Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
dadbe454
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
dadbe454
编写于
6月 15, 2018
作者:
X
Xin Pan
提交者:
GitHub
6月 15, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #11511 from panyx0718/doc2
Add doc for while and piecewise_decay op
上级
3a4b6cda
a219f3cc
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
44 addition
and
9 deletion
+44
-9
python/paddle/fluid/layers/control_flow.py
python/paddle/fluid/layers/control_flow.py
+23
-0
python/paddle/fluid/layers/learning_rate_scheduler.py
python/paddle/fluid/layers/learning_rate_scheduler.py
+21
-9
未找到文件。
python/paddle/fluid/layers/control_flow.py
浏览文件 @
dadbe454
...
...
@@ -654,6 +654,29 @@ class WhileGuard(BlockGuard):
class
While
(
object
):
"""
while loop control flow.
Args:
cond (Variable): condition used to compare.
name (str): The name of this layer.
Examples:
.. code-block:: python
d0 = layers.data("d0", shape=[10], dtype='float32')
data_array = layers.array_write(x=d0, i=i)
array_len = layers.fill_constant(shape=[1],dtype='int64', value=3)
cond = layers.less_than(x=i, y=array_len)
while_op = layers.While(cond=cond)
with while_op.block():
d = layers.array_read(array=data_array, i=i)
i = layers.increment(x=i, in_place=True)
layers.array_write(result, i=i, array=d)
layers.less_than(x=i, y=array_len, cond=cond)
"""
BEFORE_WHILE_BLOCK
=
0
IN_WHILE_BLOCK
=
1
AFTER_WHILE_BLOCK
=
2
...
...
python/paddle/fluid/layers/learning_rate_scheduler.py
浏览文件 @
dadbe454
...
...
@@ -209,15 +209,27 @@ def polynomial_decay(learning_rate,
def
piecewise_decay
(
boundaries
,
values
):
"""Applies piecewise decay to the initial learning rate.
>>> boundaries = [10000, 20000]
>>> values = [1.0, 0.5, 0.1]
>>>
>>> if step < 10000:
>>> learning_rate = 1.0
>>> elif 10000 <= step < 20000:
>>> learning_rate = 0.5
>>> else:
>>> learning_rate = 0.1
The algorithm can be described as the code below.
.. code-block:: python
boundaries = [10000, 20000]
values = [1.0, 0.5, 0.1]
if step < 10000:
learning_rate = 1.0
elif 10000 <= step < 20000:
learning_rate = 0.5
else:
learning_rate = 0.1
Args:
boundaries: A list of steps numbers.
values: A list of learning rate values that will be picked during
different step boundaries.
Returns:
The decayed learning rate.
"""
if
len
(
values
)
-
len
(
boundaries
)
!=
1
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录