Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
da3f9cc5
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
da3f9cc5
编写于
1月 25, 2019
作者:
B
baojun-nervana
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
rm ngraph_operator.cc test=develop
上级
88bd7e1a
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
0 addition
and
545 deletion
+0
-545
paddle/fluid/framework/ngraph_operator.cc
paddle/fluid/framework/ngraph_operator.cc
+0
-545
未找到文件。
paddle/fluid/framework/ngraph_operator.cc
已删除
100644 → 0
浏览文件 @
88bd7e1a
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <glog/logging.h>
#include <algorithm>
#include <map>
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/ngraph_bridge.h"
#include "paddle/fluid/framework/ngraph_operator.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/framework/var_type.h"
#include "ngraph/ngraph.hpp"
namespace
paddle
{
namespace
framework
{
static
ngraph
::
Shape
Ddim2Shape
(
const
DDim
&
dims
)
{
ngraph
::
Shape
sp
;
for
(
int
i
=
0
;
i
<
dims
.
size
();
++
i
)
{
int
k
=
dims
[
i
];
k
=
k
==
0
?
1
:
k
;
sp
.
push_back
(
k
);
}
return
sp
;
}
static
std
::
map
<
proto
::
VarType
::
Type
,
ngraph
::
element
::
Type
>
pd2ng_type_map
=
{
{
proto
::
VarType
::
FP32
,
ngraph
::
element
::
f32
},
{
proto
::
VarType
::
FP64
,
ngraph
::
element
::
f64
},
{
proto
::
VarType
::
INT32
,
ngraph
::
element
::
i32
},
{
proto
::
VarType
::
INT64
,
ngraph
::
element
::
i64
},
{
proto
::
VarType
::
BOOL
,
ngraph
::
element
::
boolean
},
};
typedef
enum
{
/* nGraph support state on ops */
FULL_TRAIN
,
/* Support full ops for train */
PARTIAL_TRAIN
,
/* Support partial ops for train */
FULL_TEST
,
/* Support full list of ops for test */
PARTIAL_TEST
/* Support partial list of ops for test */
}
op_state
;
// perform graph build through bridge and execute computation
class
NgraphEngine
{
public:
explicit
NgraphEngine
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorBase
>>&
ops
,
const
std
::
unordered_map
<
std
::
string
,
ngraph
::
element
::
Type
>&
var_type_map
,
const
std
::
unordered_set
<
std
::
string
>&
persist
,
const
std
::
unordered_set
<
std
::
string
>&
fetches
,
const
std
::
unordered_set
<
std
::
string
>&
post_op_inputs
,
op_state
ng_op_state
)
:
scope_
(
scope
),
place_
(
place
),
fused_ops_
(
ops
),
var_type_map_
(
var_type_map
),
persistables_
(
persist
),
fetches_
(
fetches
),
post_op_inputs_
(
post_op_inputs
),
ng_op_state_
(
ng_op_state
)
{
var_in_node_map_
=
std
::
make_shared
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
();
var_node_map_
=
std
::
make_shared
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
();
BuildNgIO
();
GetNgFunction
();
}
void
Run
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
;
private:
static
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Function
>>
func_cache_
;
const
Scope
&
scope_
;
const
platform
::
Place
&
place_
;
std
::
vector
<
std
::
shared_ptr
<
OperatorBase
>>
fused_ops_
;
std
::
unordered_map
<
std
::
string
,
ngraph
::
element
::
Type
>
var_type_map_
;
std
::
unordered_set
<
std
::
string
>
persistables_
;
std
::
unordered_set
<
std
::
string
>
fetches_
;
std
::
unordered_set
<
std
::
string
>
post_op_inputs_
;
op_state
ng_op_state_
;
// ngraph backend eg. CPU
static
std
::
shared_ptr
<
ngraph
::
runtime
::
Backend
>
backend_
;
// ngraph function to call and execute
std
::
shared_ptr
<
ngraph
::
Function
>
ngraph_function_
;
// var_name of inputs
std
::
vector
<
std
::
string
>
var_in_
;
// var_name of outputs from fetch in order
std
::
vector
<
std
::
string
>
var_out_
;
// map input vars to nodes
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
var_in_node_map_
;
// map each var name with a ngraph node
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
var_node_map_
;
// cache key to check if function is cached
std
::
shared_ptr
<
std
::
string
>
GetCacheKey
();
// get ngraph input and define ngraph input parameters
void
GetNgInputShape
(
std
::
shared_ptr
<
OperatorBase
>
op
);
// Call ngraph bridge to map ops
void
BuildNgNodes
();
// get the ngraph input and output var list
void
BuildNgIO
();
// build ngraph function call
void
BuildNgFunction
();
// Check cache for ngraph function or otherwise build the function
void
GetNgFunction
();
};
std
::
vector
<
std
::
vector
<
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>::
iterator
>>
NgraphOperator
::
NgraphOpIntervals
(
std
::
vector
<
std
::
unique_ptr
<
paddle
::
framework
::
OperatorBase
>>*
ops
)
{
std
::
vector
<
std
::
vector
<
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>::
iterator
>>
intervals
;
if
(
ops
->
empty
())
{
return
intervals
;
}
size_t
size
=
ops
->
size
();
size_t
left
=
0
;
while
(
left
<
size
&&
ops
->
at
(
left
)
->
Type
()
!=
kFeedOpType
)
{
++
left
;
}
if
(
left
==
size
)
{
return
intervals
;
}
while
(
left
<
size
&&
ops
->
at
(
left
)
->
Type
()
==
kFeedOpType
)
{
++
left
;
}
size_t
right
=
left
;
while
(
right
<
size
&&
ops
->
at
(
right
)
->
Type
()
!=
kFetchOpType
)
{
++
right
;
}
if
(
right
==
size
)
{
return
intervals
;
}
if
(
left
>=
right
)
return
intervals
;
// (left, right - 1) represents indices between feed and fetch
size_t
pivot
=
left
;
while
(
pivot
<
right
)
{
auto
op_type
=
ops
->
at
(
pivot
)
->
Type
();
if
(
paddle
::
framework
::
NgraphBridge
::
NG_NODE_MAP
.
find
(
op_type
)
==
paddle
::
framework
::
NgraphBridge
::
NG_NODE_MAP
.
end
())
{
++
pivot
;
}
else
{
size_t
start
=
pivot
,
end
=
start
;
while
(
pivot
<
right
&&
(
paddle
::
framework
::
NgraphBridge
::
NG_NODE_MAP
.
find
(
ops
->
at
(
pivot
)
->
Type
())
!=
paddle
::
framework
::
NgraphBridge
::
NG_NODE_MAP
.
end
()))
{
++
pivot
;
++
end
;
}
std
::
vector
<
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>::
iterator
>
interval
=
{
ops
->
begin
()
+
start
,
ops
->
begin
()
+
end
};
intervals
.
push_back
(
interval
);
}
}
// end while
return
intervals
;
}
NgraphOperator
::
NgraphOperator
(
const
ProgramDesc
&
prog
,
size_t
block_id
,
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>::
iterator
start
,
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>::
iterator
end
,
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
),
pdesc_
(
prog
),
block_
(
block_id
)
{
for
(
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>::
iterator
it
=
start
;
it
!=
end
;
++
it
)
{
fused_ops_
.
push_back
(
std
::
move
(
*
it
));
}
for
(
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>::
iterator
it
=
end
;
(
*
it
)
->
Type
()
!=
kFetchOpType
;
++
it
)
{
for
(
auto
&
var_name_item
:
(
*
it
)
->
Inputs
())
{
for
(
auto
&
var_name
:
var_name_item
.
second
)
{
post_op_inputs_
.
insert
(
var_name
);
}
}
}
if
((
*
(
start
-
1
))
->
Type
()
==
kFeedOpType
&&
(
*
end
)
->
Type
()
==
kFetchOpType
)
{
is_full_
=
true
;
}
Process
();
}
void
NgraphOperator
::
Process
()
{
auto
&
bdesc
=
pdesc_
.
Block
(
block_
);
for
(
auto
&
var
:
bdesc
.
AllVars
())
{
if
(
!
(
var
->
GetType
()
==
proto
::
VarType
::
SELECTED_ROWS
||
var
->
GetType
()
==
proto
::
VarType
::
LOD_TENSOR
||
var
->
GetType
()
==
proto
::
VarType
::
LOD_TENSOR_ARRAY
))
{
continue
;
}
auto
var_name
=
var
->
Name
();
if
(
var
->
Name
()
==
framework
::
kEmptyVarName
)
{
continue
;
}
if
(
var_name
!=
"fetch"
&&
var_name
!=
"feed"
)
{
auto
pd_type
=
var
->
GetDataType
();
if
(
pd2ng_type_map
.
find
(
pd_type
)
==
pd2ng_type_map
.
end
())
{
PADDLE_THROW
(
"Data type of var %s not found in pd2ng_type_map"
,
var_name
);
}
var_type_map_
[
var_name
]
=
pd2ng_type_map
[
pd_type
];
}
if
(
var
->
Persistable
())
{
persistables_
.
insert
(
var
->
Name
());
}
}
for
(
auto
*
op
:
bdesc
.
AllOps
())
{
if
(
op
->
Type
()
==
kFetchOpType
)
{
std
::
string
fetch_target_name
=
op
->
Input
(
"X"
)[
0
];
fetches_
.
insert
(
fetch_target_name
);
}
}
}
void
NgraphOperator
::
RunImpl
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
{
op_state
ng_op_state
=
PARTIAL_TEST
;
auto
&
bdesc
=
pdesc_
.
Block
(
block_
);
for
(
auto
*
op
:
bdesc
.
AllOps
())
{
if
(
op
->
Type
().
find
(
"_grad"
)
!=
std
::
string
::
npos
)
{
ng_op_state
=
PARTIAL_TRAIN
;
break
;
}
}
if
(
is_full_
)
{
ng_op_state
=
ng_op_state
==
PARTIAL_TEST
?
FULL_TEST
:
FULL_TRAIN
;
}
NgraphEngine
ngraph_engine
(
scope
,
place
,
fused_ops_
,
var_type_map_
,
persistables_
,
fetches_
,
post_op_inputs_
,
ng_op_state
);
ngraph_engine
.
Run
(
scope
,
place
);
}
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Function
>>
NgraphEngine
::
func_cache_
=
{};
std
::
shared_ptr
<
ngraph
::
runtime
::
Backend
>
NgraphEngine
::
backend_
=
ngraph
::
runtime
::
Backend
::
create
(
"CPU"
);
void
NgraphEngine
::
GetNgInputShape
(
std
::
shared_ptr
<
OperatorBase
>
op
)
{
RuntimeContext
ctx
(
op
->
Inputs
(),
op
->
Outputs
(),
scope_
);
op
->
RuntimeInferShape
(
scope_
,
place_
,
ctx
);
for
(
auto
&
var_name_item
:
op
->
Inputs
())
{
for
(
auto
&
var_name
:
var_name_item
.
second
)
{
auto
*
var
=
scope_
.
FindVar
(
var_name
);
if
(
var
&&
var
->
IsType
<
LoDTensor
>
())
{
auto
*
tensor_pd
=
GetLoDTensorOrSelectedRowsValueFromVar
(
*
var
);
auto
sp
=
Ddim2Shape
(
tensor_pd
->
dims
());
if
(
std
::
find
(
var_in_
.
begin
(),
var_in_
.
end
(),
var_name
)
!=
var_in_
.
end
())
{
if
(
var_node_map_
->
find
(
var_name
)
==
var_node_map_
->
end
())
{
auto
ng_type
=
var_type_map_
.
at
(
var_name
);
auto
prm
=
std
::
make_shared
<
ngraph
::
op
::
Parameter
>
(
ng_type
,
sp
,
true
);
(
*
var_node_map_
)[
var_name
]
=
prm
;
(
*
var_in_node_map_
)[
var_name
]
=
prm
;
}
}
}
}
}
}
void
NgraphEngine
::
BuildNgNodes
()
{
for
(
auto
&
var_name
:
var_out_
)
{
if
(
var_node_map_
->
find
(
var_name
)
==
var_node_map_
->
end
())
{
auto
*
var
=
scope_
.
FindVar
(
var_name
);
if
(
var
&&
var
->
IsType
<
LoDTensor
>
())
{
auto
*
tensor_pd
=
GetLoDTensorOrSelectedRowsValueFromVar
(
*
var
);
auto
&
ddim
=
tensor_pd
->
dims
();
auto
ng_shape
=
Ddim2Shape
(
ddim
);
auto
ng_type
=
var_type_map_
.
at
(
var_name
);
auto
prm
=
std
::
make_shared
<
ngraph
::
op
::
Parameter
>
(
ng_type
,
ng_shape
,
true
);
(
*
var_node_map_
)[
var_name
]
=
prm
;
}
}
}
paddle
::
framework
::
NgraphBridge
ngb
(
var_node_map_
);
for
(
auto
&
op
:
fused_ops_
)
{
ngb
.
BuildNgNode
(
op
);
}
}
void
NgraphEngine
::
BuildNgIO
()
{
std
::
unordered_set
<
std
::
string
>
inputs
;
std
::
unordered_set
<
std
::
string
>
outputs
;
for
(
auto
&
op
:
fused_ops_
)
{
for
(
auto
&
var_name_item
:
op
->
Inputs
())
{
for
(
auto
&
var_name
:
var_name_item
.
second
)
{
inputs
.
insert
(
var_name
);
const
bool
is_output
=
outputs
.
find
(
var_name
)
!=
outputs
.
end
();
if
(
!
is_output
&&
std
::
find
(
var_in_
.
begin
(),
var_in_
.
end
(),
var_name
)
==
var_in_
.
end
())
{
// fill var_in here to keep lhs and rhs order
var_in_
.
push_back
(
var_name
);
}
}
}
if
(
op
->
Type
()
!=
"fill_constant"
)
{
GetNgInputShape
(
op
);
}
for
(
auto
&
var_name_item
:
op
->
Outputs
())
{
PADDLE_ENFORCE_LE
(
var_name_item
.
second
.
size
(),
1
,
"op %s has more than 1 output - Not handling yet"
,
op
->
Type
());
for
(
auto
&
var_name
:
var_name_item
.
second
)
{
outputs
.
insert
(
var_name
);
}
}
}
// var_out.clear();
for
(
auto
&
op
:
fused_ops_
)
{
for
(
auto
&
var_name_item
:
op
->
Outputs
())
{
PADDLE_ENFORCE_LE
(
var_name_item
.
second
.
size
(),
1
,
"op %s has more than 1 output - Not handling yet"
,
op
->
Type
());
for
(
auto
&
var_name
:
var_name_item
.
second
)
{
switch
(
ng_op_state_
)
{
case
PARTIAL_TEST
:
if
(
post_op_inputs_
.
find
(
var_name
)
!=
post_op_inputs_
.
end
()
||
fetches_
.
find
(
var_name
)
!=
fetches_
.
end
())
{
var_out_
.
push_back
(
var_name
);
}
break
;
case
FULL_TEST
:
if
(
fetches_
.
find
(
var_name
)
!=
fetches_
.
end
())
{
var_out_
.
push_back
(
var_name
);
}
break
;
case
PARTIAL_TRAIN
:
if
(
fetches_
.
find
(
var_name
)
!=
fetches_
.
end
()
||
post_op_inputs_
.
find
(
var_name
)
!=
post_op_inputs_
.
end
()
||
persistables_
.
find
(
var_name
)
!=
persistables_
.
end
())
{
var_out_
.
push_back
(
var_name
);
}
break
;
case
FULL_TRAIN
:
if
(
fetches_
.
find
(
var_name
)
!=
fetches_
.
end
()
||
persistables_
.
find
(
var_name
)
!=
persistables_
.
end
())
{
var_out_
.
push_back
(
var_name
);
}
break
;
default:
var_out_
.
push_back
(
var_name
);
}
}
}
}
}
void
NgraphEngine
::
BuildNgFunction
()
{
BuildNgNodes
();
ngraph_function_
=
nullptr
;
ngraph
::
NodeVector
func_outputs
;
ngraph
::
ParameterVector
func_inputs
;
for
(
auto
&
vo
:
var_out_
)
{
func_outputs
.
push_back
(
var_node_map_
->
at
(
vo
));
}
for
(
auto
&
vi
:
var_in_
)
{
std
::
shared_ptr
<
ngraph
::
op
::
Parameter
>
prm
=
std
::
dynamic_pointer_cast
<
ngraph
::
op
::
Parameter
>
(
var_in_node_map_
->
at
(
vi
));
func_inputs
.
push_back
(
prm
);
}
ngraph_function_
=
std
::
make_shared
<
ngraph
::
Function
>
(
func_outputs
,
func_inputs
);
}
std
::
shared_ptr
<
std
::
string
>
NgraphEngine
::
GetCacheKey
()
{
auto
cache_key
=
std
::
make_shared
<
std
::
string
>
(
""
);
*
cache_key
+=
std
::
to_string
(
fused_ops_
.
size
());
for
(
auto
&
op
:
fused_ops_
)
{
*
cache_key
+=
op
->
Type
();
}
for
(
auto
&
var_name
:
var_in_
)
{
auto
shape
=
var_node_map_
->
at
(
var_name
)
->
get_shape
();
*
cache_key
+=
var_name
;
*
cache_key
+=
var_type_map_
.
at
(
var_name
).
c_type_string
();
for
(
size_t
i
=
0
;
i
<
shape
.
size
();
++
i
)
{
*
cache_key
+=
std
::
to_string
(
shape
.
at
(
i
));
}
}
for
(
auto
&
var_name
:
var_out_
)
{
auto
*
var
=
scope_
.
FindVar
(
var_name
);
if
(
var
&&
var
->
IsType
<
LoDTensor
>
())
{
auto
*
tensor_pd
=
GetLoDTensorOrSelectedRowsValueFromVar
(
*
var
);
auto
&
ddim
=
tensor_pd
->
dims
();
for
(
int
i
=
0
;
i
<
ddim
.
size
();
++
i
)
{
*
cache_key
+=
std
::
to_string
(
ddim
[
i
]);
}
}
}
return
cache_key
;
}
void
NgraphEngine
::
GetNgFunction
()
{
bool
cache_on
=
true
;
if
(
cache_on
)
{
std
::
string
cache_key_val
=
*
GetCacheKey
();
if
(
func_cache_
.
find
(
cache_key_val
)
!=
func_cache_
.
end
())
{
ngraph_function_
=
func_cache_
.
at
(
cache_key_val
);
}
else
{
BuildNgFunction
();
func_cache_
[
cache_key_val
]
=
ngraph_function_
;
}
}
else
{
BuildNgFunction
();
}
}
void
NgraphEngine
::
Run
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
{
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
Tensor
>>
t_in
;
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
Tensor
>>
t_out
;
for
(
size_t
i
=
0
;
i
<
var_in_
.
size
();
++
i
)
{
auto
vi
=
var_in_
.
at
(
i
);
auto
sp
=
var_node_map_
->
at
(
vi
)
->
get_shape
();
std
::
shared_ptr
<
ngraph
::
runtime
::
Tensor
>
ti
;
auto
*
var
=
scope
.
FindVar
(
vi
);
if
(
var
&&
var
->
IsType
<
LoDTensor
>
())
{
auto
*
tensor_pd
=
GetLoDTensorOrSelectedRowsValueFromVar
(
*
var
);
PADDLE_ENFORCE
(
sp
==
Ddim2Shape
(
tensor_pd
->
dims
()),
"Ensure ngraph tensor layout align with paddle tensor"
);
if
(
tensor_pd
->
type
()
==
proto
::
VarType
::
FP32
)
{
const
float
*
arr
=
tensor_pd
->
data
<
float
>
();
ti
=
backend_
->
create_tensor
(
ngraph
::
element
::
f32
,
sp
,
const_cast
<
float
*>
(
arr
));
}
else
if
(
tensor_pd
->
type
()
==
proto
::
VarType
::
INT32
)
{
const
int
*
arr
=
tensor_pd
->
data
<
int
>
();
ti
=
backend_
->
create_tensor
(
ngraph
::
element
::
i32
,
sp
,
const_cast
<
int
*>
(
arr
));
}
else
if
(
tensor_pd
->
type
()
==
proto
::
VarType
::
INT64
)
{
const
int64_t
*
arr
=
tensor_pd
->
data
<
int64_t
>
();
ti
=
backend_
->
create_tensor
(
ngraph
::
element
::
i64
,
sp
,
const_cast
<
int64_t
*>
(
arr
));
}
else
if
(
tensor_pd
->
type
()
==
proto
::
VarType
::
FP64
)
{
const
double
*
arr
=
tensor_pd
->
data
<
double
>
();
ti
=
backend_
->
create_tensor
(
ngraph
::
element
::
f64
,
sp
,
const_cast
<
double
*>
(
arr
));
}
else
if
(
tensor_pd
->
type
()
==
proto
::
VarType
::
BOOL
)
{
const
bool
*
arr
=
tensor_pd
->
data
<
bool
>
();
ti
=
backend_
->
create_tensor
(
ngraph
::
element
::
boolean
,
sp
,
const_cast
<
bool
*>
(
arr
));
}
else
{
PADDLE_THROW
(
"Data type not handling for var %s"
,
vi
);
}
}
else
{
PADDLE_THROW
(
"Cannot find var or tensor with var name %s"
,
vi
);
}
bool
is_test
=
(
ng_op_state_
==
PARTIAL_TEST
||
ng_op_state_
==
FULL_TEST
)
?
true
:
false
;
bool
is_persistable
=
(
persistables_
.
find
(
vi
)
!=
persistables_
.
end
())
?
true
:
false
;
if
(
is_test
&&
is_persistable
)
{
ti
->
set_stale
(
false
);
}
t_in
.
push_back
(
ti
);
}
for
(
size_t
i
=
0
;
i
<
var_out_
.
size
();
++
i
)
{
auto
var_name
=
var_out_
[
i
];
auto
*
var
=
scope
.
FindVar
(
var_name
);
std
::
shared_ptr
<
ngraph
::
runtime
::
Tensor
>
to
;
if
(
var
&&
var
->
IsType
<
LoDTensor
>
())
{
auto
*
tensor_pd
=
GetMutableLoDTensorOrSelectedRowsValueFromVar
(
var
);
auto
dd
=
tensor_pd
->
dims
();
ngraph
::
Shape
sp
=
Ddim2Shape
(
dd
);
auto
ng_type
=
var_type_map_
.
at
(
var_name
);
if
(
ng_type
==
ngraph
::
element
::
f32
)
{
auto
pd_arr
=
tensor_pd
->
mutable_data
<
float
>
(
place
);
to
=
backend_
->
create_tensor
(
ngraph
::
element
::
f32
,
sp
,
pd_arr
);
}
else
if
(
ng_type
==
ngraph
::
element
::
i64
)
{
auto
pd_arr
=
tensor_pd
->
mutable_data
<
int64_t
>
(
place
);
to
=
backend_
->
create_tensor
(
ngraph
::
element
::
i64
,
sp
,
pd_arr
);
}
else
if
(
ng_type
==
ngraph
::
element
::
f64
)
{
auto
pd_arr
=
tensor_pd
->
mutable_data
<
double
>
(
place
);
to
=
backend_
->
create_tensor
(
ngraph
::
element
::
f64
,
sp
,
pd_arr
);
}
else
if
(
ng_type
==
ngraph
::
element
::
boolean
)
{
auto
pd_arr
=
tensor_pd
->
mutable_data
<
bool
>
(
place
);
to
=
backend_
->
create_tensor
(
ngraph
::
element
::
boolean
,
sp
,
pd_arr
);
}
else
{
PADDLE_THROW
(
"Data type not handled in for var %s"
,
var_name
);
}
t_out
.
push_back
(
to
);
}
else
{
PADDLE_THROW
(
"Cannot find var or tensor with var name %s"
,
var_name
);
}
}
backend_
->
call
(
backend_
->
compile
(
ngraph_function_
),
t_out
,
t_in
);
}
// NgraphEngine::RunImpl
}
// namespace framework
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录