Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
d7b20584
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d7b20584
编写于
9月 04, 2017
作者:
C
Cao Ying
提交者:
GitHub
9月 04, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #3845 from lcy-seso/rename_mse_to_square_error
rename mse_cost into square_error_cost.
上级
409ac4a3
10eacac9
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
35 addition
and
29 deletion
+35
-29
doc/api/v2/config/layer.rst
doc/api/v2/config/layer.rst
+2
-2
doc/getstarted/basic_usage/index_cn.rst
doc/getstarted/basic_usage/index_cn.rst
+2
-2
doc/getstarted/basic_usage/index_en.rst
doc/getstarted/basic_usage/index_en.rst
+1
-1
doc/getstarted/concepts/src/train.py
doc/getstarted/concepts/src/train.py
+1
-1
doc/getstarted/concepts/use_concepts_cn.rst
doc/getstarted/concepts/use_concepts_cn.rst
+3
-3
doc/howto/usage/k8s/k8s_distributed_cn.md
doc/howto/usage/k8s/k8s_distributed_cn.md
+1
-1
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+17
-12
python/paddle/trainer_config_helpers/tests/configs/protostr/test_cost_layers_with_weight.protostr
...ts/configs/protostr/test_cost_layers_with_weight.protostr
+4
-4
python/paddle/trainer_config_helpers/tests/configs/test_cost_layers_with_weight.py
...fig_helpers/tests/configs/test_cost_layers_with_weight.py
+1
-1
python/paddle/v2/tests/test_layer.py
python/paddle/v2/tests/test_layer.py
+3
-2
未找到文件。
doc/api/v2/config/layer.rst
浏览文件 @
d7b20584
...
...
@@ -434,9 +434,9 @@ lambda_cost
.. autoclass:: paddle.v2.layer.lambda_cost
:noindex:
mse
_cost
square_error
_cost
--------
.. autoclass:: paddle.v2.layer.
mse
_cost
.. autoclass:: paddle.v2.layer.
square_error
_cost
:noindex:
rank_cost
...
...
doc/getstarted/basic_usage/index_cn.rst
浏览文件 @
d7b20584
...
...
@@ -55,7 +55,7 @@ PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍
# 线性计算网络层: ȳ = wx + b
ȳ = fc_layer(input=x, param_attr=ParamAttr(name='w'), size=1, act=LinearActivation(), bias_attr=ParamAttr(name='b'))
# 计算误差函数,即 ȳ 和真实 y 之间的距离
cost =
mse
_cost(input= ȳ, label=y)
cost =
square_error
_cost(input= ȳ, label=y)
outputs(cost)
...
...
@@ -69,7 +69,7 @@ PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍
- **数据层**:数据层 `data_layer` 是神经网络的入口,它读入数据并将它们传输到接下来的网络层。这里数据层有两个,分别对应于变量 `x` 和 `y`。
- **全连接层**:全连接层 `fc_layer` 是基础的计算单元,这里利用它建模变量之间的线性关系。计算单元是神经网络的核心,PaddlePaddle支持大量的计算单元和任意深度的网络连接,从而可以拟合任意的函数来学习复杂的数据关系。
- **回归误差代价层**:回归误差代价层 `
mse
_cost` 是众多误差代价函数层的一种,它们在训练过程作为网络的出口,用来计算模型的误差,是模型参数优化的目标函数。
- **回归误差代价层**:回归误差代价层 `
square_error
_cost` 是众多误差代价函数层的一种,它们在训练过程作为网络的出口,用来计算模型的误差,是模型参数优化的目标函数。
定义了网络结构并保存为 `trainer_config.py` 之后,运行以下训练命令:
...
...
doc/getstarted/basic_usage/index_en.rst
浏览文件 @
d7b20584
...
...
@@ -49,7 +49,7 @@ To recover this relationship between ``X`` and ``Y``, we use a neural network wi
x = data_layer(name='x', size=1)
y = data_layer(name='y', size=1)
y_predict = fc_layer(input=x, param_attr=ParamAttr(name='w'), size=1, act=LinearActivation(), bias_attr=ParamAttr(name='b'))
cost =
mse
_cost(input=y_predict, label=y)
cost =
square_error
_cost(input=y_predict, label=y)
outputs(cost)
Some of the most fundamental usages of PaddlePaddle are demonstrated:
...
...
doc/getstarted/concepts/src/train.py
浏览文件 @
d7b20584
...
...
@@ -8,7 +8,7 @@ paddle.init(use_gpu=False)
x
=
paddle
.
layer
.
data
(
name
=
'x'
,
type
=
paddle
.
data_type
.
dense_vector
(
2
))
y_predict
=
paddle
.
layer
.
fc
(
input
=
x
,
size
=
1
,
act
=
paddle
.
activation
.
Linear
())
y
=
paddle
.
layer
.
data
(
name
=
'y'
,
type
=
paddle
.
data_type
.
dense_vector
(
1
))
cost
=
paddle
.
layer
.
mse
_cost
(
input
=
y_predict
,
label
=
y
)
cost
=
paddle
.
layer
.
square_error
_cost
(
input
=
y_predict
,
label
=
y
)
# create parameters
parameters
=
paddle
.
parameters
.
create
(
cost
)
...
...
doc/getstarted/concepts/use_concepts_cn.rst
浏览文件 @
d7b20584
...
...
@@ -81,9 +81,9 @@ PaddlePaddle支持不同类型的输入数据,主要包括四种类型,和
.. code-block:: bash
y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear())
cost = paddle.layer.
mse
_cost(input=y_predict, label=y)
cost = paddle.layer.
square_error
_cost(input=y_predict, label=y)
其中,x与y为之前描述的输入层;而y_predict是接收x作为输入,接上一个全连接层;cost接收y_predict与y作为输入,接上
均
方误差层。
其中,x与y为之前描述的输入层;而y_predict是接收x作为输入,接上一个全连接层;cost接收y_predict与y作为输入,接上
平
方误差层。
最后一层cost中记录了神经网络的所有拓扑结构,通过组合不同的layer,我们即可完成神经网络的搭建。
...
...
@@ -147,4 +147,4 @@ PaddlePaddle支持不同类型的输入数据,主要包括四种类型,和
.. literalinclude:: src/train.py
:linenos:
有关线性回归的实际应用,可以参考PaddlePaddle book的 `第一章节 <http://book.paddlepaddle.org/index.html>`_。
\ No newline at end of file
有关线性回归的实际应用,可以参考PaddlePaddle book的 `第一章节 <http://book.paddlepaddle.org/index.html>`_。
doc/howto/usage/k8s/k8s_distributed_cn.md
浏览文件 @
d7b20584
...
...
@@ -213,7 +213,7 @@ I1116 09:10:17.123440 50 Util.cpp:130] Calling runInitFunctions
I1116 09:10:17.123764 50 Util.cpp:143] Call runInitFunctions
done
.
[
WARNING 2016-11-16 09:10:17,227 default_decorators.py:40] please use keyword arguments
in
paddle config.
[
INFO 2016-11-16 09:10:17,239 networks.py:1282] The input order is
[
movie_id, title, genres, user_id, gender, age, occupation, rating]
[
INFO 2016-11-16 09:10:17,239 networks.py:1289] The output order is
[
__
mse
_cost_0__]
[
INFO 2016-11-16 09:10:17,239 networks.py:1289] The output order is
[
__
square_error
_cost_0__]
I1116 09:10:17.392917 50 Trainer.cpp:170] trainer mode: Normal
I1116 09:10:17.613910 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process
I1116 09:10:17.680917 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
d7b20584
...
...
@@ -53,7 +53,7 @@ __all__ = [
'cos_sim'
,
'hsigmoid'
,
'conv_projection'
,
'
mse
_cost'
,
'
square_error
_cost'
,
'regression_cost'
,
'classification_cost'
,
'LayerOutput'
,
...
...
@@ -4238,13 +4238,18 @@ def __cost_input__(input, label, weight=None):
@
wrap_name_default
()
@
layer_support
()
def
mse_cost
(
input
,
label
,
weight
=
None
,
name
=
None
,
coeff
=
1.0
,
layer_attr
=
None
):
def
square_error_cost
(
input
,
label
,
weight
=
None
,
name
=
None
,
coeff
=
1.0
,
layer_attr
=
None
):
"""
mean squared
error cost:
sum of square
error cost:
.. math::
\\
frac{1}{N}
\sum_{i=1}^N(t_i-y_i)^2
cost =
\
\
sum_{i=1}^N(t_i-y_i)^2
:param name: layer name.
:type name: basestring
...
...
@@ -4273,7 +4278,7 @@ def mse_cost(input, label, weight=None, name=None, coeff=1.0, layer_attr=None):
return
LayerOutput
(
name
,
LayerType
.
COST
,
parents
=
parents
,
size
=
1
)
regression_cost
=
mse
_cost
regression_cost
=
square_error
_cost
@
wrap_name_default
(
"cost"
)
...
...
@@ -5798,9 +5803,9 @@ def huber_regression_cost(input,
coeff
=
1.0
,
layer_attr
=
None
):
"""
In statistics, the Huber loss is a loss function used in robust regression,
that is less sensitive to outliers in data than the squared error loss.
Given a prediction f(x), a label y and :math:`\delta`, the loss function
In statistics, the Huber loss is a loss function used in robust regression,
that is less sensitive to outliers in data than the squared error loss.
Given a prediction f(x), a label y and :math:`\delta`, the loss function
is defined as:
.. math:
...
...
@@ -5848,13 +5853,13 @@ def huber_classification_cost(input,
coeff
=
1.0
,
layer_attr
=
None
):
"""
For classification purposes, a variant of the Huber loss called modified Huber
is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
a true binary class label :math:`y\in \left \{-1, 1
\r
ight \}`, the modified Huber
For classification purposes, a variant of the Huber loss called modified Huber
is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
a true binary class label :math:`y\in \left \{-1, 1
\r
ight \}`, the modified Huber
loss is defined as:
.. math:
loss = \max \left ( 0, 1-yf(x)
\r
ight )^2, yf(x)\geq 1
loss = \max \left ( 0, 1-yf(x)
\r
ight )^2, yf(x)\geq 1
loss = -4yf(x),
\t
ext{otherwise}
The example usage is:
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/test_cost_layers_with_weight.protostr
浏览文件 @
d7b20584
...
...
@@ -45,7 +45,7 @@ layers {
coeff: 1.0
}
layers {
name: "__
mse
_cost_0__"
name: "__
square_error
_cost_0__"
type: "square_error"
size: 1
active_type: ""
...
...
@@ -130,7 +130,7 @@ input_layer_names: "label"
input_layer_names: "weight"
input_layer_names: "multi_class_label"
output_layer_names: "__cost_0__"
output_layer_names: "__
mse
_cost_0__"
output_layer_names: "__
square_error
_cost_0__"
output_layer_names: "__nce_layer_0__"
evaluators {
name: "classification_error_evaluator"
...
...
@@ -146,7 +146,7 @@ sub_models {
layer_names: "weight"
layer_names: "__fc_layer_0__"
layer_names: "__cost_0__"
layer_names: "__
mse
_cost_0__"
layer_names: "__
square_error
_cost_0__"
layer_names: "multi_class_label"
layer_names: "__nce_layer_0__"
input_layer_names: "input"
...
...
@@ -154,7 +154,7 @@ sub_models {
input_layer_names: "weight"
input_layer_names: "multi_class_label"
output_layer_names: "__cost_0__"
output_layer_names: "__
mse
_cost_0__"
output_layer_names: "__
square_error
_cost_0__"
output_layer_names: "__nce_layer_0__"
evaluator_names: "classification_error_evaluator"
is_recurrent_layer_group: false
...
...
python/paddle/trainer_config_helpers/tests/configs/test_cost_layers_with_weight.py
浏览文件 @
d7b20584
...
...
@@ -10,7 +10,7 @@ fc = fc_layer(input=data, size=10, act=SoftmaxActivation())
outputs
(
classification_cost
(
input
=
fc
,
label
=
lbl
,
weight
=
wt
),
mse
_cost
(
square_error
_cost
(
input
=
fc
,
label
=
lbl
,
weight
=
wt
),
nce_layer
(
input
=
fc
,
...
...
python/paddle/v2/tests/test_layer.py
浏览文件 @
d7b20584
...
...
@@ -134,8 +134,9 @@ class CostLayerTest(unittest.TestCase):
cost3
=
layer
.
cross_entropy_cost
(
input
=
inference
,
label
=
label
)
cost4
=
layer
.
cross_entropy_with_selfnorm_cost
(
input
=
inference
,
label
=
label
)
cost5
=
layer
.
mse_cost
(
input
=
inference
,
label
=
label
)
cost6
=
layer
.
mse_cost
(
input
=
inference
,
label
=
label
,
weight
=
weight
)
cost5
=
layer
.
square_error_cost
(
input
=
inference
,
label
=
label
)
cost6
=
layer
.
square_error_cost
(
input
=
inference
,
label
=
label
,
weight
=
weight
)
cost7
=
layer
.
multi_binary_label_cross_entropy_cost
(
input
=
inference
,
label
=
label
)
cost8
=
layer
.
rank_cost
(
left
=
score
,
right
=
score
,
label
=
score
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录