Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
d9400243
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d9400243
编写于
8月 15, 2017
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into public_to_protected
上级
252d4165
973618b6
变更
28
隐藏空白更改
内联
并排
Showing
28 changed file
with
332 addition
and
245 deletion
+332
-245
Dockerfile
Dockerfile
+8
-8
paddle/framework/backward_test.cc
paddle/framework/backward_test.cc
+10
-20
paddle/framework/grad_op_builder.cc
paddle/framework/grad_op_builder.cc
+21
-19
paddle/framework/grad_op_builder_test.cc
paddle/framework/grad_op_builder_test.cc
+2
-12
paddle/framework/op_registry.h
paddle/framework/op_registry.h
+77
-116
paddle/framework/op_registry_test.cc
paddle/framework/op_registry_test.cc
+4
-5
paddle/framework/operator.cc
paddle/framework/operator.cc
+7
-11
paddle/framework/operator.h
paddle/framework/operator.h
+9
-3
paddle/framework/operator_test.cc
paddle/framework/operator_test.cc
+9
-6
paddle/framework/pybind.cc
paddle/framework/pybind.cc
+10
-7
paddle/operators/CMakeLists.txt
paddle/operators/CMakeLists.txt
+2
-0
paddle/operators/add_op.cc
paddle/operators/add_op.cc
+1
-2
paddle/operators/cross_entropy_op.cc
paddle/operators/cross_entropy_op.cc
+2
-3
paddle/operators/fill_zeros_like_op.cc
paddle/operators/fill_zeros_like_op.cc
+2
-1
paddle/operators/gather.h
paddle/operators/gather.h
+2
-2
paddle/operators/gather_test.cc
paddle/operators/gather_test.cc
+3
-3
paddle/operators/gaussian_random_op.cc
paddle/operators/gaussian_random_op.cc
+2
-1
paddle/operators/mean_op.cc
paddle/operators/mean_op.cc
+1
-2
paddle/operators/mul_op.cc
paddle/operators/mul_op.cc
+1
-3
paddle/operators/net_op_test.cc
paddle/operators/net_op_test.cc
+3
-10
paddle/operators/recurrent_op.cc
paddle/operators/recurrent_op.cc
+3
-2
paddle/operators/rowwise_add_op.cc
paddle/operators/rowwise_add_op.cc
+2
-1
paddle/operators/scatter.h
paddle/operators/scatter.h
+92
-0
paddle/operators/scatter_test.cc
paddle/operators/scatter_test.cc
+52
-0
paddle/operators/sgd_op.cc
paddle/operators/sgd_op.cc
+1
-1
paddle/operators/sigmoid_op.cc
paddle/operators/sigmoid_op.cc
+2
-3
paddle/operators/softmax_op.cc
paddle/operators/softmax_op.cc
+2
-2
paddle/operators/uniform_random_op.cc
paddle/operators/uniform_random_op.cc
+2
-2
未找到文件。
Dockerfile
浏览文件 @
d9400243
...
...
@@ -34,9 +34,6 @@ RUN apt-get update && \
net-tools
&&
\
apt-get clean
-y
# paddle is using numpy.flip, which is introduced since 1.12.0
RUN
pip
--no-cache-dir
install
'numpy>=1.12.0'
# Install Go and glide
RUN
wget
-qO-
https://storage.googleapis.com/golang/go1.8.1.linux-amd64.tar.gz |
\
tar
-xz
-C
/usr/local
&&
\
...
...
@@ -58,13 +55,16 @@ RUN localedef -i en_US -f UTF-8 en_US.UTF-8
# FIXME: due to temporary ipykernel dependency issue, specify ipykernel jupyter
# version util jupyter fixes this issue.
RUN
pip
install
--upgrade
pip
&&
\
pip
install
-U
'protobuf==3.1.0'
&&
\
pip
install
-U
wheel pillow BeautifulSoup
&&
\
pip
install
-U
wheel
&&
\
pip
install
-U
docopt PyYAML sphinx
&&
\
pip
install
-U
sphinx-rtd-theme
==
0.1.9 recommonmark
&&
\
pip
install
pre-commit
'requests==2.9.2'
'ipython==5.3.0'
&&
\
pip
install
-U
sphinx-rtd-theme
==
0.1.9 recommonmark
RUN
pip
install
pre-commit
'ipython==5.3.0'
&&
\
pip
install
'ipykernel==4.6.0'
'jupyter==1.0.0'
&&
\
pip
install
opencv-python rarfile
'scipy>=0.19.0'
'nltk>=3.2.2'
pip
install
opencv-python
COPY
./python/requirements.txt /root/
RUN
pip
install
-r
/root/requirements.txt
# To fix https://github.com/PaddlePaddle/Paddle/issues/1954, we use
# the solution in https://urllib3.readthedocs.io/en/latest/user-guide.html#ssl-py2
...
...
paddle/framework/backward_test.cc
浏览文件 @
d9400243
...
...
@@ -28,13 +28,6 @@ using OpAttrChecker = framework::OpAttrChecker;
using
Scope
=
framework
::
Scope
;
using
DeviceContext
=
platform
::
DeviceContext
;
class
EmptyOp
:
public
OperatorBase
{
public:
using
OperatorBase
::
OperatorBase
;
void
InferShape
(
const
Scope
&
scope
)
const
override
{}
void
Run
(
const
Scope
&
scope
,
const
DeviceContext
&
dev_ctx
)
const
override
{}
};
class
RowWiseAddOpMaker
:
public
OpProtoAndCheckerMaker
{
public:
RowWiseAddOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
...
...
@@ -155,19 +148,16 @@ class AddOpMaker : public OpProtoAndCheckerMaker {
namespace
f
=
paddle
::
framework
;
namespace
ops
=
paddle
::
operators
;
using
EnforceNotMet
=
paddle
::
platform
::
EnforceNotMet
;
REGISTER_OP
(
rowwise_add
,
f
::
EmptyOp
,
f
::
RowWiseAddOpMaker
);
REGISTER_GRADIENT_OP
(
rowwise_add
,
rowwise_add_grad
,
f
::
EmptyOp
);
REGISTER_OP
(
mul
,
f
::
EmptyOp
,
f
::
MulOpMaker
);
REGISTER_GRADIENT_OP
(
mul
,
mul_grad
,
f
::
EmptyOp
);
REGISTER_OP
(
sigmoid
,
f
::
EmptyOp
,
f
::
SigmoidOpMaker
);
REGISTER_GRADIENT_OP
(
sigmoid
,
sigmoid_grad
,
f
::
EmptyOp
);
REGISTER_OP
(
nograd
,
f
::
EmptyOp
,
f
::
NoGradOpMaker
);
REGISTER_OP
(
fill_zeros_like
,
f
::
EmptyOp
,
f
::
FillZeroOpMaker
);
REGISTER_OP
(
add
,
f
::
EmptyOp
,
f
::
AddOpMaker
);
REGISTER_GRADIENT_OP
(
add
,
add_grad
,
f
::
EmptyOp
);
REGISTER_OP
(
fc
,
f
::
FcOp
,
f
::
FcOpMaker
);
REGISTER_OP
(
many_output_op
,
f
::
EmptyOp
,
f
::
ManyOutputOpMaker
);
REGISTER_GRADIENT_OP
(
many_output_op
,
many_output_op_grad
,
f
::
EmptyOp
);
REGISTER_OP
(
rowwise_add
,
f
::
NOP
,
f
::
RowWiseAddOpMaker
,
rowwise_add_grad
,
f
::
NOP
);
REGISTER_OP
(
mul
,
f
::
NOP
,
f
::
MulOpMaker
,
mul_grad
,
f
::
NOP
);
REGISTER_OP
(
sigmoid
,
f
::
NOP
,
f
::
SigmoidOpMaker
,
sigmoid_grad
,
f
::
NOP
);
REGISTER_OP_WITHOUT_GRADIENT
(
nograd
,
f
::
NOP
,
f
::
NoGradOpMaker
);
REGISTER_OP_WITHOUT_GRADIENT
(
fill_zeros_like
,
f
::
NOP
,
f
::
FillZeroOpMaker
);
REGISTER_OP
(
add
,
f
::
NOP
,
f
::
AddOpMaker
,
add_grad
,
f
::
NOP
);
REGISTER_OP_WITHOUT_GRADIENT
(
fc
,
f
::
FcOp
,
f
::
FcOpMaker
);
REGISTER_OP
(
many_output_op
,
f
::
NOP
,
f
::
ManyOutputOpMaker
,
many_output_op_grad
,
f
::
NOP
);
TEST
(
Backward
,
simple_op_grad
)
{
auto
fwd
=
f
::
OpRegistry
::
CreateOp
(
...
...
paddle/framework/grad_op_builder.cc
浏览文件 @
d9400243
...
...
@@ -19,16 +19,14 @@ namespace paddle {
namespace
framework
{
enum
class
OpArgType
{
IN
,
OUT
};
static
void
TransOpArg
(
const
OperatorBase
*
src_op
,
OperatorBase
::
VarNameMap
*
vars
,
const
OpArgType
&
src_type
,
bool
is_grad
)
{
static
void
TransOpArg
(
const
OperatorBase
*
src_op
,
const
OpArgType
&
src_type
,
bool
is_grad
,
OperatorBase
::
VarNameMap
*
vars
)
{
const
auto
&
src_inout
=
src_type
==
OpArgType
::
IN
?
src_op
->
Inputs
()
:
src_op
->
Outputs
();
auto
&
dst_inout
=
*
vars
;
const
OpProto
&
proto
=
OpProtos
().
at
(
src_op
->
Type
());
const
OpProto
*
proto
=
OpRegistry
::
op_info_map
().
at
(
src_op
->
Type
()).
proto_
;
const
auto
&
src_arg_list
=
src_type
==
OpArgType
::
IN
?
proto
.
inputs
()
:
proto
.
outputs
();
src_type
==
OpArgType
::
IN
?
proto
->
inputs
()
:
proto
->
outputs
();
for
(
const
auto
&
arg
:
src_arg_list
)
{
if
(
arg
.
no_gradient
()
&&
!
is_grad
)
continue
;
const
std
::
string
src_name
=
arg
.
name
();
...
...
@@ -42,22 +40,26 @@ static void TransOpArg(const OperatorBase* src_op,
}
OperatorBase
*
BuildGradOp
(
const
OperatorBase
*
op
)
{
auto
gop_type_it
=
OpRegistry
::
grad_ops
().
find
(
op
->
Type
());
PADDLE_ENFORCE
(
gop_type_it
!=
OpRegistry
::
grad_ops
().
end
(),
"Operator %s do not register gradient type"
,
op
->
Type
());
auto
&
grad_op_type
=
gop_type_it
->
second
;
auto
it
=
OpRegistry
::
op_info_map
().
find
(
op
->
Type
());
PADDLE_ENFORCE
(
it
!=
OpRegistry
::
op_info_map
().
end
(),
"'%s' has not been registered."
,
op
->
Type
());
PADDLE_ENFORCE
(
it
->
second
.
proto_
!=
nullptr
,
"'%s' has no OpProto."
,
op
->
Type
());
std
::
string
grad_op_type
=
it
->
second
.
grad_op_type_
;
PADDLE_ENFORCE
(
!
grad_op_type
.
empty
(),
"'%s' has no gradient operator."
,
op
->
Type
());
OperatorBase
::
VarNameMap
inputs
;
OperatorBase
::
VarNameMap
outputs
;
TransOpArg
(
op
,
&
inputs
,
OpArgType
::
IN
,
false
);
// I
TransOpArg
(
op
,
&
inputs
,
OpArgType
::
OUT
,
false
);
// O
TransOpArg
(
op
,
&
inputs
,
OpArgType
::
OUT
,
true
);
// OG
TransOpArg
(
op
,
&
outputs
,
OpArgType
::
IN
,
true
);
// IG
auto
gop_it
=
OpRegistry
::
op_creators
().
find
(
grad_op_type
);
PADDLE_ENFORCE
(
gop_it
!=
OpRegistry
::
op_creators
().
end
(),
"Operator %s 's Gradient %s's creator cannot be found"
,
op
->
Type
(),
grad_op_type
);
TransOpArg
(
op
,
OpArgType
::
IN
,
false
,
&
inputs
);
// I
TransOpArg
(
op
,
OpArgType
::
OUT
,
false
,
&
inputs
);
// O
TransOpArg
(
op
,
OpArgType
::
OUT
,
true
,
&
inputs
);
// OG
TransOpArg
(
op
,
OpArgType
::
IN
,
true
,
&
outputs
);
// IG
return
gop_it
->
second
(
grad_op_type
,
inputs
,
outputs
,
op
->
Attrs
());
it
=
OpRegistry
::
op_info_map
().
find
(
grad_op_type
);
PADDLE_ENFORCE
(
it
!=
OpRegistry
::
op_info_map
().
end
(),
"'%s' has not been registered."
,
grad_op_type
);
return
it
->
second
.
creator_
(
grad_op_type
,
inputs
,
outputs
,
op
->
Attrs
());
}
}
// namespace framework
...
...
paddle/framework/grad_op_builder_test.cc
浏览文件 @
d9400243
...
...
@@ -8,14 +8,6 @@ USE_OP(add_two);
namespace
paddle
{
namespace
framework
{
class
NOP
:
public
OperatorBase
{
public:
using
OperatorBase
::
OperatorBase
;
void
InferShape
(
const
Scope
&
scope
)
const
override
{}
void
Run
(
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
{}
};
class
MutiInOutOpMaker
:
public
OpProtoAndCheckerMaker
{
public:
MutiInOutOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
...
...
@@ -62,10 +54,8 @@ TEST(GradOpBuilder, AddTwo) {
EXPECT_EQ
(
grad_add_op
->
Output
(
f
::
GradVarName
(
"Y"
)),
f
::
GradVarName
(
"y"
));
}
REGISTER_OP
(
mult_io
,
f
::
NOP
,
f
::
MutiInOutOpMaker
);
REGISTER_GRADIENT_OP
(
mult_io
,
mult_io_grad
,
f
::
NOP
);
REGISTER_OP
(
io_ignored
,
f
::
NOP
,
f
::
IOIgnoredOpMaker
);
REGISTER_GRADIENT_OP
(
io_ignored
,
io_ignored_grad
,
f
::
NOP
);
REGISTER_OP
(
mult_io
,
f
::
NOP
,
f
::
MutiInOutOpMaker
,
mult_io_grad
,
f
::
NOP
);
REGISTER_OP
(
io_ignored
,
f
::
NOP
,
f
::
IOIgnoredOpMaker
,
io_ignored_grad
,
f
::
NOP
);
TEST
(
GradOpBuilder
,
MutiInOut
)
{
std
::
shared_ptr
<
f
::
OperatorBase
>
test_op
(
f
::
OpRegistry
::
CreateOp
(
...
...
paddle/framework/op_registry.h
浏览文件 @
d9400243
...
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include <algorithm>
#include <atomic>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include "paddle/framework/attribute.h"
...
...
@@ -119,6 +120,12 @@ class OpProtoAndCheckerMaker {
bool
validated_
{
false
};
};
class
NOPMaker
:
public
OpProtoAndCheckerMaker
{
public:
NOPMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{}
};
class
OpRegistry
{
using
VarNameMap
=
OperatorBase
::
VarNameMap
;
using
OpCreator
=
std
::
function
<
OperatorBase
*
(
...
...
@@ -126,45 +133,56 @@ class OpRegistry {
const
VarNameMap
&
/*outputs*/
,
const
AttributeMap
&
/*attrs*/
)
>
;
public:
template
<
typename
OpType
,
typename
ProtoMakerType
>
static
void
RegisterOp
(
const
std
::
string
&
op_type
)
{
op_creators
()[
op_type
]
=
[](
const
std
::
string
&
type
,
const
VarNameMap
&
inputs
,
const
VarNameMap
&
outputs
,
const
AttributeMap
&
attrs
)
{
return
new
OpType
(
type
,
inputs
,
outputs
,
attrs
);
};
OpAttrChecker
&
op_checker
=
op_checkers
()[
op_type
];
OpProto
&
op_proto
=
OpProtos
()[
op_type
];
auto
maker
=
ProtoMakerType
(
&
op_proto
,
&
op_checker
);
maker
.
Validate
();
op_proto
.
set_type
(
op_type
);
PADDLE_ENFORCE
(
op_proto
.
IsInitialized
(),
"Fail to initialize %s's OpProto, because %s is not initialized"
,
op_type
,
op_proto
.
InitializationErrorString
());
}
struct
OpInfo
{
OpCreator
creator_
;
std
::
string
grad_op_type_
;
OpProto
*
proto_
;
OpAttrChecker
*
checker_
;
};
template
<
typename
GradOpType
>
static
void
RegisterGradOp
(
const
std
::
string
&
op_type
,
const
std
::
string
&
grad_op_type
)
{
op_creators
()[
grad_op_type
]
=
[](
const
std
::
string
&
type
,
const
VarNameMap
&
inputs
,
const
VarNameMap
&
outputs
,
const
AttributeMap
&
attrs
)
{
return
new
GradOpType
(
type
,
inputs
,
outputs
,
attrs
);
template
<
typename
OpType
,
typename
ProtoMakerType
,
typename
GradOpType
>
static
void
RegisterOp
(
const
std
::
string
&
op_type
,
const
std
::
string
&
grad_op_type
)
{
PADDLE_ENFORCE
(
op_info_map
().
count
(
op_type
)
==
0
,
"'%s' is registered more than once."
,
op_type
);
OpInfo
op_info
;
op_info
.
creator_
=
[](
const
std
::
string
&
type
,
const
VarNameMap
&
inputs
,
const
VarNameMap
&
outputs
,
const
AttributeMap
&
attrs
)
{
return
new
OpType
(
type
,
inputs
,
outputs
,
attrs
);
};
grad_ops
()[
op_type
]
=
grad_op_type
;
op_info
.
grad_op_type_
=
grad_op_type
;
if
(
std
::
type_index
(
typeid
(
ProtoMakerType
))
!=
std
::
type_index
(
typeid
(
NOPMaker
)))
{
op_info
.
proto_
=
new
OpProto
;
op_info
.
checker_
=
new
OpAttrChecker
;
auto
maker
=
ProtoMakerType
(
op_info
.
proto_
,
op_info
.
checker_
);
maker
.
Validate
();
op_info
.
proto_
->
set_type
(
op_type
);
PADDLE_ENFORCE
(
op_info
.
proto_
->
IsInitialized
(),
"Fail to initialize %s's OpProto, because %s is not initialized"
,
op_type
,
op_info
.
proto_
->
InitializationErrorString
());
}
else
{
op_info
.
proto_
=
nullptr
;
op_info
.
checker_
=
nullptr
;
}
op_info_map
().
insert
(
std
::
make_pair
(
op_type
,
op_info
));
// register gradient op
if
(
!
grad_op_type
.
empty
())
{
RegisterOp
<
GradOpType
,
NOPMaker
,
NOP
>
(
grad_op_type
,
""
);
}
}
static
std
::
shared_ptr
<
OperatorBase
>
CreateOp
(
const
std
::
string
&
type
,
const
VarNameMap
&
inputs
,
const
VarNameMap
&
outputs
,
AttributeMap
attrs
)
{
auto
op_create_it
=
op_creators
().
find
(
type
);
PADDLE_ENFORCE
(
op_create_it
!=
op_creators
().
end
(),
"Operator %s cannot be found."
,
type
);
op_checkers
().
at
(
type
).
Check
(
attrs
);
auto
op
=
op_create_it
->
second
(
type
,
inputs
,
outputs
,
attrs
);
auto
it
=
op_info_map
().
find
(
type
);
PADDLE_ENFORCE
(
it
!=
op_info_map
().
end
(),
"Operator '%s' has not been registered."
,
type
);
it
->
second
.
checker_
->
Check
(
attrs
);
auto
op
=
it
->
second
.
creator_
(
type
,
inputs
,
outputs
,
attrs
);
return
std
::
shared_ptr
<
OperatorBase
>
(
op
);
}
...
...
@@ -199,49 +217,32 @@ class OpRegistry {
return
grad_op
;
}
static
std
::
unordered_map
<
std
::
string
,
std
::
string
>&
grad_ops
()
{
static
std
::
unordered_map
<
std
::
string
,
std
::
string
>
grad_ops_
;
return
grad_ops_
;
}
static
std
::
unordered_map
<
std
::
string
,
OpCreator
>&
op_creators
()
{
static
std
::
unordered_map
<
std
::
string
,
OpCreator
>
op_creators_
;
return
op_creators_
;
}
private:
static
std
::
unordered_map
<
std
::
string
,
OpAttrChecker
>&
op_checkers
()
{
static
std
::
unordered_map
<
std
::
string
,
OpAttrChecker
>
op_checkers_
;
return
op_checkers_
;
static
std
::
unordered_map
<
std
::
string
,
const
OpInfo
>&
op_info_map
()
{
static
std
::
unordered_map
<
std
::
string
,
const
OpInfo
>
op_info_map_
;
return
op_info_map_
;
}
};
class
Registrar
{
public:
// In our design, various kinds of classes, e.g., operators and kernels,
have
//
their corresponding registry and registrar. The action of registration is
//
in the constructor of a global registrar variable, which, however, are not
//
used in the code that calls package framework, and would be removed from
//
the generated binary file by the linker. To avoid such removal, we add
//
Touch to all registrar classes and make USE_OP macros to call this
// method. So, as long as the callee code calls USE_OP, the global
// In our design, various kinds of classes, e.g., operators and kernels,
//
have their corresponding registry and registrar. The action of
//
registration is in the constructor of a global registrar variable, which,
//
however, are not used in the code that calls package framework, and would
//
be removed from the generated binary file by the linker. To avoid such
//
removal, we add Touch to all registrar classes and make USE_OP macros to
//
call this
method. So, as long as the callee code calls USE_OP, the global
// registrar variable won't be removed by the linker.
void
Touch
()
{}
};
template
<
typename
OpType
,
typename
ProtoMakerType
>
template
<
typename
OpType
,
typename
ProtoMakerType
,
typename
GradOpType
>
class
OpRegistrar
:
public
Registrar
{
public:
explicit
OpRegistrar
(
const
char
*
op_type
)
{
OpRegistry
::
RegisterOp
<
OpType
,
ProtoMakerType
>
(
op_type
);
}
};
template
<
typename
GradOpType
>
class
GradOpRegistrar
:
public
Registrar
{
public:
GradOpRegistrar
(
const
char
*
op_type
,
const
char
*
grad_op_type
)
{
OpRegistry
::
RegisterGradOp
<
GradOpType
>
(
op_type
,
grad_op_type
);
explicit
OpRegistrar
(
const
char
*
op_type
)
{
OpRegistrar
(
op_type
,
""
);
}
OpRegistrar
(
const
char
*
op_type
,
const
char
*
grad_op_type
)
{
OpRegistry
::
RegisterOp
<
OpType
,
ProtoMakerType
,
GradOpType
>
(
op_type
,
grad_op_type
);
}
};
...
...
@@ -267,30 +268,20 @@ class OpKernelRegistrar : public Registrar {
/**
* Macro to register Operator.
*/
#define REGISTER_OP(op_type, op_class, op_maker_class) \
#define REGISTER_OP(op_type, op_class, op_maker_class, grad_op_type, \
grad_op_class) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_op__##op_type, "REGISTER_OP must be called in global namespace"); \
static ::paddle::framework::OpRegistrar<op_class, op_maker_class> \
__op_registrar_##op_type##__(#op_type); \
static ::paddle::framework::OpRegistrar<op_class, op_maker_class, \
grad_op_class> \
__op_registrar_##op_type##__(#op_type, #grad_op_type); \
int TouchOpRegistrar_##op_type() { \
__op_registrar_##op_type##__.Touch(); \
return 0; \
}
/**
* Macro to register Gradient Operator.
*/
#define REGISTER_GRADIENT_OP(op_type, grad_op_type, grad_op_class) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_gradient_op__##op_type##_##grad_op_type, \
"REGISTER_GRADIENT_OP must be called in global namespace"); \
static ::paddle::framework::GradOpRegistrar<grad_op_class> \
__op_gradient_registrar_##op_type##_##grad_op_type##__(#op_type, \
#grad_op_type); \
int TouchOpGradientRegistrar_##op_type() { \
__op_gradient_registrar_##op_type##_##grad_op_type##__.Touch(); \
return 0; \
}
#define REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, op_maker_class) \
REGISTER_OP(op_type, op_class, op_maker_class, , ::paddle::framework::NOP)
/**
* Macro to register OperatorKernel.
...
...
@@ -306,14 +297,6 @@ class OpKernelRegistrar : public Registrar {
return 0; \
}
/**
* Macro to Forbid user register Gradient Operator.
*/
#define NO_GRADIENT(op_type) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_gradient_op__##op_type##_##op_type##_grad, \
"NO_GRADIENT must be called in global namespace")
#define REGISTER_OP_GPU_KERNEL(op_type, ...) \
REGISTER_OP_KERNEL(op_type, GPU, ::paddle::platform::GPUPlace, __VA_ARGS__)
...
...
@@ -332,23 +315,6 @@ class OpKernelRegistrar : public Registrar {
static int use_op_itself_##op_type##_ __attribute__((unused)) = \
TouchOpRegistrar_##op_type()
// TODO(fengjiayi): Most ops' gradient op have not been compeleted. So we use
// `NO_GRAD` to disable micro USE_OP_GRADIENT(op_type). Otherwise the code can't
// be compiled. `NO_GRAD` should be removed after all gradient ops are
// compeleted.
#define NO_GRAD
#ifndef NO_GRAD
#define USE_OP_GRADIENT(op_type) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__use_op_gradient_##op_type, \
"USE_OP_GRADIENT must be called in global namespace"); \
extern int TouchOpGradientRegistrar_##op_type(); \
static int use_op_gradient_##op_type##_ __attribute__((unused)) = \
TouchOpGradientRegistrar_##op_type()
#else
#define USE_OP_GRADIENT(op_type)
#endif
#define USE_OP_DEVICE_KERNEL(op_type, DEVICE_TYPE) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__use_op_kernel_##op_type##_##DEVICE_TYPE##__, \
...
...
@@ -368,18 +334,13 @@ class OpKernelRegistrar : public Registrar {
USE_OP_DEVICE_KERNEL(op_type, GPU)
#endif
#define USE_NO_GRAD_OP(op_type) \
USE_OP_ITSELF(op_type); \
USE_OP_KERNEL(op_type)
#define USE_CPU_OP(op_type) \
USE_OP_ITSELF(op_type); \
USE_OP_DEVICE_KERNEL(op_type, CPU); \
USE_OP_GRADIENT(op_type)
#define USE_CPU_ONLY_OP(op_type) \
USE_OP_ITSELF(op_type); \
USE_OP_DEVICE_KERNEL(op_type, CPU);
#define USE_OP(op_type)
\
USE_
NO_GRAD_OP
(op_type); \
USE_OP_
GRADIENT
(op_type)
#define USE_OP(op_type) \
USE_
OP_ITSELF
(op_type); \
USE_OP_
KERNEL
(op_type)
}
// namespace framework
}
// namespace paddle
paddle/framework/op_registry_test.cc
浏览文件 @
d9400243
...
...
@@ -59,11 +59,10 @@ static void BuildVar(const std::string& param_name,
var
->
add_arguments
(
arg_name
);
}
}
REGISTER_OP
(
cos_sim
,
paddle
::
framework
::
CosineOp
,
paddle
::
framework
::
CosineOpProtoAndCheckerMaker
);
REGISTER_OP
(
my_test_op
,
paddle
::
framework
::
MyTestOp
,
paddle
::
framework
::
MyTestOpProtoAndCheckerMaker
);
REGISTER_OP_WITHOUT_GRADIENT
(
cos_sim
,
paddle
::
framework
::
CosineOp
,
paddle
::
framework
::
CosineOpProtoAndCheckerMaker
);
REGISTER_OP_WITHOUT_GRADIENT
(
my_test_op
,
paddle
::
framework
::
MyTestOp
,
paddle
::
framework
::
MyTestOpProtoAndCheckerMaker
);
TEST
(
OpRegistry
,
CreateOp
)
{
paddle
::
framework
::
OpDesc
op_desc
;
...
...
paddle/framework/operator.cc
浏览文件 @
d9400243
...
...
@@ -33,14 +33,6 @@ ExecutionContext::GetEigenDevice<platform::GPUPlace, Eigen::GpuDevice>() const {
}
#endif
static
std
::
unordered_map
<
std
::
string
,
OpProto
>*
g_op_protos
=
nullptr
;
std
::
unordered_map
<
std
::
string
,
OpProto
>&
OpProtos
()
{
if
(
g_op_protos
==
nullptr
)
{
g_op_protos
=
new
std
::
unordered_map
<
std
::
string
,
OpProto
>
();
}
return
*
g_op_protos
;
}
const
std
::
string
&
OperatorBase
::
Input
(
const
std
::
string
&
name
)
const
{
auto
&
ins
=
Inputs
(
name
);
PADDLE_ENFORCE_EQ
(
ins
.
size
(),
1UL
,
...
...
@@ -149,14 +141,18 @@ std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
}
return
ret_val
;
}
auto
it
=
Op
Protos
().
find
(
type_
);
auto
it
=
Op
Registry
::
op_info_map
().
find
(
type_
);
PADDLE_ENFORCE
(
it
!=
Op
Protos
().
end
(),
it
!=
Op
Registry
::
op_info_map
().
end
(),
"Operator %s not registered, cannot figure out intermediate outputs"
,
type_
);
PADDLE_ENFORCE
(
it
->
second
.
proto_
!=
nullptr
,
"Operator %s has no OpProto, cannot figure out intermediate outputs"
,
type_
);
// get all OpProto::Var for outputs
for
(
auto
&
o
:
it
->
second
.
outputs
())
{
for
(
auto
&
o
:
it
->
second
.
proto_
->
outputs
())
{
// ignore all intermediate output
if
(
o
.
intermediate
())
continue
;
auto
out
=
outputs_
.
find
(
o
.
name
());
...
...
paddle/framework/operator.h
浏览文件 @
d9400243
...
...
@@ -50,8 +50,6 @@ inline std::string GradVarName(const std::string& var_name) {
return
var_name
+
kGradVarSuffix
;
}
extern
std
::
unordered_map
<
std
::
string
,
OpProto
>&
OpProtos
();
class
OperatorBase
;
class
InferShapeContext
;
class
ExecutionContext
;
...
...
@@ -132,6 +130,14 @@ class OperatorBase {
AttributeMap
attrs_
;
};
class
NOP
:
public
OperatorBase
{
public:
using
OperatorBase
::
OperatorBase
;
void
InferShape
(
const
Scope
&
scope
)
const
override
{}
void
Run
(
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
{}
};
class
InferShapeContext
{
public:
InferShapeContext
(
const
OperatorBase
&
op
,
const
Scope
&
scope
)
...
...
@@ -213,7 +219,7 @@ class InferShapeContext {
[
&
](
const
std
::
string
&
sub_name
)
{
auto
var
=
scope_
.
FindVar
(
sub_name
);
PADDLE_ENFORCE_NOT_NULL
(
var
,
"MultiOutput(%s:%s) should not be nullptr"
,
name
,
var
,
"MultiOutput(%s:%s) should not be nullptr
.
"
,
name
,
sub_name
);
return
var
->
GetMutable
<
T
>
();
});
...
...
paddle/framework/operator_test.cc
浏览文件 @
d9400243
...
...
@@ -65,8 +65,9 @@ static void BuildVar(const std::string& param_name,
}
}
REGISTER_OP
(
test_operator
,
paddle
::
framework
::
OpWithoutKernelTest
,
paddle
::
framework
::
OpeWithoutKernelTestProtoAndCheckerMaker
);
REGISTER_OP_WITHOUT_GRADIENT
(
test_operator
,
paddle
::
framework
::
OpWithoutKernelTest
,
paddle
::
framework
::
OpeWithoutKernelTestProtoAndCheckerMaker
);
TEST
(
OperatorBase
,
all
)
{
paddle
::
framework
::
OpDesc
op_desc
;
...
...
@@ -184,8 +185,9 @@ class CPUKernalMultiInputsTest : public OpKernel {
}
// namespace framework
}
// namespace paddle
REGISTER_OP
(
op_with_kernel
,
paddle
::
framework
::
OpWithKernelTest
,
paddle
::
framework
::
OpKernelTestProtoAndCheckerMaker
);
REGISTER_OP_WITHOUT_GRADIENT
(
op_with_kernel
,
paddle
::
framework
::
OpWithKernelTest
,
paddle
::
framework
::
OpKernelTestProtoAndCheckerMaker
);
REGISTER_OP_CPU_KERNEL
(
op_with_kernel
,
paddle
::
framework
::
CPUKernelTest
<
float
,
float
>
);
...
...
@@ -210,8 +212,9 @@ TEST(OpKernel, all) {
ASSERT_EQ
(
paddle
::
framework
::
cpu_kernel_run_num
,
1
);
}
REGISTER_OP
(
op_multi_inputs_with_kernel
,
paddle
::
framework
::
OpWithKernelTest
,
paddle
::
framework
::
OpKernelTestMultiInputsProtoAndCheckerMaker
);
REGISTER_OP_WITHOUT_GRADIENT
(
op_multi_inputs_with_kernel
,
paddle
::
framework
::
OpWithKernelTest
,
paddle
::
framework
::
OpKernelTestMultiInputsProtoAndCheckerMaker
);
REGISTER_OP_CPU_KERNEL
(
op_multi_inputs_with_kernel
,
paddle
::
framework
::
CPUKernalMultiInputsTest
);
...
...
paddle/framework/pybind.cc
浏览文件 @
d9400243
...
...
@@ -30,8 +30,8 @@ limitations under the License. */
namespace
py
=
pybind11
;
USE_OP
(
add_two
);
USE_CPU_OP
(
onehot_cross_entropy
);
USE_
NO_GRAD_
OP
(
sgd
);
USE_CPU_O
NLY_O
P
(
onehot_cross_entropy
);
USE_OP
(
sgd
);
USE_OP
(
mul
);
USE_OP
(
mean
);
USE_OP
(
sigmoid
);
...
...
@@ -160,13 +160,16 @@ All parameter, weight, gradient are variables in Paddle.
//! @note: Be careful! PyBind will return std::string as an unicode, not
//! Python str. If you want a str object, you should cast them in Python.
m
.
def
(
"get_all_op_protos"
,
[]()
->
std
::
vector
<
py
::
bytes
>
{
auto
&
protos
=
OpProtos
();
auto
&
op_info_map
=
OpRegistry
::
op_info_map
();
std
::
vector
<
py
::
bytes
>
ret_values
;
for
(
auto
it
=
protos
.
begin
();
it
!=
protos
.
end
();
++
it
)
{
PADDLE_ENFORCE
(
it
->
second
.
IsInitialized
(),
"OpProto must all be initialized"
);
for
(
auto
it
=
op_info_map
.
begin
();
it
!=
op_info_map
.
end
();
++
it
)
{
const
OpProto
*
proto
=
it
->
second
.
proto_
;
if
(
proto
==
nullptr
)
{
continue
;
}
PADDLE_ENFORCE
(
proto
->
IsInitialized
(),
"OpProto must all be initialized"
);
std
::
string
str
;
PADDLE_ENFORCE
(
it
->
second
.
SerializeToString
(
&
str
),
PADDLE_ENFORCE
(
proto
->
SerializeToString
(
&
str
),
"Serialize OpProto Error. This could be a bug of Paddle."
);
ret_values
.
push_back
(
py
::
bytes
(
str
));
}
...
...
paddle/operators/CMakeLists.txt
浏览文件 @
d9400243
...
...
@@ -44,6 +44,8 @@ endfunction()
add_subdirectory
(
math
)
cc_test
(
gather_test SRCS gather_test.cc DEPS tensor
)
cc_test
(
scatter_test SRCS scatter_test.cc DEPS tensor
)
cc_library
(
net_op SRCS net_op.cc DEPS op_registry
)
cc_test
(
net_op_test SRCS net_op_test.cc DEPS net_op
)
...
...
paddle/operators/add_op.cc
浏览文件 @
d9400243
...
...
@@ -57,8 +57,7 @@ class AddOpGrad : public framework::OperatorWithKernel {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
add_two
,
ops
::
AddOp
,
ops
::
AddOpMaker
);
REGISTER_GRADIENT_OP
(
add_two
,
add_two_grad
,
ops
::
AddOpGrad
);
REGISTER_OP
(
add_two
,
ops
::
AddOp
,
ops
::
AddOpMaker
,
add_two_grad
,
ops
::
AddOpGrad
);
REGISTER_OP_CPU_KERNEL
(
add_two
,
ops
::
AddKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/cross_entropy_op.cc
浏览文件 @
d9400243
...
...
@@ -68,12 +68,11 @@ OnehotCrossEntropy Operator.
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
onehot_cross_entropy
,
ops
::
OnehotCrossEntropyOp
,
ops
::
OnehotCrossEntropyOpMaker
);
ops
::
OnehotCrossEntropyOpMaker
,
onehot_cross_entropy_grad
,
ops
::
OnehotCrossEntropyGradientOp
);
REGISTER_OP_CPU_KERNEL
(
onehot_cross_entropy
,
ops
::
OnehotCrossEntropyOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_GRADIENT_OP
(
onehot_cross_entropy
,
onehot_cross_entropy_grad
,
ops
::
OnehotCrossEntropyGradientOp
);
REGISTER_OP_CPU_KERNEL
(
onehot_cross_entropy_grad
,
ops
::
OnehotCrossEntropyGradientOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/fill_zeros_like_op.cc
浏览文件 @
d9400243
...
...
@@ -46,7 +46,8 @@ The output will have the same size with input.
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
fill_zeros_like
,
ops
::
FillZerosLikeOp
,
ops
::
FillZerosLikeOpMaker
);
REGISTER_OP_WITHOUT_GRADIENT
(
fill_zeros_like
,
ops
::
FillZerosLikeOp
,
ops
::
FillZerosLikeOpMaker
);
REGISTER_OP_CPU_KERNEL
(
fill_zeros_like
,
ops
::
FillZerosLikeKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/gather.h
浏览文件 @
d9400243
...
...
@@ -29,7 +29,7 @@ void CPUGather(const T* params, const int* indices, const int slice_size,
const
int
index_size
,
T
*
output
)
{
const
size_t
slice_bytes
=
slice_size
*
sizeof
(
T
);
for
(
size_
t
i
=
0
;
i
<
index_size
;
++
i
)
{
for
(
in
t
i
=
0
;
i
<
index_size
;
++
i
)
{
int
index_
=
indices
[
i
];
memcpy
(
output
+
i
*
slice_size
,
params
+
index_
*
slice_size
,
slice_bytes
);
}
...
...
@@ -60,7 +60,7 @@ void Gather(const platform::Place& place, const paddle::framework::Tensor* src,
// slice size
int
slice_size
=
1
;
for
(
size_
t
i
=
1
;
i
<
src_dims
.
size
();
++
i
)
slice_size
*=
src_dims
[
i
];
for
(
in
t
i
=
1
;
i
<
src_dims
.
size
();
++
i
)
slice_size
*=
src_dims
[
i
];
// Gathering
if
(
platform
::
is_cpu_place
(
place
))
{
...
...
paddle/operators/gather_test.cc
浏览文件 @
d9400243
...
...
@@ -35,7 +35,7 @@ TEST(Gather, GatherData) {
p_src
=
src
->
mutable_data
<
int
>
(
make_ddim
({
3
,
4
}),
CPUPlace
());
p_index
=
index
->
mutable_data
<
int
>
(
make_ddim
({
2
}),
CPUPlace
());
for
(
size_
t
i
=
0
;
i
<
12
;
++
i
)
p_src
[
i
]
=
i
;
for
(
in
t
i
=
0
;
i
<
12
;
++
i
)
p_src
[
i
]
=
i
;
p_index
[
0
]
=
1
;
p_index
[
1
]
=
0
;
...
...
@@ -43,6 +43,6 @@ TEST(Gather, GatherData) {
Gather
<
int
>
(
CPUPlace
(),
src
,
index
,
output
);
for
(
size_
t
i
=
0
;
i
<
4
;
++
i
)
EXPECT_EQ
(
p_output
[
i
],
i
+
4
);
for
(
size_
t
i
=
4
;
i
<
8
;
++
i
)
EXPECT_EQ
(
p_output
[
i
],
i
-
4
);
for
(
in
t
i
=
0
;
i
<
4
;
++
i
)
EXPECT_EQ
(
p_output
[
i
],
i
+
4
);
for
(
in
t
i
=
4
;
i
<
8
;
++
i
)
EXPECT_EQ
(
p_output
[
i
],
i
-
4
);
}
paddle/operators/gaussian_random_op.cc
浏览文件 @
d9400243
...
...
@@ -81,5 +81,6 @@ Use to initialize tensor with gaussian random generator.
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
gaussian_random
,
ops
::
GaussianRandomOp
,
ops
::
GaussianRandomOpMaker
);
REGISTER_OP_WITHOUT_GRADIENT
(
gaussian_random
,
ops
::
GaussianRandomOp
,
ops
::
GaussianRandomOpMaker
);
REGISTER_OP_CPU_KERNEL
(
gaussian_random
,
ops
::
GaussianRandomKernel
<
float
>
);
paddle/operators/mean_op.cc
浏览文件 @
d9400243
...
...
@@ -54,9 +54,8 @@ class MeanGradOp : public framework::OperatorWithKernel {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
mean
,
ops
::
MeanOp
,
ops
::
MeanOpMaker
);
REGISTER_OP
(
mean
,
ops
::
MeanOp
,
ops
::
MeanOpMaker
,
mean_grad
,
ops
::
MeanGradOp
);
REGISTER_OP_CPU_KERNEL
(
mean
,
ops
::
MeanKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_GRADIENT_OP
(
mean
,
mean_grad
,
ops
::
MeanGradOp
);
REGISTER_OP_CPU_KERNEL
(
mean_grad
,
ops
::
MeanGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/mul_op.cc
浏览文件 @
d9400243
...
...
@@ -70,7 +70,5 @@ class MulOpGrad : public framework::OperatorWithKernel {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
mul
,
ops
::
MulOp
,
ops
::
MulOpMaker
);
REGISTER_GRADIENT_OP
(
mul
,
mul_grad
,
ops
::
MulOpGrad
);
REGISTER_OP
(
mul
,
ops
::
MulOp
,
ops
::
MulOpMaker
,
mul_grad
,
ops
::
MulOpGrad
);
REGISTER_OP_CPU_KERNEL
(
mul
,
ops
::
MulKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/net_op_test.cc
浏览文件 @
d9400243
...
...
@@ -20,13 +20,6 @@ class TestOp : public framework::OperatorBase {
}
};
class
EmptyOp
:
public
framework
::
OperatorBase
{
public:
using
framework
::
OperatorBase
::
OperatorBase
;
void
InferShape
(
const
Scope
&
scope
)
const
override
{}
void
Run
(
const
Scope
&
scope
,
const
DeviceContext
&
dev_ctx
)
const
override
{}
};
template
<
typename
T
>
void
AssertSameVectorWithoutOrder
(
const
std
::
vector
<
T
>&
expected
,
const
std
::
vector
<
T
>&
actual
)
{
...
...
@@ -67,9 +60,9 @@ TEST(OpKernel, all) {
TEST
(
NetOp
,
insert_op
)
{
NetOp
net
;
auto
op1
=
std
::
shared_ptr
<
EmptyOp
>
(
new
EmptyOp
(
"empty"
,
{{
"X"
,
{
"x"
}},
{
"W"
,
{
"w1"
}},
{
"b"
,
{
"b1"
}}},
{{
"Out"
,
{
"y"
}}},
{}));
auto
op1
=
std
::
shared_ptr
<
framework
::
NOP
>
(
new
framework
::
NOP
(
"empty"
,
{{
"X"
,
{
"x"
}},
{
"W"
,
{
"w1"
}},
{
"b"
,
{
"b1"
}}},
{{
"Out"
,
{
"y"
}}},
{}));
net
.
AddOp
(
op1
);
net
.
InsertOp
(
0
,
op1
);
ASSERT_EQ
(
2UL
,
net
.
ops_
.
size
());
...
...
paddle/operators/recurrent_op.cc
浏览文件 @
d9400243
...
...
@@ -246,5 +246,6 @@ RecurrentGradientOp::RecurrentGradientOp(
}
// namespace operators
}
// namespace paddle
REGISTER_OP
(
recurrent_op
,
paddle
::
operators
::
RecurrentOp
,
paddle
::
operators
::
RecurrentAlgorithmProtoAndCheckerMaker
);
REGISTER_OP_WITHOUT_GRADIENT
(
recurrent_op
,
paddle
::
operators
::
RecurrentOp
,
paddle
::
operators
::
RecurrentAlgorithmProtoAndCheckerMaker
);
paddle/operators/rowwise_add_op.cc
浏览文件 @
d9400243
...
...
@@ -54,6 +54,7 @@ for i in xrange(X.shape[0]):
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
rowwise_add
,
ops
::
RowWiseAddOp
,
ops
::
RowWiseAddOpMaker
);
REGISTER_OP_WITHOUT_GRADIENT
(
rowwise_add
,
ops
::
RowWiseAddOp
,
ops
::
RowWiseAddOpMaker
);
REGISTER_OP_CPU_KERNEL
(
rowwise_add
,
ops
::
RowWiseAddKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/scatter.h
0 → 100644
浏览文件 @
d9400243
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <cstring>
#include "paddle/framework/ddim.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/place.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
// Implementation of CPU copy
template
<
typename
T
>
void
CPUScatterUpdate
(
const
paddle
::
framework
::
Tensor
*
src
,
const
int
*
index
,
const
size_t
index_size
,
paddle
::
framework
::
Tensor
*
output
)
{
paddle
::
framework
::
DDim
output_dims
=
output
->
dims
();
for
(
size_t
i
=
0
;
i
<
index_size
;
++
i
)
{
int
index_
=
index
[
i
];
paddle
::
framework
::
Tensor
src_
=
*
src
;
paddle
::
framework
::
Tensor
output_
=
*
output
;
if
(
index_size
>
1
)
src_
=
src
->
Slice
<
T
>
(
i
,
i
+
1
);
if
(
output_dims
[
0
]
>
1
)
output_
=
output
->
Slice
<
T
>
(
index_
,
index_
+
1
);
auto
X
=
EigenVector
<
T
>::
Flatten
(
src_
);
auto
Y
=
EigenVector
<
T
>::
Flatten
(
output_
);
Y
=
X
+
Y
;
}
}
// Implementation of GPU scatter:
template
<
typename
T
>
void
GPUScatterUpdate
(
const
T
*
src
,
const
int
*
index
,
const
int
slice_size
,
const
int
index_size
,
T
*
output
);
/**
* Return a updated tensor from source tensor, scattered according to index:
* dst[i] += src[index[i]]
* input[src]: type-T source Tensor
* input[index]: type-int index Tensor (1-D)
* return: output tensor
*/
template
<
typename
T
>
void
ScatterUpdate
(
const
platform
::
Place
&
place
,
const
paddle
::
framework
::
Tensor
*
src
,
const
paddle
::
framework
::
Tensor
*
index
,
paddle
::
framework
::
Tensor
*
output
)
{
// check index of shape 1-D
PADDLE_ENFORCE
(
index
->
dims
().
size
()
==
1
);
int
index_size
=
index
->
dims
()[
0
];
auto
src_dims
=
src
->
dims
();
auto
dst_dims
=
output
->
dims
();
// check src shape and dst shape should match
for
(
int
i
=
1
;
i
<
src_dims
.
size
();
i
++
)
PADDLE_ENFORCE
(
src_dims
[
i
]
==
dst_dims
[
i
]);
// slice size
size_t
slice_size
=
1
;
for
(
int
i
=
0
;
i
<
src_dims
.
size
();
++
i
)
slice_size
*=
src_dims
[
i
];
if
(
platform
::
is_cpu_place
(
place
))
{
CPUScatterUpdate
<
T
>
(
src
,
index
->
data
<
int
>
(),
index_size
,
output
);
}
else
{
}
}
}
// namespace operators
}
// namespace paddle
paddle/operators/scatter_test.cc
0 → 100644
浏览文件 @
d9400243
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/scatter.h"
#include "paddle/framework/ddim.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/place.h"
#include <gtest/gtest.h>
#include <iostream>
#include <string>
TEST
(
scatter
,
ScatterUpdate
)
{
using
namespace
paddle
::
framework
;
using
namespace
paddle
::
platform
;
using
namespace
paddle
::
operators
;
Tensor
*
src
=
new
Tensor
();
Tensor
*
index
=
new
Tensor
();
Tensor
*
output
=
new
Tensor
();
float
*
p_src
=
nullptr
;
int
*
p_index
=
nullptr
;
p_src
=
src
->
mutable_data
<
float
>
(
make_ddim
({
1
,
4
}),
CPUPlace
());
p_index
=
index
->
mutable_data
<
int
>
(
make_ddim
({
1
}),
CPUPlace
());
for
(
size_t
i
=
0
;
i
<
4
;
++
i
)
p_src
[
i
]
=
float
(
i
);
p_index
[
0
]
=
1
;
float
*
p_output
=
output
->
mutable_data
<
float
>
(
make_ddim
({
4
,
4
}),
CPUPlace
());
ScatterUpdate
<
float
>
(
CPUPlace
(),
src
,
index
,
output
);
for
(
size_t
i
=
0
;
i
<
4
;
++
i
)
EXPECT_EQ
(
p_output
[
i
],
float
(
0
));
for
(
size_t
i
=
0
;
i
<
4
;
++
i
)
EXPECT_EQ
(
output
->
data
<
float
>
()[
i
],
float
(
0
));
for
(
size_t
i
=
4
;
i
<
8
;
++
i
)
EXPECT_EQ
(
p_output
[
i
],
float
(
i
-
4
));
for
(
size_t
i
=
4
;
i
<
8
;
++
i
)
EXPECT_EQ
(
output
->
data
<
float
>
()[
i
],
float
(
i
-
4
));
for
(
size_t
i
=
8
;
i
<
16
;
++
i
)
EXPECT_EQ
(
p_output
[
i
],
float
(
0
));
for
(
size_t
i
=
8
;
i
<
16
;
++
i
)
EXPECT_EQ
(
output
->
data
<
float
>
()[
i
],
float
(
0
));
}
paddle/operators/sgd_op.cc
浏览文件 @
d9400243
...
...
@@ -51,6 +51,6 @@ param_out = param - learning_rate * grad;
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
sgd
,
ops
::
SGDOp
,
ops
::
SGDOpMaker
);
REGISTER_OP
_WITHOUT_GRADIENT
(
sgd
,
ops
::
SGDOp
,
ops
::
SGDOpMaker
);
REGISTER_OP_CPU_KERNEL
(
sgd
,
ops
::
SGDOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/sigmoid_op.cc
浏览文件 @
d9400243
...
...
@@ -52,9 +52,8 @@ class SigmoidOpGrad : public framework::OperatorWithKernel {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
sigmoid
,
ops
::
SigmoidOp
,
ops
::
SigmoidOpMaker
);
REGISTER_GRADIENT_OP
(
sigmoid
,
sigmoid_grad
,
ops
::
SigmoidOpGrad
);
REGISTER_OP
(
sigmoid
,
ops
::
SigmoidOp
,
ops
::
SigmoidOpMaker
,
sigmoid_grad
,
ops
::
SigmoidOpGrad
);
REGISTER_OP_CPU_KERNEL
(
sigmoid
,
ops
::
SigmoidKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
...
...
paddle/operators/softmax_op.cc
浏览文件 @
d9400243
...
...
@@ -62,9 +62,9 @@ class SoftmaxOpGrad : public framework::OperatorWithKernel {
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
softmax
,
ops
::
SoftmaxOp
,
ops
::
SoftmaxOpMaker
);
REGISTER_OP
(
softmax
,
ops
::
SoftmaxOp
,
ops
::
SoftmaxOpMaker
,
softmax_grad
,
ops
::
SoftmaxOpGrad
);
REGISTER_OP_CPU_KERNEL
(
softmax
,
ops
::
SoftmaxKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_GRADIENT_OP
(
softmax
,
softmax_grad
,
ops
::
SoftmaxOpGrad
);
REGISTER_OP_CPU_KERNEL
(
softmax_grad
,
ops
::
SoftmaxGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/uniform_random_op.cc
浏览文件 @
d9400243
...
...
@@ -81,7 +81,7 @@ Used to initialize tensor with uniform random generator.
}
// namespace operators
}
// namespace paddle
REGISTER_OP
(
uniform_random
,
paddle
::
operators
::
UniformRandomOp
,
paddle
::
operators
::
UniformRandomOpMaker
);
REGISTER_OP
_WITHOUT_GRADIENT
(
uniform_random
,
paddle
::
operators
::
UniformRandomOp
,
paddle
::
operators
::
UniformRandomOpMaker
);
REGISTER_OP_CPU_KERNEL
(
uniform_random
,
paddle
::
operators
::
CPUUniformRandomKernel
<
float
>
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录