Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
da0e795f
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
da0e795f
编写于
3月 24, 2017
作者:
T
Travis CI
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Deploy to GitHub Pages:
5961b52b
上级
76329dc8
变更
6
展开全部
隐藏空白更改
内联
并排
Showing
6 changed file
with
102 addition
and
2 deletion
+102
-2
develop/doc/_sources/api/v2/config/layer.rst.txt
develop/doc/_sources/api/v2/config/layer.rst.txt
+6
-0
develop/doc/api/v2/config/layer.html
develop/doc/api/v2/config/layer.html
+44
-0
develop/doc/searchindex.js
develop/doc/searchindex.js
+1
-1
develop/doc_cn/_sources/api/v2/config/layer.rst.txt
develop/doc_cn/_sources/api/v2/config/layer.rst.txt
+6
-0
develop/doc_cn/api/v2/config/layer.html
develop/doc_cn/api/v2/config/layer.html
+44
-0
develop/doc_cn/searchindex.js
develop/doc_cn/searchindex.js
+1
-1
未找到文件。
develop/doc/_sources/api/v2/config/layer.rst.txt
浏览文件 @
da0e795f
...
...
@@ -109,6 +109,12 @@ sum_to_one_norm
:members: sum_to_one_norm
:noindex:
cross_channel_norm
------------------
.. automodule:: paddle.v2.layer
:members: cross_channel_norm
:noindex:
Recurrent Layers
================
...
...
develop/doc/api/v2/config/layer.html
浏览文件 @
da0e795f
...
...
@@ -203,6 +203,7 @@
<li><a
class=
"reference internal"
href=
"#img-cmrnorm"
>
img_cmrnorm
</a></li>
<li><a
class=
"reference internal"
href=
"#batch-norm"
>
batch_norm
</a></li>
<li><a
class=
"reference internal"
href=
"#sum-to-one-norm"
>
sum_to_one_norm
</a></li>
<li><a
class=
"reference internal"
href=
"#cross-channel-norm"
>
cross_channel_norm
</a></li>
</ul>
</li>
<li><a
class=
"reference internal"
href=
"#recurrent-layers"
>
Recurrent Layers
</a><ul>
...
...
@@ -1245,6 +1246,49 @@ and <span class="math">\(out\)</span> is a (batchSize x dataDim) output vector.<
</table>
</dd></dl>
</div>
<div
class=
"section"
id=
"cross-channel-norm"
>
<h3>
cross_channel_norm
<a
class=
"headerlink"
href=
"#cross-channel-norm"
title=
"Permalink to this headline"
>
¶
</a></h3>
<p><cite>
paddle.v2.layer
</cite>
is a part of model config packages in paddle.v2. In API v2,
we want to make Paddle a plain Python package. The model config package defined
the way how to configure a neural network topology in Paddle Python code.
</p>
<p>
The primary usage shows below.
</p>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"kn"
>
import
</span>
<span
class=
"nn"
>
paddle.v2
</span>
<span
class=
"kn"
>
as
</span>
<span
class=
"nn"
>
paddle
</span>
<span
class=
"n"
>
img
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
paddle
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
layer
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
data
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s1"
>
'
img
'
</span><span
class=
"p"
>
,
</span>
<span
class=
"nb"
>
type
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
paddle
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
data_type
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
dense_vector
</span><span
class=
"p"
>
(
</span><span
class=
"mi"
>
784
</span><span
class=
"p"
>
))
</span>
<span
class=
"n"
>
hidden
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
paddle
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
layer
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
fc
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
img
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
200
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
prediction
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
paddle
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
layer
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
fc
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
hidden
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
10
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
act
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
paddle
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
activation
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
Softmax
</span><span
class=
"p"
>
())
</span>
<span
class=
"c1"
>
# use prediction instance where needed.
</span>
<span
class=
"n"
>
parameters
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
paddle
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
parameters
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
create
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
cost
</span><span
class=
"p"
>
)
</span>
</pre></div>
</div>
<dl
class=
"class"
>
<dt>
<em
class=
"property"
>
class
</em><code
class=
"descclassname"
>
paddle.v2.layer.
</code><code
class=
"descname"
>
cross_channel_norm
</code><span
class=
"sig-paren"
>
(
</span><em>
*args
</em>
,
<em>
**kwargs
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
Normalize a layer
’
s output. This layer is necessary for ssd.
This layer applys normalize across the channels of each sample to
a conv layer
’
s output and scale the output by a group of trainable
factors which dimensions equal to the channel
’
s number.
</p>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
<tbody
valign=
"top"
>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
Parameters:
</th><td
class=
"field-body"
><ul
class=
"first simple"
>
<li><strong>
name
</strong>
(
<em>
basestring
</em>
)
–
The Layer Name.
</li>
<li><strong>
input
</strong>
(
<em>
paddle.v2.config_base.Layer
</em>
)
–
The input layer.
</li>
<li><strong>
param_attr
</strong>
(
<em>
paddle.v2.attr.ParameterAttribute
</em>
)
–
The Parameter Attribute|list.
</li>
</ul>
</td>
</tr>
<tr
class=
"field-even field"
><th
class=
"field-name"
>
Returns:
</th><td
class=
"field-body"
><p
class=
"first last"
>
paddle.v2.config_base.Layer
</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
</div>
<div
class=
"section"
id=
"recurrent-layers"
>
...
...
develop/doc/searchindex.js
浏览文件 @
da0e795f
此差异已折叠。
点击以展开。
develop/doc_cn/_sources/api/v2/config/layer.rst.txt
浏览文件 @
da0e795f
...
...
@@ -109,6 +109,12 @@ sum_to_one_norm
:members: sum_to_one_norm
:noindex:
cross_channel_norm
------------------
.. automodule:: paddle.v2.layer
:members: cross_channel_norm
:noindex:
Recurrent Layers
================
...
...
develop/doc_cn/api/v2/config/layer.html
浏览文件 @
da0e795f
...
...
@@ -210,6 +210,7 @@
<li><a
class=
"reference internal"
href=
"#img-cmrnorm"
>
img_cmrnorm
</a></li>
<li><a
class=
"reference internal"
href=
"#batch-norm"
>
batch_norm
</a></li>
<li><a
class=
"reference internal"
href=
"#sum-to-one-norm"
>
sum_to_one_norm
</a></li>
<li><a
class=
"reference internal"
href=
"#cross-channel-norm"
>
cross_channel_norm
</a></li>
</ul>
</li>
<li><a
class=
"reference internal"
href=
"#recurrent-layers"
>
Recurrent Layers
</a><ul>
...
...
@@ -1252,6 +1253,49 @@ and <span class="math">\(out\)</span> is a (batchSize x dataDim) output vector.<
</table>
</dd></dl>
</div>
<div
class=
"section"
id=
"cross-channel-norm"
>
<h3>
cross_channel_norm
<a
class=
"headerlink"
href=
"#cross-channel-norm"
title=
"永久链接至标题"
>
¶
</a></h3>
<p><cite>
paddle.v2.layer
</cite>
is a part of model config packages in paddle.v2. In API v2,
we want to make Paddle a plain Python package. The model config package defined
the way how to configure a neural network topology in Paddle Python code.
</p>
<p>
The primary usage shows below.
</p>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"kn"
>
import
</span>
<span
class=
"nn"
>
paddle.v2
</span>
<span
class=
"kn"
>
as
</span>
<span
class=
"nn"
>
paddle
</span>
<span
class=
"n"
>
img
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
paddle
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
layer
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
data
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s1"
>
'
img
'
</span><span
class=
"p"
>
,
</span>
<span
class=
"nb"
>
type
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
paddle
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
data_type
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
dense_vector
</span><span
class=
"p"
>
(
</span><span
class=
"mi"
>
784
</span><span
class=
"p"
>
))
</span>
<span
class=
"n"
>
hidden
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
paddle
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
layer
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
fc
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
img
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
200
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
prediction
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
paddle
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
layer
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
fc
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
hidden
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
10
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
act
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
paddle
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
activation
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
Softmax
</span><span
class=
"p"
>
())
</span>
<span
class=
"c1"
>
# use prediction instance where needed.
</span>
<span
class=
"n"
>
parameters
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
paddle
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
parameters
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
create
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
cost
</span><span
class=
"p"
>
)
</span>
</pre></div>
</div>
<dl
class=
"class"
>
<dt>
<em
class=
"property"
>
class
</em><code
class=
"descclassname"
>
paddle.v2.layer.
</code><code
class=
"descname"
>
cross_channel_norm
</code><span
class=
"sig-paren"
>
(
</span><em>
*args
</em>
,
<em>
**kwargs
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
Normalize a layer
’
s output. This layer is necessary for ssd.
This layer applys normalize across the channels of each sample to
a conv layer
’
s output and scale the output by a group of trainable
factors which dimensions equal to the channel
’
s number.
</p>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
<tbody
valign=
"top"
>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
参数:
</th><td
class=
"field-body"
><ul
class=
"first simple"
>
<li><strong>
name
</strong>
(
<em>
basestring
</em>
)
–
The Layer Name.
</li>
<li><strong>
input
</strong>
(
<em>
paddle.v2.config_base.Layer
</em>
)
–
The input layer.
</li>
<li><strong>
param_attr
</strong>
(
<em>
paddle.v2.attr.ParameterAttribute
</em>
)
–
The Parameter Attribute|list.
</li>
</ul>
</td>
</tr>
<tr
class=
"field-even field"
><th
class=
"field-name"
>
返回:
</th><td
class=
"field-body"
><p
class=
"first last"
>
paddle.v2.config_base.Layer
</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
</div>
<div
class=
"section"
id=
"recurrent-layers"
>
...
...
develop/doc_cn/searchindex.js
浏览文件 @
da0e795f
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录