Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
d9a52223
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d9a52223
编写于
4月 10, 2018
作者:
J
jshower
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
code style
上级
9fe938cb
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
34 addition
and
33 deletion
+34
-33
python/paddle/fluid/tests/book/test_label_semantic_roles.py
python/paddle/fluid/tests/book/test_label_semantic_roles.py
+34
-33
未找到文件。
python/paddle/fluid/tests/book/test_label_semantic_roles.py
浏览文件 @
d9a52223
...
@@ -70,14 +70,15 @@ def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
...
@@ -70,14 +70,15 @@ def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
fluid
.
layers
.
embedding
(
fluid
.
layers
.
embedding
(
size
=
[
word_dict_len
,
word_dim
],
size
=
[
word_dict_len
,
word_dim
],
input
=
x
,
input
=
x
,
param_attr
=
fluid
.
ParamAttr
(
param_attr
=
fluid
.
ParamAttr
(
name
=
embedding_name
,
trainable
=
False
))
name
=
embedding_name
,
trainable
=
False
))
for
x
in
word_input
for
x
in
word_input
]
]
emb_layers
.
append
(
predicate_embedding
)
emb_layers
.
append
(
predicate_embedding
)
emb_layers
.
append
(
mark_embedding
)
emb_layers
.
append
(
mark_embedding
)
hidden_0_layers
=
[
hidden_0_layers
=
[
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hidden_dim
,
act
=
'tanh'
)
for
emb
in
emb_layers
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hidden_dim
,
act
=
'tanh'
)
for
emb
in
emb_layers
]
]
hidden_0
=
fluid
.
layers
.
sums
(
input
=
hidden_0_layers
)
hidden_0
=
fluid
.
layers
.
sums
(
input
=
hidden_0_layers
)
...
@@ -163,8 +164,7 @@ def train(use_cuda, save_dirname=None, is_local=True):
...
@@ -163,8 +164,7 @@ def train(use_cuda, save_dirname=None, is_local=True):
crf_cost
=
fluid
.
layers
.
linear_chain_crf
(
crf_cost
=
fluid
.
layers
.
linear_chain_crf
(
input
=
feature_out
,
input
=
feature_out
,
label
=
target
,
label
=
target
,
param_attr
=
fluid
.
ParamAttr
(
param_attr
=
fluid
.
ParamAttr
(
name
=
'crfw'
,
learning_rate
=
mix_hidden_lr
))
name
=
'crfw'
,
learning_rate
=
mix_hidden_lr
))
avg_cost
=
fluid
.
layers
.
mean
(
crf_cost
)
avg_cost
=
fluid
.
layers
.
mean
(
crf_cost
)
# TODO(qiao)
# TODO(qiao)
...
@@ -189,8 +189,7 @@ def train(use_cuda, save_dirname=None, is_local=True):
...
@@ -189,8 +189,7 @@ def train(use_cuda, save_dirname=None, is_local=True):
num_chunk_types
=
int
(
math
.
ceil
((
label_dict_len
-
1
)
/
2.0
)))
num_chunk_types
=
int
(
math
.
ceil
((
label_dict_len
-
1
)
/
2.0
)))
train_data
=
paddle
.
batch
(
train_data
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
conll05
.
test
(),
buf_size
=
8192
),
paddle
.
dataset
.
conll05
.
test
(),
buf_size
=
8192
),
batch_size
=
BATCH_SIZE
)
batch_size
=
BATCH_SIZE
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
...
@@ -223,24 +222,25 @@ def train(use_cuda, save_dirname=None, is_local=True):
...
@@ -223,24 +222,25 @@ def train(use_cuda, save_dirname=None, is_local=True):
exe
)
exe
)
if
batch_id
%
10
==
0
:
if
batch_id
%
10
==
0
:
print
(
"avg_cost:"
+
str
(
cost
)
+
" precision:"
+
str
(
print
(
precision
)
+
" recall:"
+
str
(
recall
)
+
" f1_score
:"
+
"avg_cost:"
+
str
(
cost
)
+
" precision
:"
+
str
(
f1_score
)
+
" pass_precision:"
+
str
(
str
(
precision
)
+
" recall:"
+
str
(
recall
)
+
pass_precision
)
+
" pass_recall
:"
+
str
(
" f1_score:"
+
str
(
f1_score
)
+
" pass_precision
:"
+
str
(
pass_recall
)
+
" pass_f1_score:"
+
str
(
pass_precision
)
+
" pass_recall:"
+
str
(
pass_recall
)
pass_f1_score
))
+
" pass_f1_score:"
+
str
(
pass_f1_score
))
if
batch_id
!=
0
:
if
batch_id
!=
0
:
print
(
"second per batch: "
+
str
(
(
time
.
time
(
print
(
"second per batch: "
+
str
(
)
-
start_time
)
/
batch_id
))
(
time
.
time
(
)
-
start_time
)
/
batch_id
))
# Set the threshold low to speed up the CI test
# Set the threshold low to speed up the CI test
if
float
(
pass_precision
)
>
0.05
:
if
float
(
pass_precision
)
>
0.05
:
if
save_dirname
is
not
None
:
if
save_dirname
is
not
None
:
# TODO(liuyiqun): Change the target to crf_decode
# TODO(liuyiqun): Change the target to crf_decode
fluid
.
io
.
save_inference_model
(
save_dirname
,
[
fluid
.
io
.
save_inference_model
(
'word_data'
,
'verb_data'
,
'ctx_n2_data'
,
save_dirname
,
[
'ctx_n1_data'
,
'ctx_0_data'
,
'ctx_p1_data'
,
'word_data'
,
'verb_data'
,
'ctx_n2_data'
,
'ctx_p2_data'
,
'mark_data'
'ctx_n1_data'
,
'ctx_0_data'
,
'ctx_p1_data'
,
],
[
feature_out
],
exe
)
'ctx_p2_data'
,
'mark_data'
],
[
feature_out
],
exe
)
return
return
batch_id
=
batch_id
+
1
batch_id
=
batch_id
+
1
...
@@ -320,19 +320,20 @@ def infer(use_cuda, save_dirname=None):
...
@@ -320,19 +320,20 @@ def infer(use_cuda, save_dirname=None):
assert
feed_target_names
[
6
]
==
'ctx_p2_data'
assert
feed_target_names
[
6
]
==
'ctx_p2_data'
assert
feed_target_names
[
7
]
==
'mark_data'
assert
feed_target_names
[
7
]
==
'mark_data'
results
=
exe
.
run
(
inference_program
,
results
=
exe
.
run
(
feed
=
{
inference_program
,
feed_target_names
[
0
]:
word
,
feed
=
{
feed_target_names
[
1
]:
pred
,
feed_target_names
[
0
]:
word
,
feed_target_names
[
2
]:
ctx_n2
,
feed_target_names
[
1
]:
pred
,
feed_target_names
[
3
]:
ctx_n1
,
feed_target_names
[
2
]:
ctx_n2
,
feed_target_names
[
4
]:
ctx_0
,
feed_target_names
[
3
]:
ctx_n1
,
feed_target_names
[
5
]:
ctx_p1
,
feed_target_names
[
4
]:
ctx_0
,
feed_target_names
[
6
]:
ctx_p2
,
feed_target_names
[
5
]:
ctx_p1
,
feed_target_names
[
7
]:
mark
feed_target_names
[
6
]:
ctx_p2
,
},
feed_target_names
[
7
]:
mark
fetch_list
=
fetch_targets
,
},
return_numpy
=
False
)
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
print
(
results
[
0
].
lod
())
print
(
results
[
0
].
lod
())
np_data
=
np
.
array
(
results
[
0
])
np_data
=
np
.
array
(
results
[
0
])
print
(
"Inference Shape: "
,
np_data
.
shape
)
print
(
"Inference Shape: "
,
np_data
.
shape
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录