于
4月 21, 2022
作者:
J
jakpiase
提交者:
GitHub
4月 21, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
oneDNN md-in-tensor 2nd batch of changes (#41997)
上级
5c738223
变更
18
隐藏空白更改
内联
并排
Showing
18 changed file
with
121 addition
and
244 deletion
+121
-244
paddle/fluid/operators/mkldnn/activation_mkldnn_op.cc
paddle/fluid/operators/mkldnn/activation_mkldnn_op.cc
+4
-6
paddle/fluid/operators/mkldnn/batch_norm_mkldnn_op.cc
paddle/fluid/operators/mkldnn/batch_norm_mkldnn_op.cc
+7
-44
paddle/fluid/operators/mkldnn/clip_mkldnn_op.cc
paddle/fluid/operators/mkldnn/clip_mkldnn_op.cc
+2
-4
paddle/fluid/operators/mkldnn/concat_mkldnn_op.cc
paddle/fluid/operators/mkldnn/concat_mkldnn_op.cc
+6
-11
paddle/fluid/operators/mkldnn/expand_v2_mkldnn_op.cc
paddle/fluid/operators/mkldnn/expand_v2_mkldnn_op.cc
+7
-8
paddle/fluid/operators/mkldnn/gaussian_random_mkldnn_op.cc
paddle/fluid/operators/mkldnn/gaussian_random_mkldnn_op.cc
+8
-3
paddle/fluid/operators/mkldnn/interpolate_mkldnn_op.cc
paddle/fluid/operators/mkldnn/interpolate_mkldnn_op.cc
+8
-12
paddle/fluid/operators/mkldnn/layer_norm_mkldnn_op.cc
paddle/fluid/operators/mkldnn/layer_norm_mkldnn_op.cc
+10
-13
paddle/fluid/operators/mkldnn/log_softmax_mkldnn_op.cc
paddle/fluid/operators/mkldnn/log_softmax_mkldnn_op.cc
+2
-7
paddle/fluid/operators/mkldnn/lrn_mkldnn_op.cc
paddle/fluid/operators/mkldnn/lrn_mkldnn_op.cc
+5
-16
paddle/fluid/operators/mkldnn/pool_mkldnn_op.cc
paddle/fluid/operators/mkldnn/pool_mkldnn_op.cc
+12
-47
paddle/fluid/operators/mkldnn/prelu_mkldnn_op.cc
paddle/fluid/operators/mkldnn/prelu_mkldnn_op.cc
+11
-18
paddle/fluid/operators/mkldnn/scale_mkldnn_op.cc
paddle/fluid/operators/mkldnn/scale_mkldnn_op.cc
+1
-2
paddle/fluid/operators/mkldnn/shape_mkldnn_op.cc
paddle/fluid/operators/mkldnn/shape_mkldnn_op.cc
+8
-4
paddle/fluid/operators/mkldnn/shuffle_channel_mkldnn_op.cc
paddle/fluid/operators/mkldnn/shuffle_channel_mkldnn_op.cc
+2
-6
paddle/fluid/operators/mkldnn/softmax_mkldnn_op.cc
paddle/fluid/operators/mkldnn/softmax_mkldnn_op.cc
+7
-20
paddle/fluid/operators/mkldnn/softplus_mkldnn_op.h
paddle/fluid/operators/mkldnn/softplus_mkldnn_op.h
+6
-7
python/paddle/fluid/tests/unittests/mkldnn/test_expand_v2_mkldnn_op.py
.../fluid/tests/unittests/mkldnn/test_expand_v2_mkldnn_op.py
+15
-16
未找到文件。
paddle/fluid/operators/mkldnn/activation_mkldnn_op.cc
浏览文件 @
db468d7d
...
...
@@ -107,8 +107,7 @@ void eltwise_forward(const framework::ExecutionContext &ctx,
astream
,
{{
DNNL_ARG_FROM
,
*
src_memory_p
},
{
DNNL_ARG_TO
,
*
dst_memory_p
}});
astream
.
wait
();
out
->
set_layout
(
DataLayout
::
kMKLDNN
);
out
->
set_format
(
GetMKLDNNFormat
(
*
dst_memory_p
));
out
->
set_mem_desc
(
dst_memory_p
->
get_desc
());
}
template
<
typename
T
>
...
...
@@ -136,8 +135,7 @@ void eltwise_grad(const framework::ExecutionContext &ctx,
{
DNNL_ARG_DIFF_SRC
,
*
diff_src_memory_p
}});
astream
.
wait
();
dx
->
set_layout
(
DataLayout
::
kMKLDNN
);
dx
->
set_format
(
GetMKLDNNFormat
(
*
diff_src_memory_p
));
dx
->
set_mem_desc
(
diff_src_memory_p
->
get_desc
());
}
template
<
typename
T
>
...
...
@@ -165,8 +163,7 @@ void eltwise_grad_use_out(const framework::ExecutionContext &ctx,
{
DNNL_ARG_DIFF_SRC
,
*
diff_src_memory_p
}});
astream
.
wait
();
dx
->
set_layout
(
DataLayout
::
kMKLDNN
);
dx
->
set_format
(
GetMKLDNNFormat
(
*
diff_src_memory_p
));
dx
->
set_mem_desc
(
diff_src_memory_p
->
get_desc
());
}
template
<
typename
T
,
dnnl
::
algorithm
algorithm
>
...
...
@@ -347,6 +344,7 @@ namespace ops = paddle::operators;
FOR_EACH_MKLDNN_KERNEL_FUNCTOR
(
REGISTER_ACTIVATION_MKLDNN_KERNEL
);
// round eltwise primitive doesn't support BF16, nor does it support grad
REGISTER_ACTIVATION_MKLDNN_KERNEL_FWD_ONLY
(
round
,
RoundMKLDNNFunctor
);
namespace
ops
=
paddle
::
operators
;
...
...
paddle/fluid/operators/mkldnn/batch_norm_mkldnn_op.cc
浏览文件 @
db468d7d
...
...
@@ -54,17 +54,6 @@ class BatchNormMKLDNNHandler : public platform::MKLDNNHandlerNoCachingT<
std
::
vector
<
std
::
string
>
DataLayout_error_msg
=
{
"kNHWC"
,
"kNCHW"
,
"kAnyLayout"
,
"kMKLDNN"
};
PADDLE_ENFORCE_EQ
(
x
->
layout
(),
DataLayout
::
kMKLDNN
,
platform
::
errors
::
InvalidArgument
(
"Wrong layout set for X tensor. Expected layout is `kMKLDNN`, "
"But received %s."
,
DataLayout_error_msg
[
static_cast
<
int
>
(
DataLayout
::
kMKLDNN
)]));
PADDLE_ENFORCE_NE
(
x
->
format
(),
MKLDNNMemoryFormat
::
undef
,
platform
::
errors
::
InvalidArgument
(
"Wrong format set for X tensor"
));
auto
src_tz
=
phi
::
vectorize
(
x
->
dims
());
// Flags are added by bitwise OR operation
auto
flags
=
dnnl
::
normalization_flags
::
use_scale_shift
;
// 001
...
...
@@ -73,14 +62,10 @@ class BatchNormMKLDNNHandler : public platform::MKLDNNHandlerNoCachingT<
if
(
fuse_with_relu
&&
test_mode
)
flags
|=
dnnl
::
normalization_flags
::
fuse_norm_relu
;
// 100
auto
md
=
dnnl
::
memory
::
desc
(
src_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
platform
::
MKLDNNFormatForSize
(
src_tz
.
size
(),
x
->
format
()));
this
->
AcquireForwardPrimitiveDescriptor
(
global_stats
==
true
?
dnnl
::
prop_kind
::
forward_scoring
:
dnnl
::
prop_kind
::
forward_training
,
md
,
epsilon
,
flags
);
x
->
mem_desc
()
,
epsilon
,
flags
);
}
BatchNormMKLDNNHandler
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
,
...
...
@@ -89,14 +74,6 @@ class BatchNormMKLDNNHandler : public platform::MKLDNNHandlerNoCachingT<
:
platform
::
MKLDNNHandlerNoCachingT
<
T
,
dnnl
::
batch_normalization_forward
,
dnnl
::
batch_normalization_backward
>
(
mkldnn_engine
,
ctx
.
GetPlace
())
{
PADDLE_ENFORCE_EQ
(
out_grad
->
layout
(),
DataLayout
::
kMKLDNN
,
platform
::
errors
::
InvalidArgument
(
"Wrong layout set for Input out_grad tensor"
));
PADDLE_ENFORCE_NE
(
out_grad
->
format
(),
MKLDNNMemoryFormat
::
undef
,
platform
::
errors
::
InvalidArgument
(
"Wrong format set for Input out_grad tensor"
));
auto
src_tz
=
phi
::
vectorize
<
int64_t
>
(
in_x
->
dims
());
auto
scale_tz
=
phi
::
vectorize
<
int64_t
>
(
scale
->
dims
());
PADDLE_ENFORCE_EQ
(
scale_tz
.
size
(),
1
,
...
...
@@ -104,26 +81,14 @@ class BatchNormMKLDNNHandler : public platform::MKLDNNHandlerNoCachingT<
"Dims of scale tensor must be 1, but received scale's size is %d"
,
scale_tz
.
size
()));
MKLDNNMemoryFormat
diff_fmt
=
platform
::
MKLDNNFormatForSize
(
src_tz
.
size
(),
out_grad
->
format
());
MKLDNNMemoryFormat
src_fmt
=
platform
::
MKLDNNFormatForSize
(
src_tz
.
size
(),
in_x
->
format
());
auto
dims
=
phi
::
vectorize
(
in_x
->
dims
());
auto
diff_dst_md
=
dnnl
::
memory
::
desc
(
dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
diff_fmt
);
auto
src_md
=
dnnl
::
memory
::
desc
(
dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
src_fmt
);
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
this
->
AcquireForwardPrimitiveDescriptor
(
dnnl
::
prop_kind
::
forward_training
,
src_md
,
epsilon
,
dnnl
::
prop_kind
::
forward_training
,
in_x
->
mem_desc
()
,
epsilon
,
dnnl
::
normalization_flags
::
use_scale_shift
);
this
->
AcquireBackwardPrimitiveDescriptor
(
dnnl
::
prop_kind
::
backward
,
diff_dst_md
,
src_md
,
epsilon
,
dnnl
::
normalization_flags
::
use_scale_shift
);
dnnl
::
prop_kind
::
backward
,
out_grad
->
mem_desc
(),
in_x
->
mem_desc
()
,
epsilon
,
dnnl
::
normalization_flags
::
use_scale_shift
);
}
std
::
shared_ptr
<
dnnl
::
memory
>
AcquireScaleShiftMemory
(
const
Tensor
*
scale
,
...
...
@@ -227,8 +192,7 @@ class BatchNormMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
variance_memory
=
handler
.
AcquireVarianceMemory
(
batch_variance
);
}
y
->
set_layout
(
DataLayout
::
kMKLDNN
);
y
->
set_format
(
platform
::
GetMKLDNNFormat
(
*
dst_memory
));
y
->
set_mem_desc
(
dst_memory
->
get_desc
());
auto
&
astream
=
platform
::
MKLDNNDeviceContext
::
tls
().
get_stream
();
batch_norm_p
->
execute
(
astream
,
{{
DNNL_ARG_SRC
,
*
src_memory
},
...
...
@@ -322,9 +286,8 @@ class BatchNormMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
std
::
copy
(
std
::
next
(
it
,
C
),
std
::
end
(
diff_scaleshift_data
),
diff_shift_data
);
// set layout/format of output tensors
diff_x
->
set_layout
(
DataLayout
::
kMKLDNN
);
diff_x
->
set_format
(
platform
::
GetMKLDNNFormat
(
*
diff_src_memory
));
// set memory descriptor of out tensor
diff_x
->
set_mem_desc
(
diff_src_memory
->
get_desc
());
}
};
}
// namespace operators
...
...
paddle/fluid/operators/mkldnn/clip_mkldnn_op.cc
浏览文件 @
db468d7d
...
...
@@ -46,8 +46,7 @@ class ClipMKLDNNKernel : public paddle::framework::OpKernel<T> {
{
DNNL_ARG_TO
,
*
dst_memory_p
}});
astream
.
wait
();
out
->
set_layout
(
paddle
::
framework
::
DataLayout
::
kMKLDNN
);
out
->
set_format
(
paddle
::
platform
::
GetMKLDNNFormat
(
*
dst_memory_p
));
out
->
set_mem_desc
(
dst_memory_p
->
get_desc
());
}
};
...
...
@@ -83,8 +82,7 @@ class ClipGradMKLDNNKernel : public paddle::framework::OpKernel<T> {
{
DNNL_ARG_DIFF_SRC
,
*
diff_src_memory_p
}});
astream
.
wait
();
dx
->
set_layout
(
paddle
::
framework
::
DataLayout
::
kMKLDNN
);
dx
->
set_format
(
paddle
::
platform
::
GetMKLDNNFormat
(
*
diff_dst_memory_p
));
dx
->
set_mem_desc
(
diff_dst_memory_p
->
get_desc
());
}
};
...
...
paddle/fluid/operators/mkldnn/concat_mkldnn_op.cc
浏览文件 @
db468d7d
...
...
@@ -68,8 +68,7 @@ class ConcatMKLDNNHandler
// Create memory descriptors for each of inputs
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
++
i
)
{
const
auto
dims
=
phi
::
vectorize
<
int64_t
>
(
inputs
[
i
]
->
dims
());
srcs_md
.
emplace_back
(
memory
::
desc
(
dims
,
dt
,
inputs
[
i
]
->
format
()));
srcs_md
.
push_back
(
inputs
[
i
]
->
mem_desc
());
}
auto
dst_dims
=
phi
::
vectorize
<
int64_t
>
(
output
->
dims
());
...
...
@@ -99,9 +98,6 @@ static void EnforceLayouts(const std::vector<const Tensor*> inputs) {
PADDLE_ENFORCE_EQ
(
input
->
layout
(),
DataLayout
::
kMKLDNN
,
platform
::
errors
::
InvalidArgument
(
"Wrong layout set for Input tensor"
));
PADDLE_ENFORCE_NE
(
input
->
format
(),
MKLDNNMemoryFormat
::
undef
,
platform
::
errors
::
InvalidArgument
(
"Wrong format set for Input tensor"
));
}
}
...
...
@@ -147,8 +143,7 @@ class ConcatMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
concat_p
->
execute
(
astream
,
args
);
astream
.
wait
();
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
platform
::
GetMKLDNNFormat
(
*
dst_mem
));
output
->
set_mem_desc
(
dst_mem
->
get_desc
());
}
};
...
...
@@ -192,7 +187,7 @@ class ConcatGradMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
dout_vec_dims
,
framework
::
TransToProtoVarType
(
dout
->
dtype
()),
dout_type
,
onednn_engine
);
auto
reorder_src_memory_p
=
reorder_handler
.
AcquireSrcMemory
(
dout
->
format
(),
platform
::
to_void_cast
(
dout
->
data
<
T
>
()));
dout
->
mem_desc
(),
platform
::
to_void_cast
(
dout
->
data
<
T
>
()));
for
(
size_t
i
=
0
;
i
<
dx
.
size
();
++
i
)
{
if
(
out_var_names
[
i
]
!=
framework
::
kEmptyVarName
&&
...
...
@@ -202,7 +197,8 @@ class ConcatGradMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
dx_vec_dims
,
offset
,
reorder_src_memory_p
);
auto
reorder_dst_memory_p
=
reorder_handler
.
AcquireDstMemory
(
dx
[
i
],
dx_vec_dims
,
dout
->
format
(),
ctx
.
GetPlace
());
dx
[
i
],
dx_vec_dims
,
platform
::
GetPlainMKLDNNFormat
(
dx_vec_dims
.
size
()),
ctx
.
GetPlace
());
auto
reorder_p
=
reorder_handler
.
AcquireReorder
(
reorder_dst_memory_p
,
slice_mem_p
);
...
...
@@ -210,8 +206,7 @@ class ConcatGradMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
offset
[
axis
]
+=
dx
[
i
]
->
dims
()[
axis
];
dx
[
i
]
->
set_layout
(
framework
::
DataLayout
::
kMKLDNN
);
dx
[
i
]
->
set_format
(
platform
::
GetMKLDNNFormat
(
*
reorder_dst_memory_p
));
dx
[
i
]
->
set_mem_desc
(
reorder_dst_memory_p
->
get_desc
());
}
}
astream
.
wait
();
...
...
paddle/fluid/operators/mkldnn/expand_v2_mkldnn_op.cc
浏览文件 @
db468d7d
...
...
@@ -115,10 +115,11 @@ class ExpandGradMKLDNNKernel : public paddle::framework::OpKernel<T> {
dout_type
,
onednn_engine
);
auto
reorder_src_memory_p
=
reorder_handler
.
AcquireSrcMemory
(
dout
->
format
(),
paddle
::
platform
::
to_void_cast
(
dout
->
data
<
T
>
()));
dout
->
mem_desc
(),
paddle
::
platform
::
to_void_cast
(
dout
->
data
<
T
>
()));
auto
reorder_dst_memory_p
=
reorder_handler
.
AcquireDstMemory
(
dx
,
dout
->
format
(),
ctx
.
GetPlace
());
auto
reorder_dst_memory_p
=
reorder_handler
.
AcquireDstMemory
(
dx
,
paddle
::
platform
::
GetPlainMKLDNNFormat
(
dx_vec_dims
.
size
()),
ctx
.
GetPlace
());
auto
reorder_p
=
reorder_handler
.
AcquireReorder
(
reorder_src_memory_p
,
reorder_dst_memory_p
);
...
...
@@ -126,9 +127,7 @@ class ExpandGradMKLDNNKernel : public paddle::framework::OpKernel<T> {
reorder_p
->
execute
(
astream
,
*
reorder_src_memory_p
,
*
reorder_dst_memory_p
);
astream
.
wait
();
dx
->
set_layout
(
paddle
::
framework
::
DataLayout
::
kMKLDNN
);
dx
->
set_format
(
paddle
::
platform
::
GetMKLDNNFormat
(
reorder_dst_memory_p
->
get_desc
()));
dx
->
set_mem_desc
(
reorder_dst_memory_p
->
get_desc
());
}
else
{
paddle
::
platform
::
ReductionMKLDNNHandler
<
T
>
handler
(
dnnl
::
algorithm
::
reduction_sum
,
0.0
f
,
0.0
f
,
onednn_engine
,
...
...
@@ -145,8 +144,8 @@ class ExpandGradMKLDNNKernel : public paddle::framework::OpKernel<T> {
reduction_p
->
execute
(
astream
,
reduction_args
);
astream
.
wait
();
dx
->
set_layout
(
paddle
::
framework
::
DataLayout
::
kMKLDNN
);
dx
->
set_
format
(
paddle
::
platform
::
GetMKLDNNFormat
(
dst_memory_p
->
get_desc
().
reshape
(
vectorize
<
int64_t
>
(
dx
->
dims
())))
)
;
dx
->
set_
mem_desc
(
dst_memory_p
->
get_desc
().
reshape
(
vectorize
<
int64_t
>
(
dx
->
dims
())));
}
}
};
...
...
paddle/fluid/operators/mkldnn/gaussian_random_mkldnn_op.cc
浏览文件 @
db468d7d
...
...
@@ -16,7 +16,7 @@ limitations under the License. */
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/operators/fill_constant_op.h"
#include "paddle/fluid/platform/mkldnn_
helper
.h"
#include "paddle/fluid/platform/mkldnn_
reuse
.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -42,8 +42,13 @@ class GaussianMKLDNNKernel : public paddle::framework::OpKernel<T> {
data
[
i
]
=
dist
(
*
engine
);
}
tensor
->
set_layout
(
DataLayout
::
kMKLDNN
);
tensor
->
set_format
(
platform
::
GetPlainMKLDNNFormat
(
tensor
->
dims
().
size
()));
dnnl
::
memory
::
desc
out_mem_desc
(
phi
::
vectorize
(
tensor
->
dims
()),
framework
::
ToMKLDNNDataType
(
framework
::
TransToProtoVarType
(
tensor
->
dtype
())),
platform
::
GetPlainMKLDNNFormat
(
tensor
->
dims
().
size
()));
tensor
->
set_mem_desc
(
out_mem_desc
);
}
};
}
// namespace operators
...
...
paddle/fluid/operators/mkldnn/interpolate_mkldnn_op.cc
浏览文件 @
db468d7d
...
...
@@ -34,17 +34,14 @@ class InterpolateMKLDNNHandler
public:
InterpolateMKLDNNHandler
(
const
dnnl
::
algorithm
algo
,
const
dnnl
::
engine
engine
,
platform
::
Place
cpu_place
,
const
Tensor
*
x
,
Tensor
*
z
)
const
Tensor
*
x
,
Tensor
*
out
)
:
platform
::
MKLDNNHandlerNoCachingT
<
T
,
dnnl
::
resampling_forward
>
(
engine
,
cpu_place
)
{
const
auto
src_x_tz
=
phi
::
vectorize
(
x
->
dims
());
const
auto
dst_tz
=
phi
::
vectorize
(
z
->
dims
());
const
auto
src_md
=
dnnl
::
memory
::
desc
(
src_x_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
x
->
format
());
const
auto
dst_tz
=
phi
::
vectorize
(
out
->
dims
());
const
auto
dst_md
=
memory
::
desc
(
dst_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
MKLDNNMemoryFormat
::
any
);
this
->
AcquireForwardPrimitiveDescriptor
(
dnnl
::
prop_kind
::
forward_inference
,
algo
,
src_md
,
dst_md
);
algo
,
x
->
mem_desc
()
,
dst_md
);
}
};
...
...
@@ -133,7 +130,7 @@ class InterpolateMKLDNNKernel : public framework::OpKernel<T> {
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
z
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
const
auto
interp_method
=
ctx
.
Attr
<
std
::
string
>
(
"interp_method"
);
const
dnnl
::
algorithm
algo
=
(
interp_method
==
"nearest"
)
...
...
@@ -142,13 +139,13 @@ class InterpolateMKLDNNKernel : public framework::OpKernel<T> {
const
auto
out_dims_vec
=
ComputeOutputShape
(
ctx
);
framework
::
DDim
dim_out
=
phi
::
make_ddim
(
out_dims_vec
);
z
->
Resize
(
dim_out
);
out
->
Resize
(
dim_out
);
InterpolateMKLDNNHandler
<
T
>
handler
(
algo
,
mkldnn_engine
,
ctx
.
GetPlace
(),
x
,
z
);
out
);
auto
src_memory_p
=
handler
.
AcquireSrcMemory
(
x
);
auto
dst_memory_p
=
handler
.
AcquireDstMemory
(
z
);
auto
dst_memory_p
=
handler
.
AcquireDstMemory
(
out
);
auto
resampling_prim
=
handler
.
AcquireForwardPrimitive
();
const
std
::
unordered_map
<
int
,
dnnl
::
memory
>
args
=
{
...
...
@@ -158,8 +155,7 @@ class InterpolateMKLDNNKernel : public framework::OpKernel<T> {
resampling_prim
->
execute
(
astream
,
args
);
astream
.
wait
();
z
->
set_layout
(
DataLayout
::
kMKLDNN
);
z
->
set_format
(
platform
::
GetMKLDNNFormat
(
*
dst_memory_p
));
out
->
set_mem_desc
(
dst_memory_p
->
get_desc
());
}
};
...
...
paddle/fluid/operators/mkldnn/layer_norm_mkldnn_op.cc
浏览文件 @
db468d7d
...
...
@@ -25,22 +25,21 @@ class LayerNormMKLDNNHandler : public platform::MKLDNNHandlerNoCachingT<
public:
LayerNormMKLDNNHandler
(
const
std
::
vector
<
int64_t
>&
dims
,
const
float
&
epsilon
,
const
dnnl
::
normalization_flags
&
flags
,
const
bool
&
is_test
,
const
MKLDNNMemoryFormat
fmt
,
const
bool
&
is_test
,
const
Tensor
*
x
,
const
dnnl
::
engine
engine
,
platform
::
Place
cpu_place
)
:
platform
::
MKLDNNHandlerNoCachingT
<
T
,
dnnl
::
layer_normalization_forward
>
(
engine
,
cpu_place
)
{
auto
md
=
dnnl
::
memory
::
desc
(
dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
fmt
);
if
(
!
is_test
)
{
// TODO(grygielski) Delete forcing stats_md after DNNL 1.2 is introduced
auto
stats_md
=
dnnl
::
memory
::
desc
(
{
begin
(
dims
),
end
(
dims
)
-
1
},
platform
::
MKLDNNGetDataType
<
float
>
(),
platform
::
MKLDNNFormatForSize
(
dims
.
size
()
-
1
,
MKLDNNMemoryFormat
::
nchw
));
platform
::
GetPlainMKLDNNFormat
(
dims
.
size
()
-
1
));
this
->
AcquireForwardPrimitiveDescriptor
(
dnnl
::
prop_kind
::
forward_training
,
md
,
stats_md
,
epsilon
,
flags
);
x
->
mem_desc
(),
stats_md
,
epsilon
,
flags
);
}
else
{
this
->
AcquireForwardPrimitiveDescriptor
(
dnnl
::
prop_kind
::
forward_inference
,
md
,
epsilon
,
flags
);
dnnl
::
prop_kind
::
forward_inference
,
x
->
mem_desc
()
,
epsilon
,
flags
);
}
}
...
...
@@ -83,7 +82,7 @@ class LayerNormMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
const
auto
begin_norm_axis
=
ctx
.
Attr
<
int
>
(
"begin_norm_axis"
);
...
...
@@ -107,12 +106,11 @@ class LayerNormMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
flags
|=
dnnl
::
normalization_flags
::
use_scale_shift
;
}
LayerNormMKLDNNHandler
<
T
>
handler
(
src_tz
,
epsilon
,
flags
,
is_test
,
x
->
format
(),
mkldnn_engine
,
ctx
.
GetPlace
());
LayerNormMKLDNNHandler
<
T
>
handler
(
src_tz
,
epsilon
,
flags
,
is_test
,
x
,
mkldnn_engine
,
ctx
.
GetPlace
());
auto
src_memory
=
handler
.
AcquireSrcMemory
(
x
);
auto
dst_memory
=
handler
.
AcquireDstMemory
(
y
);
auto
dst_memory
=
handler
.
AcquireDstMemory
(
out
);
auto
layer_norm_p
=
handler
.
AcquireForwardPrimitive
();
...
...
@@ -140,8 +138,7 @@ class LayerNormMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
layer_norm_p
->
execute
(
astream
,
args
);
astream
.
wait
();
y
->
set_layout
(
phi
::
DataLayout
::
kMKLDNN
);
y
->
set_format
(
platform
::
GetMKLDNNFormat
(
*
dst_memory
));
out
->
set_mem_desc
(
dst_memory
->
get_desc
());
}
};
...
...
paddle/fluid/operators/mkldnn/log_softmax_mkldnn_op.cc
浏览文件 @
db468d7d
...
...
@@ -28,12 +28,8 @@ class LogSoftmaxMKLDNNHandler
const
int
axis
)
:
platform
::
MKLDNNHandlerNoCachingT
<
T
,
dnnl
::
logsoftmax_forward
>
(
mkldnn_engine
,
cpu_place
)
{
const
auto
logsoftmax_tz
=
phi
::
vectorize
(
x
->
dims
());
const
auto
md
=
dnnl
::
memory
::
desc
(
logsoftmax_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
x
->
format
());
this
->
AcquireForwardPrimitiveDescriptor
(
dnnl
::
prop_kind
::
forward_inference
,
md
,
axis
);
x
->
mem_desc
()
,
axis
);
}
};
...
...
@@ -63,8 +59,7 @@ class LogSoftmaxMKLDNNKernel : public framework::OpKernel<T> {
{
DNNL_ARG_DST
,
*
dst_memory_p
}});
astream
.
wait
();
out
->
set_layout
(
framework
::
DataLayout
::
kMKLDNN
);
out
->
set_format
(
x
->
format
());
out
->
set_mem_desc
(
dst_memory_p
->
get_desc
());
}
};
}
// namespace operators
...
...
paddle/fluid/operators/mkldnn/lrn_mkldnn_op.cc
浏览文件 @
db468d7d
...
...
@@ -44,15 +44,11 @@ class LRNMKLDNNHandler
const
float
k
=
ctx
.
Attr
<
float
>
(
"k"
);
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
auto
dims
=
phi
::
vectorize
(
input
->
dims
());
auto
src_md
=
dnnl
::
memory
::
desc
(
dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
input
->
format
());
this
->
AcquireForwardPrimitiveDescriptor
(
is_test
?
dnnl
::
prop_kind
::
forward_inference
:
dnnl
::
prop_kind
::
forward_training
,
dnnl
::
algorithm
::
lrn_across_channels
,
src_md
,
n
,
alpha
,
beta
,
k
);
dnnl
::
algorithm
::
lrn_across_channels
,
input
->
mem_desc
(),
n
,
alpha
,
beta
,
k
);
}
LRNMKLDNNHandler
(
const
framework
::
ExecutionContext
&
ctx
,
...
...
@@ -72,20 +68,13 @@ class LRNMKLDNNHandler
const
float
beta
=
ctx
.
Attr
<
float
>
(
"beta"
);
const
float
k
=
ctx
.
Attr
<
float
>
(
"k"
);
auto
dims
=
phi
::
vectorize
<
int64_t
>
(
in_x
->
dims
());
auto
src_md
=
dnnl
::
memory
::
desc
(
dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
in_x
->
format
());
auto
diff_md
=
dnnl
::
memory
::
desc
(
dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
out_grad
->
format
());
this
->
AcquireForwardPrimitiveDescriptor
(
dnnl
::
prop_kind
::
forward_training
,
dnnl
::
algorithm
::
lrn_across_channels
,
src_md
,
n
,
alpha
,
beta
,
k
);
in_x
->
mem_desc
()
,
n
,
alpha
,
beta
,
k
);
this
->
AcquireBackwardPrimitiveDescriptor
(
dnnl
::
algorithm
::
lrn_across_channels
,
src_md
,
diff_md
,
n
,
alpha
,
beta
,
k
);
dnnl
::
algorithm
::
lrn_across_channels
,
in_x
->
mem_desc
()
,
out_grad
->
mem_desc
(),
n
,
alpha
,
beta
,
k
);
}
std
::
shared_ptr
<
dnnl
::
memory
>
AcquireWorkspaceMemory
(
Tensor
*
workspace
)
{
...
...
paddle/fluid/operators/mkldnn/pool_mkldnn_op.cc
浏览文件 @
db468d7d
...
...
@@ -41,13 +41,6 @@ class PoolingMKLDNNHandler
:
platform
::
MKLDNNHandlerNoCachingT
<
T
,
dnnl
::
pooling_forward
,
dnnl
::
pooling_backward
>
(
mkldnn_engine
,
ctx
.
GetPlace
())
{
PADDLE_ENFORCE_EQ
(
input
->
layout
(),
DataLayout
::
kMKLDNN
,
platform
::
errors
::
InvalidArgument
(
"Wrong layout set for Input tensor."
));
PADDLE_ENFORCE_NE
(
input
->
format
(),
MKLDNNMemoryFormat
::
undef
,
platform
::
errors
::
InvalidArgument
(
"Wrong format set for Input tensor."
));
const
std
::
string
pooling_type
=
ctx
.
Attr
<
std
::
string
>
(
"pooling_type"
);
std
::
vector
<
int
>
ksize_temp
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
...
...
@@ -91,29 +84,18 @@ class PoolingMKLDNNHandler
phi
::
funcs
::
UpdatePadding
(
&
paddings
,
global_pooling
,
0
,
padding_algorithm
,
data_dims
,
strides
,
ksize
);
const
auto
src_tz
=
phi
::
vectorize
(
input
->
dims
());
const
auto
dst_tz
=
phi
::
vectorize
(
output
->
dims
());
const
auto
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
const
bool
ceil_mode
=
ctx
.
Attr
<
bool
>
(
"ceil_mode"
);
const
auto
exclude_padding
=
ctx
.
Attr
<
bool
>
(
"exclusive"
);
auto
mkldnn_paddings
=
platform
::
ToMkldnnPadding
(
paddings
);
const
auto
dt
=
framework
::
ToMKLDNNDataType
(
framework
::
TransToProtoVarType
(
input
->
dtype
()));
const
auto
exclude_padding
=
ctx
.
Attr
<
bool
>
(
"exclusive"
);
const
auto
src_md
=
dnnl
::
memory
::
desc
(
src_tz
,
dt
,
input
->
format
());
/* create memory descriptor for pooling without specified format
* ('any') which lets a primitive (pooling in this case) choose
* the memory format preferred for best performance
*/
const
auto
src_tz
=
phi
::
vectorize
(
input
->
dims
());
const
auto
dst_tz
=
phi
::
vectorize
(
output
->
dims
());
const
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
dt
,
MKLDNNMemoryFormat
::
any
);
auto
mkldnn_paddings
=
platform
::
ToMkldnnPadding
(
paddings
);
const
bool
ceil_mode
=
ctx
.
Attr
<
bool
>
(
"ceil_mode"
);
if
(
ceil_mode
)
{
CorrectOutputSize
(
src_tz
,
dst_tz
,
ksize
,
paddings
,
strides
,
mkldnn_paddings
[
1
]);
...
...
@@ -128,7 +110,8 @@ class PoolingMKLDNNHandler
?
dnnl
::
algorithm
::
pooling_max
:
(
exclude_padding
?
dnnl
::
algorithm
::
pooling_avg_exclude_padding
:
dnnl
::
algorithm
::
pooling_avg_include_padding
),
src_md
,
dst_md
,
strides
,
ksize
,
mkldnn_paddings
[
0
],
mkldnn_paddings
[
1
]);
input
->
mem_desc
(),
dst_md
,
strides
,
ksize
,
mkldnn_paddings
[
0
],
mkldnn_paddings
[
1
]);
}
PoolingMKLDNNHandler
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
,
...
...
@@ -138,20 +121,6 @@ class PoolingMKLDNNHandler
:
platform
::
MKLDNNHandlerNoCachingT
<
T
,
dnnl
::
pooling_forward
,
dnnl
::
pooling_backward
>
(
mkldnn_engine
,
ctx
.
GetPlace
())
{
PADDLE_ENFORCE_EQ
(
in_x
->
layout
(),
DataLayout
::
kMKLDNN
,
platform
::
errors
::
InvalidArgument
(
"Wrong layout set for Input tensor"
));
PADDLE_ENFORCE_NE
(
in_x
->
format
(),
MKLDNNMemoryFormat
::
undef
,
platform
::
errors
::
InvalidArgument
(
"Wrong format set for Input tensor"
));
PADDLE_ENFORCE_EQ
(
out_grad
->
layout
(),
DataLayout
::
kMKLDNN
,
platform
::
errors
::
InvalidArgument
(
"Wrong layout set for Input output_grad tensor"
));
PADDLE_ENFORCE_NE
(
out_grad
->
format
(),
MKLDNNMemoryFormat
::
undef
,
platform
::
errors
::
InvalidArgument
(
"Wrong format set for Input output_grad tensor"
));
PADDLE_ENFORCE_EQ
(
ctx
.
Attr
<
bool
>
(
"is_test"
),
false
,
platform
::
errors
::
InvalidArgument
(
...
...
@@ -187,10 +156,7 @@ class PoolingMKLDNNHandler
const
auto
dt
=
framework
::
ToMKLDNNDataType
(
framework
::
TransToProtoVarType
(
in_x
->
dtype
()));
auto
src_md
=
dnnl
::
memory
::
desc
(
src_tz
,
dt
,
in_x
->
format
());
auto
dst_md
=
dnnl
::
memory
::
desc
(
diff_dst_tz
,
dt
,
MKLDNNMemoryFormat
::
any
);
auto
diff_dst_md
=
dnnl
::
memory
::
desc
(
diff_dst_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
out_grad
->
format
());
auto
diff_src_md
=
dnnl
::
memory
::
desc
(
diff_src_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
MKLDNNMemoryFormat
::
any
);
...
...
@@ -211,14 +177,15 @@ class PoolingMKLDNNHandler
?
dnnl
::
algorithm
::
pooling_max
:
(
exclude_padding
?
dnnl
::
algorithm
::
pooling_avg_exclude_padding
:
dnnl
::
algorithm
::
pooling_avg_include_padding
),
src_md
,
dst_md
,
strides
,
ksize
,
mkldnn_paddings
[
0
],
mkldnn_paddings
[
1
]);
in_x
->
mem_desc
(),
dst_md
,
strides
,
ksize
,
mkldnn_paddings
[
0
],
mkldnn_paddings
[
1
]);
this
->
AcquireBackwardPrimitiveDescriptor
(
pooling_type
==
"max"
?
dnnl
::
algorithm
::
pooling_max
:
(
exclude_padding
?
dnnl
::
algorithm
::
pooling_avg_exclude_padding
:
dnnl
::
algorithm
::
pooling_avg_include_padding
),
diff_src_md
,
diff_dst_md
,
strides
,
ksize
,
mkldnn_paddings
[
0
],
diff_src_md
,
out_grad
->
mem_desc
()
,
strides
,
ksize
,
mkldnn_paddings
[
0
],
mkldnn_paddings
[
1
]);
}
...
...
@@ -327,8 +294,7 @@ class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
}
astream
.
wait
();
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
platform
::
GetMKLDNNFormat
(
*
dst_memory
));
output
->
set_mem_desc
(
dst_memory
->
get_desc
());
}
};
...
...
@@ -369,8 +335,7 @@ class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
}
astream
.
wait
();
in_x_grad
->
set_layout
(
DataLayout
::
kMKLDNN
);
in_x_grad
->
set_format
(
platform
::
GetMKLDNNFormat
(
*
diff_src_memory
));
in_x_grad
->
set_mem_desc
(
diff_src_memory
->
get_desc
());
}
// Compute()
};
...
...
paddle/fluid/operators/mkldnn/prelu_mkldnn_op.cc
浏览文件 @
db468d7d
...
...
@@ -41,9 +41,6 @@ class PReluMKLDNNHandler
platform
::
CreateKey
(
dev_ctx
,
phi
::
vectorize
(
x
->
dims
()),
uniq_name
))
{
if
(
unlikely
(
!
this
->
isCached
()))
{
auto
x_md
=
memory
::
desc
(
phi
::
vectorize
(
x
->
dims
()),
MKLDNNGetDataType
<
T
>
(),
x
->
format
());
auto
weights_dims
=
phi
::
vectorize
(
weights
->
dims
());
// weights must have same size as X only for "element" case
...
...
@@ -59,30 +56,28 @@ class PReluMKLDNNHandler
memory
::
format_tag
::
any
);
this
->
AcquireForwardPrimitiveDescriptor
(
dnnl
::
prop_kind
::
forward_training
,
x
_md
,
weights_md
);
x
->
mem_desc
()
,
weights_md
);
if
(
!
is_test
)
this
->
AcquireBackwardPrimitiveDescriptor
(
x
_md
,
weights_md
,
x
_md
,
weights_md
);
this
->
AcquireBackwardPrimitiveDescriptor
(
x
->
mem_desc
(),
weights
_md
,
x
->
mem_desc
(),
weights_md
);
}
}
std
::
shared_ptr
<
memory
>
AcquireWeightsMemoryPossiblyWithReorder
(
const
Tensor
*
input
,
const
bool
is_test
)
{
const
T
*
input_data
=
input
->
data
<
T
>
();
const
Tensor
*
weights
,
const
bool
is_test
)
{
const
T
*
weights_data
=
weights
->
data
<
T
>
();
// if weights are 1D, every format tag is correct, so we accept
// format_tag::any's output and no reorder is needed
if
(
input
->
dims
().
size
()
==
1
)
{
if
(
weights
->
dims
().
size
()
==
1
)
{
return
this
->
AcquireMemoryFromPrimitive
(
this
->
fwd_pd_
->
weights_desc
(),
to_void_cast
<
T
>
(
input
_data
),
to_void_cast
<
T
>
(
weights
_data
),
"@alpha_mem_p"
);
}
auto
user_weights_md
=
memory
::
desc
(
phi
::
vectorize
(
input
->
dims
()),
MKLDNNGetDataType
<
T
>
(),
input
->
format
());
return
this
->
AcquireMemoryWithReorder
(
user_weights_md
,
this
->
fwd_pd_
->
weights_desc
(),
to_void_cast
<
T
>
(
input
_data
),
"@alpha_mem_p"
,
is_test
);
weights
->
mem_desc
()
,
this
->
fwd_pd_
->
weights_desc
(),
to_void_cast
<
T
>
(
weights
_data
),
"@alpha_mem_p"
,
is_test
);
}
std
::
shared_ptr
<
memory
>
AcquireDiffWeightsMemory
(
Tensor
*
output
)
{
...
...
@@ -128,8 +123,7 @@ class PReluMKLDNNKernel : public framework::OpKernel<T> {
{
DNNL_ARG_DST
,
*
dst_memory_p
}});
astream
.
wait
();
out
->
set_layout
(
framework
::
DataLayout
::
kMKLDNN
);
out
->
set_format
(
GetMKLDNNFormat
(
*
dst_memory_p
));
out
->
set_mem_desc
(
dst_memory_p
->
get_desc
());
}
};
...
...
@@ -174,8 +168,7 @@ class PReluGradMKLDNNKernel : public framework::OpKernel<T> {
{
DNNL_ARG_DIFF_WEIGHTS
,
*
diff_weights_memory_p
}});
astream
.
wait
();
dx
->
set_layout
(
framework
::
DataLayout
::
kMKLDNN
);
dx
->
set_format
(
GetMKLDNNFormat
(
*
diff_src_memory_p
));
dx
->
set_mem_desc
(
diff_src_memory_p
->
get_desc
());
}
};
}
// namespace operators
...
...
paddle/fluid/operators/mkldnn/scale_mkldnn_op.cc
浏览文件 @
db468d7d
...
...
@@ -54,8 +54,7 @@ class ScaleMKLDNNKernel : public framework::OpKernel<T> {
{
DNNL_ARG_TO
,
*
dst_memory_p
}});
astream
.
wait
();
out
->
set_layout
(
framework
::
DataLayout
::
kMKLDNN
);
out
->
set_format
(
platform
::
GetMKLDNNFormat
(
*
dst_memory_p
));
out
->
set_mem_desc
(
dst_memory_p
->
get_desc
());
}
};
}
// namespace operators
...
...
paddle/fluid/operators/mkldnn/shape_mkldnn_op.cc
浏览文件 @
db468d7d
...
...
@@ -13,7 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/mkldnn_
helper
.h"
#include "paddle/fluid/platform/mkldnn_
reuse
.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -40,9 +40,13 @@ class ShapeMKLDNNKernel : public framework::OpKernel<T> {
out_data
[
i
]
=
in_dims
[
i
];
}
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
out
->
set_layout
(
framework
::
DataLayout
::
kMKLDNN
);
out
->
set_format
(
platform
::
GetPlainMKLDNNFormat
(
out
->
dims
().
size
()));
dnnl
::
memory
::
desc
out_mem_desc
(
phi
::
vectorize
(
out_t
->
dims
()),
framework
::
ToMKLDNNDataType
(
framework
::
TransToProtoVarType
(
out_t
->
dtype
())),
platform
::
GetPlainMKLDNNFormat
(
out_t
->
dims
().
size
()));
out_t
->
set_mem_desc
(
out_mem_desc
);
}
};
}
// namespace operators
...
...
paddle/fluid/operators/mkldnn/shuffle_channel_mkldnn_op.cc
浏览文件 @
db468d7d
...
...
@@ -29,11 +29,8 @@ class ShuffleChannelMKLDNNHandler
:
platform
::
MKLDNNHandlerNoCachingT
<
T
,
dnnl
::
shuffle_forward
>
(
engine
,
cpu_place
)
{
static
constexpr
int
channel_axis
=
1
;
const
auto
md
=
dnnl
::
memory
::
desc
(
phi
::
vectorize
(
x
->
dims
()),
MKLDNNGetDataType
<
T
>
(),
x
->
format
());
this
->
AcquireForwardPrimitiveDescriptor
(
dnnl
::
prop_kind
::
forward_training
,
md
,
channel_axis
,
group
);
x
->
mem_desc
()
,
channel_axis
,
group
);
}
};
...
...
@@ -64,8 +61,7 @@ class ShuffleChannelMKLDNNKernel : public framework::OpKernel<T> {
{
DNNL_ARG_DST
,
*
dst_memory_p
}});
astream
.
wait
();
out
->
set_layout
(
framework
::
DataLayout
::
kMKLDNN
);
out
->
set_format
(
x
->
format
());
out
->
set_mem_desc
(
dst_memory_p
->
get_desc
());
}
};
}
// namespace operators
...
...
paddle/fluid/operators/mkldnn/softmax_mkldnn_op.cc
浏览文件 @
db468d7d
...
...
@@ -47,12 +47,8 @@ class SoftmaxMKLDNNHandler
platform
::
errors
::
InvalidArgument
(
"The shape of input and output tensor must be identical."
));
auto
softmax_tz
=
phi
::
vectorize
(
input
->
dims
());
auto
md
=
memory
::
desc
(
softmax_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
input
->
format
());
this
->
AcquireForwardPrimitiveDescriptor
(
prop_kind
::
forward_scoring
,
md
,
axis
);
this
->
AcquireForwardPrimitiveDescriptor
(
prop_kind
::
forward_scoring
,
input
->
mem_desc
(),
axis
);
}
SoftmaxMKLDNNHandler
(
const
framework
::
ExecutionContext
&
ctx
,
...
...
@@ -73,17 +69,11 @@ class SoftmaxMKLDNNHandler
auto
dims
=
out_grad
->
dims
();
// input and output share the same shape
const
int
axis
=
phi
::
funcs
::
CanonicalAxis
(
ctx
.
Attr
<
int
>
(
"axis"
),
dims
.
size
());
auto
softmax_tz
=
phi
::
vectorize
<
int64_t
>
(
dims
);
auto
data_softmax_md
=
MKLDNNMemDesc
(
softmax_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
out
->
format
());
auto
diff_softmax_md
=
MKLDNNMemDesc
(
softmax_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
out_grad
->
format
());
this
->
AcquireForwardPrimitiveDescriptor
(
prop_kind
::
forward_scoring
,
data_softmax_md
,
axis
);
this
->
AcquireBackwardPrimitiveDescriptor
(
diff_softmax_md
,
data_softmax_md
,
axis
);
out
->
mem_desc
()
,
axis
);
this
->
AcquireBackwardPrimitiveDescriptor
(
out_grad
->
mem_desc
()
,
out
->
mem_desc
(),
axis
);
}
};
...
...
@@ -128,9 +118,7 @@ class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
});
}
output
->
set_layout
(
framework
::
DataLayout
::
kMKLDNN
);
// Softmax output format is the same as input one
output
->
set_format
(
input
->
format
());
output
->
set_mem_desc
(
softmax_dst_memory_p
->
get_desc
());
}
};
...
...
@@ -162,8 +150,7 @@ class SoftmaxMKLDNNGradKernel : public paddle::framework::OpKernel<T> {
{
DNNL_ARG_DIFF_SRC
,
*
diff_src_memory_p
}});
astream
.
wait
();
in_x_grad
->
set_layout
(
framework
::
DataLayout
::
kMKLDNN
);
in_x_grad
->
set_format
(
platform
::
GetMKLDNNFormat
(
*
diff_src_memory_p
));
in_x_grad
->
set_mem_desc
(
diff_src_memory_p
->
get_desc
());
}
};
}
// namespace operators
...
...
paddle/fluid/operators/mkldnn/softplus_mkldnn_op.h
浏览文件 @
db468d7d
...
...
@@ -29,12 +29,11 @@ class SoftplusMKLDNNHandler
:
platform
::
MKLDNNHandlerNoCachingT
<
T
,
dnnl
::
binary
>
(
engine
,
ctx
.
GetPlace
())
{
auto
x_tz
=
phi
::
vectorize
(
x
->
dims
());
auto
x_md
=
dnnl
::
memory
::
desc
(
x_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
x
->
format
());
auto
beta_tz
=
std
::
vector
<
int64_t
>
(
x_tz
.
size
(),
1
);
auto
beta_md
=
dnnl
::
memory
::
desc
(
beta_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
x
->
format
());
auto
beta_md
=
dnnl
::
memory
::
desc
(
beta_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
platform
::
GetPlainMKLDNNFormat
(
x_tz
.
size
()));
dnnl
::
post_ops
post_ops
;
post_ops
.
append_eltwise
(
1.0
f
,
dnnl
::
algorithm
::
eltwise_soft_relu
,
0.0
f
,
...
...
@@ -50,7 +49,8 @@ class SoftplusMKLDNNHandler
attrs
.
set_post_ops
(
post_ops
);
this
->
AcquireForwardPrimitiveDescriptor
(
attrs
,
dnnl
::
algorithm
::
binary_mul
,
x_md
,
beta_md
,
x_md
);
x
->
mem_desc
(),
beta_md
,
x
->
mem_desc
());
}
std
::
shared_ptr
<
dnnl
::
memory
>
AcquireBetaMemory
(
const
float
*
beta
)
{
...
...
@@ -129,8 +129,7 @@ void custom_softplus_eltwise_forward(const framework::ExecutionContext& ctx) {
binary_p
->
execute
(
astream
,
args
);
astream
.
wait
();
out
->
set_layout
(
framework
::
DataLayout
::
kMKLDNN
);
out
->
set_format
(
platform
::
GetMKLDNNFormat
(
*
dst_memory_p
));
out
->
set_mem_desc
(
dst_memory_p
->
get_desc
());
}
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/tests/unittests/mkldnn/test_expand_v2_mkldnn_op.py
浏览文件 @
db468d7d
...
...
@@ -28,18 +28,22 @@ class TestExpandV2OneDNNOp(OpTest):
self
.
op_type
=
"expand_v2"
self
.
init_data
()
self
.
x
=
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
)
self
.
set_inputs
()
self
.
attrs
=
{
'shape'
:
self
.
shape
,
'use_mkldnn'
:
True
}
self
.
set_inputs
()
self
.
set_additional_inputs
()
output
=
np
.
tile
(
self
.
x
,
self
.
expand_times
)
self
.
outputs
=
{
'Out'
:
output
}
def
set_inputs
(
self
):
self
.
inputs
=
{
'X'
:
self
.
x
}
def
set_additional_inputs
(
self
):
pass
def
init_data
(
self
):
self
.
ori_shape
=
[
1
,
140
]
self
.
shape
=
[
12
,
140
]
self
.
expand_times
=
[
12
,
1
]
self
.
ori_shape
=
[
1
,
1
,
1
,
1
40
]
self
.
shape
=
[
2
,
3
,
4
,
140
]
self
.
expand_times
=
[
2
,
3
,
4
,
1
]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
core
.
CPUPlace
())
...
...
@@ -74,7 +78,7 @@ class TestExpandV2ExpandShapesTensor1OneDNNOp(TestExpandV2OneDNNOp):
self
.
ori_shape
=
[
100
,
1
]
self
.
expand_times
=
[
1
,
2
]
self
.
expand_shape
=
[
100
,
2
]
self
.
shape
=
[
-
1
,
-
1
]
self
.
shape
=
[
100
,
2
]
def
calc_expand_shapes_tensor
(
self
):
self
.
expand_shapes_tensor
=
[]
...
...
@@ -82,12 +86,9 @@ class TestExpandV2ExpandShapesTensor1OneDNNOp(TestExpandV2OneDNNOp):
self
.
expand_shapes_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
def
set_inputs
(
self
):
def
set_
additional_
inputs
(
self
):
self
.
calc_expand_shapes_tensor
()
self
.
inputs
=
{
'X'
:
self
.
x
,
'expand_shapes_tensor'
:
self
.
expand_shapes_tensor
}
self
.
inputs
[
'expand_shapes_tensor'
]
=
self
.
expand_shapes_tensor
class
TestExpandV2ExpandShapesTensor2OneDNNOp
(
...
...
@@ -104,13 +105,10 @@ class TestExpandV2ShapesTensorOneDNNOp(TestExpandV2OneDNNOp):
self
.
ori_shape
=
[
100
]
self
.
expand_times
=
[
2
,
1
]
self
.
expand_shape
=
[
2
,
100
]
self
.
shape
=
[
-
1
,
-
1
]
self
.
shape
=
[
2
,
100
]
def
set_inputs
(
self
):
self
.
inputs
=
{
'X'
:
self
.
x
,
'Shape'
:
np
.
array
(
self
.
expand_shape
).
astype
(
"int32"
)
}
def
set_additional_inputs
(
self
):
self
.
inputs
[
'Shape'
]
=
np
.
array
(
self
.
expand_shape
).
astype
(
"int32"
)
# BF16 TESTS
...
...
@@ -118,6 +116,7 @@ def create_expand_v2_bf16_test_class(parent):
@
OpTestTool
.
skip_if_not_cpu_bf16
()
class
TestExpandV2BF16OneDNNOp
(
parent
):
def
set_inputs
(
self
):
self
.
attrs
[
'mkldnn_data_type'
]
=
'bfloat16'
self
.
inputs
=
{
"X"
:
convert_float_to_uint16
(
self
.
x
)}
def
calculate_grads
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录