Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
d63b7c60
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d63b7c60
编写于
2月 09, 2018
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/paddle
into add-python-layernorm
上级
1637137c
aef1ab0d
变更
18
隐藏空白更改
内联
并排
Showing
18 changed file
with
470 addition
and
254 deletion
+470
-254
paddle/operators/compare_op.h
paddle/operators/compare_op.h
+1
-1
paddle/operators/elementwise_add_op.h
paddle/operators/elementwise_add_op.h
+2
-1
paddle/operators/elementwise_div_op.h
paddle/operators/elementwise_div_op.h
+2
-1
paddle/operators/elementwise_max_op.h
paddle/operators/elementwise_max_op.h
+2
-1
paddle/operators/elementwise_min_op.h
paddle/operators/elementwise_min_op.h
+2
-1
paddle/operators/elementwise_mul_op.h
paddle/operators/elementwise_mul_op.h
+2
-1
paddle/operators/elementwise_op_function.h
paddle/operators/elementwise_op_function.h
+2
-2
paddle/operators/elementwise_pow_op.h
paddle/operators/elementwise_pow_op.h
+2
-1
paddle/operators/elementwise_sub_op.h
paddle/operators/elementwise_sub_op.h
+2
-1
paddle/operators/layer_norm_op.cc
paddle/operators/layer_norm_op.cc
+4
-199
paddle/operators/layer_norm_op.cu
paddle/operators/layer_norm_op.cu
+25
-0
paddle/operators/layer_norm_op.h
paddle/operators/layer_norm_op.h
+205
-2
paddle/operators/math/math_function.cc
paddle/operators/math/math_function.cc
+6
-0
paddle/operators/math/math_function.cu
paddle/operators/math/math_function.cu
+25
-0
paddle/operators/math/math_function.h
paddle/operators/math/math_function.h
+12
-0
paddle/operators/math/math_function_impl.h
paddle/operators/math/math_function_impl.h
+82
-0
python/paddle/v2/fluid/distribute_transpiler.py
python/paddle/v2/fluid/distribute_transpiler.py
+87
-35
python/paddle/v2/fluid/tests/test_layer_norm_op.py
python/paddle/v2/fluid/tests/test_layer_norm_op.py
+7
-8
未找到文件。
paddle/operators/compare_op.h
浏览文件 @
d63b7c60
...
...
@@ -62,7 +62,7 @@ class CompareOpKernel
z
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
axis
=
context
.
Attr
<
int
>
(
"axis"
);
ElementwiseComputeEx
<
Functor
,
DeviceContext
,
T
,
bool
>
(
context
,
x
,
y
,
axis
,
z
);
Functor
(),
z
);
}
};
...
...
paddle/operators/elementwise_add_op.h
浏览文件 @
d63b7c60
...
...
@@ -35,7 +35,8 @@ class ElementwiseAddKernel : public framework::OpKernel<T> {
auto
*
z
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
z
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
ElementwiseComputeEx
<
AddFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
z
);
ElementwiseComputeEx
<
AddFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
AddFunctor
<
T
>
(),
z
);
}
};
...
...
paddle/operators/elementwise_div_op.h
浏览文件 @
d63b7c60
...
...
@@ -35,7 +35,8 @@ class ElementwiseDivKernel : public framework::OpKernel<T> {
auto
*
z
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
z
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
ElementwiseComputeEx
<
DivFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
z
);
ElementwiseComputeEx
<
DivFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
DivFunctor
<
T
>
(),
z
);
}
};
...
...
paddle/operators/elementwise_max_op.h
浏览文件 @
d63b7c60
...
...
@@ -35,7 +35,8 @@ class ElementwiseMaxKernel : public framework::OpKernel<T> {
auto
*
z
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
z
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
ElementwiseComputeEx
<
MaxFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
z
);
ElementwiseComputeEx
<
MaxFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
MaxFunctor
<
T
>
(),
z
);
}
};
...
...
paddle/operators/elementwise_min_op.h
浏览文件 @
d63b7c60
...
...
@@ -35,7 +35,8 @@ class ElementwiseMinKernel : public framework::OpKernel<T> {
auto
*
z
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
z
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
ElementwiseComputeEx
<
MinFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
z
);
ElementwiseComputeEx
<
MinFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
MinFunctor
<
T
>
(),
z
);
}
};
...
...
paddle/operators/elementwise_mul_op.h
浏览文件 @
d63b7c60
...
...
@@ -34,7 +34,8 @@ class ElementwiseMulKernel : public framework::OpKernel<T> {
auto
*
z
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
z
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
ElementwiseComputeEx
<
MulFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
z
);
ElementwiseComputeEx
<
MulFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
MulFunctor
<
T
>
(),
z
);
}
};
...
...
paddle/operators/elementwise_op_function.h
浏览文件 @
d63b7c60
...
...
@@ -365,10 +365,10 @@ template <typename Functor, typename DeviceContext, typename T,
typename
OutType
=
T
>
void
ElementwiseComputeEx
(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
int
axis
,
const
framework
::
Tensor
*
y
,
int
axis
,
Functor
func
,
framework
::
Tensor
*
z
)
{
TransformFunctor
<
Functor
,
T
,
DeviceContext
,
OutType
>
functor
(
x
,
y
,
z
,
ctx
.
template
device_context
<
DeviceContext
>(),
Functor
()
);
x
,
y
,
z
,
ctx
.
template
device_context
<
DeviceContext
>(),
func
);
auto
x_dims
=
x
->
dims
();
auto
y_dims
=
y
->
dims
();
...
...
paddle/operators/elementwise_pow_op.h
浏览文件 @
d63b7c60
...
...
@@ -36,7 +36,8 @@ class ElementwisePowKernel : public framework::OpKernel<T> {
auto
*
z
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
z
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
ElementwiseComputeEx
<
PowFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
z
);
ElementwiseComputeEx
<
PowFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
PowFunctor
<
T
>
(),
z
);
}
};
...
...
paddle/operators/elementwise_sub_op.h
浏览文件 @
d63b7c60
...
...
@@ -34,7 +34,8 @@ class ElementwiseSubKernel : public framework::OpKernel<T> {
auto
*
z
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
z
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
ElementwiseComputeEx
<
SubFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
z
);
ElementwiseComputeEx
<
SubFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
SubFunctor
<
T
>
(),
z
);
}
};
...
...
paddle/operators/layer_norm_op.cc
浏览文件 @
d63b7c60
...
...
@@ -21,13 +21,6 @@ using Tensor = framework::Tensor;
using
LoDTensor
=
framework
::
LoDTensor
;
using
DataLayout
=
framework
::
DataLayout
;
template
<
typename
T
>
using
EigenMatrixMapRowMajor
=
Eigen
::
Map
<
Eigen
::
Matrix
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>>
;
template
<
typename
T
>
using
ConstEigenMatrixMapRowMajor
=
Eigen
::
Map
<
const
Eigen
::
Matrix
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>>
;
class
LayerNormOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -108,7 +101,6 @@ class LayerNormOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
Layer Normalization.
Layer Norm has been implemented as discussed in the paper:
https://arxiv.org/abs/1607.06450
...
...
...
@@ -116,75 +108,6 @@ https://arxiv.org/abs/1607.06450
}
};
template
<
typename
T
>
class
LayerNormKernel
<
platform
::
CPUDeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
&
x_dims
=
x
->
dims
();
const
auto
begin_norm_axis
=
ctx
.
Attr
<
int
>
(
"begin_norm_axis"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
*
mean
=
ctx
.
Output
<
Tensor
>
(
"Mean"
);
auto
*
var
=
ctx
.
Output
<
Tensor
>
(
"Variance"
);
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
var
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
matrix_dim
=
framework
::
flatten_to_2d
(
x_dims
,
begin_norm_axis
);
int
left
=
static_cast
<
int
>
(
matrix_dim
[
0
]);
int
right
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
auto
input_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
x
->
data
<
T
>
(),
left
,
right
);
auto
mean_map
=
EigenMatrixMapRowMajor
<
T
>
(
mean
->
data
<
T
>
(),
left
,
1
);
auto
var_map
=
EigenMatrixMapRowMajor
<
T
>
(
var
->
data
<
T
>
(),
left
,
1
);
auto
output_map
=
EigenMatrixMapRowMajor
<
T
>
(
output
->
data
<
T
>
(),
left
,
right
);
auto
squre
=
[](
T
ele
)
{
return
ele
*
ele
;
};
auto
add_epslion
=
[
epsilon
](
T
ele
)
{
return
ele
+
epsilon
;
};
mean_map
=
input_map
.
rowwise
().
mean
();
var_map
=
(
input_map
-
mean_map
.
replicate
(
1
,
right
))
.
unaryExpr
(
squre
)
.
rowwise
()
.
mean
()
.
unaryExpr
(
add_epslion
);
auto
inv_std_func
=
[](
T
ele
)
{
return
std
::
sqrt
(
1
/
ele
);
};
// TODO(zcd): Some thinking about output_map, is it appropriate that
// `output_map` and `input_map` point to the same memory.
auto
inv_std
=
var_map
.
unaryExpr
(
inv_std_func
);
if
(
scale
&&
bias
)
{
auto
scale_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
scale
->
data
<
T
>
(),
1
,
right
);
auto
bias_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
bias
->
data
<
T
>
(),
1
,
right
);
output_map
=
(
input_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
inv_std
.
replicate
(
1
,
right
))
.
cwiseProduct
(
scale_map
.
replicate
(
left
,
1
))
+
bias_map
.
replicate
(
left
,
1
);
}
else
if
(
scale
)
{
auto
scale_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
scale
->
data
<
T
>
(),
1
,
right
);
output_map
=
(
input_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
inv_std
.
replicate
(
1
,
right
))
.
cwiseProduct
(
scale_map
.
replicate
(
left
,
1
));
}
else
if
(
bias
)
{
auto
bias_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
bias
->
data
<
T
>
(),
1
,
right
);
output_map
=
(
input_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
inv_std
.
replicate
(
1
,
right
))
+
bias_map
.
replicate
(
left
,
1
);
}
else
{
output_map
=
(
input_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
inv_std
.
replicate
(
1
,
right
));
}
}
};
class
LayerNormGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -237,125 +160,6 @@ class LayerNormGradOp : public framework::OperatorWithKernel {
}
};
template
<
typename
T
>
class
LayerNormGradKernel
<
platform
::
CPUDeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
*
mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
const
auto
*
var
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
d_y
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
const
auto
&
x_dims
=
x
->
dims
();
const
auto
begin_norm_axis
=
ctx
.
Attr
<
int
>
(
"begin_norm_axis"
);
auto
matrix_dim
=
framework
::
flatten_to_2d
(
x_dims
,
begin_norm_axis
);
int
left
=
static_cast
<
int
>
(
matrix_dim
[
0
]);
int
right
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
// init output
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
auto
x_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
x
->
data
<
T
>
(),
left
,
right
);
auto
d_y_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
d_y
->
data
<
T
>
(),
left
,
right
);
auto
mean_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
mean
->
data
<
T
>
(),
left
,
1
);
auto
var_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
var
->
data
<
T
>
(),
left
,
1
);
if
(
d_bias
)
{
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
d_bias_map
=
EigenMatrixMapRowMajor
<
T
>
(
d_bias
->
data
<
T
>
(),
1
,
right
);
d_bias_map
=
d_y_map
.
colwise
().
sum
();
}
if
(
d_scale
)
{
d_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
d_scale_map
=
EigenMatrixMapRowMajor
<
T
>
(
d_scale
->
data
<
T
>
(),
1
,
right
);
auto
inv_std_func
=
[](
T
ele
)
{
return
std
::
sqrt
(
1
/
ele
);
};
// There are two equation to compute d_scale. One uses "Y" and the other
// does not use "Y"
d_scale_map
=
((
x_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
var_map
.
unaryExpr
(
inv_std_func
).
replicate
(
1
,
right
))
.
cwiseProduct
(
d_y_map
))
.
colwise
()
.
sum
();
}
if
(
d_x
)
{
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
d_x_map
=
EigenMatrixMapRowMajor
<
T
>
(
d_x
->
data
<
T
>
(),
left
,
right
);
auto
triple_product_func
=
[](
T
ele
)
{
return
ele
*
ele
*
ele
;
};
auto
inv_std_func
=
[](
T
ele
)
{
return
std
::
sqrt
(
1
/
ele
);
};
// TODO(zcd): these code can be refined
if
(
d_scale
)
{
auto
scale_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
scale
->
data
<
T
>
(),
1
,
right
);
// dy_dx
auto
dx_end
=
var_map
.
unaryExpr
(
inv_std_func
)
.
replicate
(
1
,
right
)
.
cwiseProduct
(
d_y_map
)
.
cwiseProduct
(
scale_map
.
replicate
(
left
,
1
));
// dy_dmean_dx
auto
dx_mean
=
(
T
(
-
1.0
)
/
right
)
*
var_map
.
unaryExpr
(
inv_std_func
)
.
replicate
(
1
,
right
)
.
cwiseProduct
(
d_y_map
)
.
cwiseProduct
(
scale_map
.
replicate
(
left
,
1
))
.
rowwise
()
.
sum
()
.
replicate
(
1
,
right
);
// dy_var_dx
auto
dvar_end_part
=
(
x_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
scale_map
.
replicate
(
left
,
1
))
.
cwiseProduct
(
d_y_map
)
.
rowwise
()
.
sum
();
auto
dvar_end
=
var_map
.
unaryExpr
(
inv_std_func
)
.
unaryExpr
(
triple_product_func
)
.
cwiseProduct
(
dvar_end_part
)
.
replicate
(
1
,
right
);
auto
dx_var
=
(
T
(
-
1.0
)
/
right
)
*
(
x_map
-
mean_map
.
replicate
(
1
,
right
)).
cwiseProduct
(
dvar_end
);
d_x_map
=
dx_end
+
dx_mean
+
dx_var
;
}
else
{
// dy_dx
auto
dx_end
=
var_map
.
unaryExpr
(
inv_std_func
)
.
replicate
(
1
,
right
)
.
cwiseProduct
(
d_y_map
);
// dy_dmean_dx
auto
dx_mean
=
(
T
(
-
1.0
)
/
right
)
*
var_map
.
unaryExpr
(
inv_std_func
)
.
replicate
(
1
,
right
)
.
cwiseProduct
(
d_y_map
)
.
rowwise
()
.
sum
()
.
replicate
(
1
,
right
);
// dy_var_dx
auto
dvar_end_part
=
(
x_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
d_y_map
)
.
rowwise
()
.
sum
();
auto
dvar_end
=
var_map
.
unaryExpr
(
inv_std_func
)
.
unaryExpr
(
triple_product_func
)
.
cwiseProduct
(
dvar_end_part
)
.
replicate
(
1
,
right
);
auto
dx_var
=
(
T
(
-
1.0
)
/
right
)
*
(
x_map
-
mean_map
.
replicate
(
1
,
right
)).
cwiseProduct
(
dvar_end
);
d_x_map
=
dx_end
+
dx_mean
+
dx_var
;
}
}
}
};
}
// namespace operators
}
// namespace paddle
...
...
@@ -363,8 +167,9 @@ namespace ops = paddle::operators;
REGISTER_OP
(
layer_norm
,
ops
::
LayerNormOp
,
ops
::
LayerNormOpMaker
,
layer_norm_grad
,
ops
::
LayerNormGradOp
);
REGISTER_OP_CPU_KERNEL
(
layer_norm
,
ops
::
LayerNormKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
layer_norm
,
ops
::
LayerNormKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
LayerNormKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
layer_norm_grad
,
ops
::
LayerNormGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
ops
::
LayerNormGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
LayerNormGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/operators/layer_norm_op.cu
0 → 100644
浏览文件 @
d63b7c60
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/layer_norm_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
layer_norm
,
ops
::
LayerNormKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
LayerNormKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
layer_norm_grad
,
ops
::
LayerNormGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
LayerNormGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/operators/layer_norm_op.h
浏览文件 @
d63b7c60
...
...
@@ -16,19 +16,222 @@ limitations under the License. */
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/elementwise_op_function.h"
#include "paddle/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
struct
SubAndSquareFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
return
(
a
-
b
)
*
(
a
-
b
);
}
};
template
<
typename
T
>
struct
DivAndSqrtFunctor
{
explicit
DivAndSqrtFunctor
(
T
epsilon
)
{
epsilon_
=
epsilon
;
}
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
return
a
/
(
sqrt
(
b
+
epsilon_
));
}
private:
T
epsilon_
;
};
template
<
typename
T
>
struct
MulFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
return
a
*
b
;
}
};
template
<
typename
T
>
struct
AddFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
return
a
+
b
;
}
};
template
<
typename
T
>
struct
SubFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
return
a
-
b
;
}
};
template
<
typename
T
>
struct
MulInvVarFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
return
a
*
std
::
sqrt
(
1.0
/
b
);
}
};
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
DataLayout
=
framework
::
DataLayout
;
template
<
typename
DeviceContext
,
typename
T
>
class
LayerNormKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
x
=
*
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
*
mean
=
ctx
.
Output
<
Tensor
>
(
"Mean"
);
auto
*
var
=
ctx
.
Output
<
Tensor
>
(
"Variance"
);
const
auto
begin_norm_axis
=
ctx
.
Attr
<
int
>
(
"begin_norm_axis"
);
const
auto
x_dims
=
x
.
dims
();
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
var
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
matrix_dim
=
framework
::
flatten_to_2d
(
x_dims
,
begin_norm_axis
);
int
left
=
static_cast
<
int
>
(
matrix_dim
[
0
]);
int
right
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
framework
::
DDim
matrix_shape
({
left
,
right
});
x
.
Resize
(
matrix_shape
);
Tensor
out
;
out
.
ShareDataWith
(
*
y
);
out
.
Resize
(
matrix_shape
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
math
::
RowwiseMean
<
DeviceContext
,
T
>
row_mean
;
// get mean
row_mean
(
dev_ctx
,
x
,
mean
);
// get variance
ElementwiseComputeEx
<
SubAndSquareFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
x
,
mean
,
/*axis*/
0
,
SubAndSquareFunctor
<
T
>
(),
&
out
);
row_mean
(
dev_ctx
,
out
,
var
);
// get x_norm
ElementwiseComputeEx
<
SubFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
x
,
mean
,
/*axis*/
0
,
SubFunctor
<
T
>
(),
&
out
);
ElementwiseComputeEx
<
DivAndSqrtFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
out
,
var
,
/*axis*/
0
,
DivAndSqrtFunctor
<
T
>
(
static_cast
<
T
>
(
epsilon
)),
&
out
);
if
(
scale
)
{
ElementwiseComputeEx
<
MulFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
out
,
scale
,
/*axis*/
1
,
MulFunctor
<
T
>
(),
&
out
);
}
if
(
bias
)
{
ElementwiseComputeEx
<
AddFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
out
,
bias
,
/*axis*/
1
,
AddFunctor
<
T
>
(),
&
out
);
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
LayerNormGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
auto
x
=
*
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
auto
*
var
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
d_y
=
*
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
const
auto
begin_norm_axis
=
ctx
.
Attr
<
int
>
(
"begin_norm_axis"
);
// init output
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
const
auto
&
x_dims
=
x
.
dims
();
auto
matrix_dim
=
framework
::
flatten_to_2d
(
x_dims
,
begin_norm_axis
);
int
left
=
static_cast
<
int
>
(
matrix_dim
[
0
]);
int
right
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
framework
::
DDim
matrix_shape
({
left
,
right
});
d_y
.
Resize
(
matrix_shape
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
math
::
ColwiseSum
<
DeviceContext
,
T
>
colwise_sum
;
Tensor
temp
;
Tensor
temp_norm
;
if
(
d_scale
||
d_x
)
{
x
.
Resize
(
matrix_shape
);
temp
.
mutable_data
<
T
>
(
matrix_shape
,
ctx
.
GetPlace
());
if
(
!
(
bias
&&
scale
))
{
temp_norm
.
ShareDataWith
(
*
y
);
temp_norm
.
Resize
(
matrix_shape
);
}
else
{
temp_norm
.
mutable_data
<
T
>
(
matrix_shape
,
ctx
.
GetPlace
());
// get x_norm
ElementwiseComputeEx
<
SubFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
x
,
mean
,
/*axis*/
0
,
SubFunctor
<
T
>
(),
&
temp_norm
);
ElementwiseComputeEx
<
DivAndSqrtFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
temp_norm
,
var
,
/*axis*/
0
,
DivAndSqrtFunctor
<
T
>
(
static_cast
<
T
>
(
epsilon
)),
&
temp_norm
);
}
}
if
(
d_bias
)
{
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
colwise_sum
(
dev_ctx
,
d_y
,
d_bias
);
}
if
(
d_scale
)
{
d_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
ElementwiseComputeEx
<
MulFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
temp_norm
,
&
d_y
,
/*axis*/
0
,
MulFunctor
<
T
>
(),
&
temp
);
colwise_sum
(
dev_ctx
,
temp
,
d_scale
);
}
if
(
d_x
)
{
framework
::
DDim
vec_shape
({
left
});
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dx_dim
=
d_x
->
dims
();
Tensor
temp_vec
;
temp_vec
.
mutable_data
<
T
>
(
vec_shape
,
ctx
.
GetPlace
());
math
::
RowwiseMean
<
DeviceContext
,
T
>
row_mean
;
if
(
d_scale
)
{
// dy_dx
ElementwiseComputeEx
<
MulFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
d_y
,
scale
,
/*axis*/
1
,
MulFunctor
<
T
>
(),
&
temp
);
framework
::
Copy
(
temp
,
ctx
.
GetPlace
(),
ctx
.
device_context
(),
d_x
);
// dy_dmean_dx
row_mean
(
dev_ctx
,
temp
,
&
temp_vec
);
ElementwiseComputeEx
<
SubFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
d_x
,
&
temp_vec
,
/*axis*/
0
,
SubFunctor
<
T
>
(),
d_x
);
// dy_var_dx
ElementwiseComputeEx
<
MulFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
temp
,
&
temp_norm
,
/*axis*/
0
,
MulFunctor
<
T
>
(),
&
temp
);
}
else
{
// dy_dx
framework
::
Copy
(
d_y
,
ctx
.
GetPlace
(),
ctx
.
device_context
(),
d_x
);
// dy_dmean_dx
row_mean
(
dev_ctx
,
d_y
,
&
temp_vec
);
ElementwiseComputeEx
<
SubFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
d_x
,
&
temp_vec
,
/*axis*/
0
,
SubFunctor
<
T
>
(),
d_x
);
// dy_var_dx
ElementwiseComputeEx
<
MulFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
d_y
,
&
temp_norm
,
/*axis*/
0
,
MulFunctor
<
T
>
(),
&
temp
);
}
// dy_var_dx
row_mean
(
dev_ctx
,
temp
,
&
temp_vec
);
ElementwiseComputeEx
<
MulFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
temp_norm
,
&
temp_vec
,
/*axis*/
0
,
MulFunctor
<
T
>
(),
&
temp
);
ElementwiseComputeEx
<
SubFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
d_x
,
&
temp
,
/*axis*/
0
,
SubFunctor
<
T
>
(),
d_x
);
ElementwiseComputeEx
<
DivAndSqrtFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
d_x
,
var
,
/*axis*/
0
,
DivAndSqrtFunctor
<
T
>
(
static_cast
<
T
>
(
epsilon
)),
d_x
);
d_x
->
Resize
(
dx_dim
);
}
}
};
}
// namespace operators
...
...
paddle/operators/math/math_function.cc
浏览文件 @
d63b7c60
...
...
@@ -331,6 +331,12 @@ template struct RowwiseAdd<platform::CPUDeviceContext, double>;
template
struct
ColwiseSum
<
platform
::
CPUDeviceContext
,
float
>;
template
struct
ColwiseSum
<
platform
::
CPUDeviceContext
,
double
>;
template
struct
RowwiseSum
<
platform
::
CPUDeviceContext
,
float
>;
template
struct
RowwiseSum
<
platform
::
CPUDeviceContext
,
double
>;
template
struct
RowwiseMean
<
platform
::
CPUDeviceContext
,
float
>;
template
struct
RowwiseMean
<
platform
::
CPUDeviceContext
,
double
>;
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/operators/math/math_function.cu
浏览文件 @
d63b7c60
...
...
@@ -325,6 +325,31 @@ void ColwiseSum<platform::CUDADeviceContext, double>::operator()(
vector
->
data
<
double
>
());
}
template
struct
RowwiseSum
<
platform
::
CUDADeviceContext
,
float
>;
// template struct RowwiseSum<platform::CUDADeviceContext, double>;
// TODO(zcd): Following ColwiseSum format, need to confirm.
// The RowwiseSum<platform::CUDADeviceContext, double> failed in debug mode,
// and only failed for this case. So reimplemented it.
template
<
>
void
RowwiseSum
<
platform
::
CUDADeviceContext
,
double
>::
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
vector
)
{
auto
in_dims
=
input
.
dims
();
auto
size
=
input
.
numel
()
/
in_dims
[
0
];
PADDLE_ENFORCE_EQ
(
vector
->
numel
(),
in_dims
[
0
]);
framework
::
Tensor
one
;
one
.
mutable_data
<
double
>
({
size
},
context
.
GetPlace
());
SetConstant
<
platform
::
CUDADeviceContext
,
double
>
set
;
set
(
context
,
&
one
,
static_cast
<
double
>
(
1.0
));
gemv
<
platform
::
CUDADeviceContext
,
double
>
(
context
,
true
,
static_cast
<
int
>
(
in_dims
[
1
]),
static_cast
<
int
>
(
in_dims
[
0
]),
1.0
,
one
.
data
<
double
>
(),
input
.
data
<
double
>
(),
0.0
,
vector
->
data
<
double
>
());
}
template
struct
RowwiseMean
<
platform
::
CUDADeviceContext
,
float
>;
template
struct
RowwiseMean
<
platform
::
CUDADeviceContext
,
double
>;
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/operators/math/math_function.h
浏览文件 @
d63b7c60
...
...
@@ -128,6 +128,18 @@ struct ColwiseSum {
framework
::
Tensor
*
vec
);
};
template
<
typename
DeviceContext
,
typename
T
>
struct
RowwiseSum
{
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
vec
);
};
template
<
typename
DeviceContext
,
typename
T
>
struct
RowwiseMean
{
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
vec
);
};
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/operators/math/math_function_impl.h
浏览文件 @
d63b7c60
...
...
@@ -87,6 +87,88 @@ class ColwiseSum<platform::CPUDeviceContext, T> {
}
};
template
<
typename
DeviceContext
,
typename
T
>
void
RowwiseMean
<
DeviceContext
,
T
>::
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
out
)
{
auto
in_dims
=
input
.
dims
();
PADDLE_ENFORCE_EQ
(
in_dims
.
size
(),
2U
);
PADDLE_ENFORCE_EQ
(
out
->
numel
(),
in_dims
[
0
]);
auto
in
=
framework
::
EigenMatrix
<
T
>::
From
(
input
);
auto
vec
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out
);
vec
.
device
(
*
context
.
eigen_device
())
=
in
.
mean
(
Eigen
::
array
<
int
,
1
>
({{
1
}}));
}
// TODO(zcd): Following ColwiseSum format, need to confirm.
// Specialize for CPU, since Eigen implement a general reduce. However,
// rowwise-sum can be easily implemented. General reduce has a huge overhead in
// CPU
template
<
typename
T
>
class
RowwiseMean
<
platform
::
CPUDeviceContext
,
T
>
{
public:
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
out
)
{
auto
&
in_dims
=
input
.
dims
();
PADDLE_ENFORCE_EQ
(
in_dims
.
size
(),
2U
);
auto
height
=
in_dims
[
0
];
auto
size
=
in_dims
[
1
];
PADDLE_ENFORCE_EQ
(
out
->
numel
(),
height
);
auto
inv_size
=
1.0
/
size
;
T
*
out_buf
=
out
->
mutable_data
<
T
>
(
out
->
place
());
const
T
*
in_buf
=
input
.
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
static_cast
<
size_t
>
(
height
);
++
i
)
{
T
sum
=
0
;
for
(
size_t
j
=
0
;
j
<
static_cast
<
size_t
>
(
size
);
++
j
)
{
sum
+=
in_buf
[
i
*
size
+
j
];
}
out_buf
[
i
]
=
sum
*
inv_size
;
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
void
RowwiseSum
<
DeviceContext
,
T
>::
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
out
)
{
auto
in_dims
=
input
.
dims
();
PADDLE_ENFORCE_EQ
(
in_dims
.
size
(),
2U
);
PADDLE_ENFORCE_EQ
(
out
->
numel
(),
in_dims
[
0
]);
auto
in
=
framework
::
EigenMatrix
<
T
>::
From
(
input
);
auto
vec
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out
);
vec
.
device
(
*
context
.
eigen_device
())
=
in
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
1
}}));
}
// TODO(zcd): Following ColwiseSum format, need to confirm.
// Specialize for CPU, since Eigen implement a general reduce. However,
// rowwise-sum can be easily implemented. General reduce has a huge overhead in
// CPU
template
<
typename
T
>
class
RowwiseSum
<
platform
::
CPUDeviceContext
,
T
>
{
public:
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
out
)
{
auto
&
in_dims
=
input
.
dims
();
PADDLE_ENFORCE_EQ
(
in_dims
.
size
(),
2U
);
auto
height
=
in_dims
[
0
];
auto
size
=
in_dims
[
1
];
PADDLE_ENFORCE_EQ
(
out
->
numel
(),
size
);
T
*
out_buf
=
out
->
mutable_data
<
T
>
(
out
->
place
());
const
T
*
in_buf
=
input
.
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
static_cast
<
size_t
>
(
height
);
++
i
)
{
T
sum
=
0
;
for
(
size_t
j
=
0
;
j
<
static_cast
<
size_t
>
(
size
);
++
j
)
{
sum
+=
in_buf
[
i
*
size
+
j
];
}
out_buf
[
i
]
=
sum
;
}
}
};
}
// namespace math
}
// namespace operators
}
// namespace paddle
python/paddle/v2/fluid/distribute_transpiler.py
浏览文件 @
d63b7c60
...
...
@@ -300,6 +300,9 @@ class DistributeTranspiler:
pass
return
orig_shape
def
_op_input_var
(
self
,
op
,
varname
):
pass
def
_is_op_on_pserver
(
self
,
endpoint
,
all_ops
,
idx
):
"""
Recursively check if the op need to run on current server.
...
...
@@ -309,29 +312,35 @@ class DistributeTranspiler:
p
.
name
for
p
in
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
]
]
op
=
all_ops
[
idx
]
if
op
.
inputs
.
has_key
(
"Param"
):
if
op
.
inputs
[
"Param"
].
name
in
param_names
:
input_names
=
set
(
op
.
input_names
)
# TODO(typhoonzero): using Param and Grad input name to identify
# that the operator is an optimization operator, need a better way.
if
"Param"
in
input_names
:
if
op
.
input
(
"Param"
)[
0
]
in
param_names
:
return
True
else
:
for
n
in
param_names
:
if
same_or_split_var
(
n
,
op
.
input
s
[
"Param"
].
name
)
and
n
!=
op
.
inputs
[
"Param"
].
name
:
if
same_or_split_var
(
n
,
op
.
input
(
"Param"
)[
0
])
\
and
n
!=
op
.
input
(
"Param"
)[
0
]
:
return
True
return
False
else
:
j
=
idx
-
1
while
j
>=
0
:
prev_op
=
all_ops
[
j
]
prev_output_names
=
[
o
.
name
for
o
in
prev_op
.
outputs
.
values
()]
prev_input_names
=
[
o
.
name
for
o
in
prev_op
.
inputs
.
values
()]
# prev_output_names = [o.name for o in prev_op.outputs.values()]
# prev_input_names = [o.name for o in prev_op.inputs.values()]
# NOTE(typhoonzero): consider list input/output
prev_output_names
=
prev_op
.
desc
.
output_arg_names
()
prev_input_names
=
prev_op
.
desc
.
input_arg_names
()
found1
=
False
found2
=
False
for
_
,
v
in
op
.
inputs
.
iteritem
s
():
if
v
.
name
in
prev_output_names
:
for
varname
in
op
.
desc
.
input_arg_name
s
():
if
v
ar
name
in
prev_output_names
:
found1
=
self
.
_is_op_on_pserver
(
endpoint
,
all_ops
,
j
)
# later ops may produce output for prev op's next batch use.
for
_
,
v
in
op
.
outputs
.
iteritem
s
():
if
v
.
name
in
prev_input_names
:
for
varname
in
op
.
desc
.
output_arg_name
s
():
if
v
ar
name
in
prev_input_names
:
found2
=
self
.
_is_op_on_pserver
(
endpoint
,
all_ops
,
j
)
if
found1
or
found2
:
return
True
...
...
@@ -342,11 +351,11 @@ class DistributeTranspiler:
new_inputs
=
dict
()
# update param/grad shape first, then other inputs like
# moment can use the updated shape
for
key
,
var
in
opt_op
.
inputs
.
iteritems
()
:
for
key
in
opt_op
.
input_names
:
if
key
==
"Grad"
:
grad_block
=
None
for
g
in
self
.
param_grad_ep_mapping
[
endpoint
][
"grads"
]:
if
same_or_split_var
(
g
.
name
,
var
.
name
):
if
same_or_split_var
(
g
.
name
,
opt_op
.
input
(
key
)[
0
]
):
grad_block
=
g
break
if
not
grad_block
:
...
...
@@ -376,7 +385,7 @@ class DistributeTranspiler:
# param is already created on global program
param_block
=
None
for
p
in
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
]:
if
same_or_split_var
(
p
.
name
,
var
.
name
):
if
same_or_split_var
(
p
.
name
,
opt_op
.
input
(
key
)[
0
]
):
param_block
=
p
break
if
not
param_block
:
...
...
@@ -389,11 +398,12 @@ class DistributeTranspiler:
new_inputs
[
key
]
=
tmpvar
for
key
,
var
in
opt_op
.
inputs
.
iteritems
()
:
for
key
in
opt_op
.
input_names
:
if
key
in
[
"Param"
,
"Grad"
]:
continue
# update accumulator variable shape
param_shape
=
new_inputs
[
"Param"
].
shape
var
=
program
.
global_block
().
vars
[
opt_op
.
input
(
key
)[
0
]]
new_shape
=
self
.
_get_optimizer_input_shape
(
opt_op
.
type
,
key
,
var
.
shape
,
param_shape
)
tmpvar
=
program
.
global_block
().
create_var
(
...
...
@@ -412,30 +422,44 @@ class DistributeTranspiler:
shape
=
new_shape
)
# change output's ParamOut variable
opt_op
.
outputs
[
"ParamOut"
]
=
new_inputs
[
"Param"
]
outputs
=
self
.
_get_output_map_from_op
(
program
.
global_block
(),
opt_op
)
outputs
[
"ParamOut"
]
=
new_inputs
[
"Param"
]
program
.
global_block
().
append_op
(
type
=
opt_op
.
type
,
inputs
=
new_inputs
,
outputs
=
o
pt_op
.
o
utputs
,
outputs
=
outputs
,
attrs
=
opt_op
.
attrs
)
def
_append_pserver_non_opt_ops
(
self
,
program
,
pserver_program
,
opt_op
):
# Append the ops for parameters that do not need to be optimized/updated
for
_
,
var
in
opt_op
.
inputs
.
iteritems
():
program
.
global_block
().
create_var
(
name
=
var
.
name
,
persistable
=
var
.
persistable
,
dtype
=
var
.
dtype
,
shape
=
var
.
shape
)
pserver_program
.
global_block
().
create_var
(
name
=
var
.
name
,
persistable
=
var
.
persistable
,
dtype
=
var
.
dtype
,
shape
=
var
.
shape
)
inputs
=
self
.
_get_input_map_from_op
(
self
.
program
.
global_block
().
vars
,
opt_op
)
for
var
in
inputs
.
itervalues
():
if
type
(
var
)
==
list
:
varlist
=
var
else
:
varlist
=
[
var
]
for
var
in
varlist
:
# TODO(typhoonzero): will remove below line later.
program
.
global_block
().
create_var
(
name
=
var
.
name
,
persistable
=
var
.
persistable
,
dtype
=
var
.
dtype
,
shape
=
var
.
shape
)
if
not
pserver_program
.
global_block
().
vars
.
has_key
(
var
.
name
):
pserver_program
.
global_block
().
create_var
(
name
=
var
.
name
,
persistable
=
var
.
persistable
,
dtype
=
var
.
dtype
,
shape
=
var
.
shape
)
outputs
=
self
.
_get_output_map_from_op
(
self
.
program
.
global_block
().
vars
,
opt_op
)
program
.
global_block
().
append_op
(
type
=
opt_op
.
type
,
inputs
=
opt_op
.
inputs
,
outputs
=
o
pt_op
.
o
utputs
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
opt_op
.
attrs
)
def
get_pserver_program
(
self
,
endpoint
):
...
...
@@ -472,7 +496,7 @@ class DistributeTranspiler:
self
.
optimize_ops
,
idx
)
if
not
is_op_on_pserver
:
continue
if
opt_op
.
inputs
.
has_key
(
"Grad"
):
if
"Grad"
in
opt_op
.
desc
.
input_arg_names
(
):
self
.
_append_pserver_ops
(
optimize_sub_program
,
pserver_program
,
opt_op
,
endpoint
)
else
:
...
...
@@ -499,6 +523,30 @@ class DistributeTranspiler:
pserver_program
.
sync_with_cpp
()
return
pserver_program
def
_get_input_map_from_op
(
self
,
varmap
,
op
):
iomap
=
dict
()
for
key
in
op
.
input_names
:
vars
=
[]
for
varname
in
op
.
input
(
key
):
vars
.
append
(
varmap
[
varname
])
if
len
(
vars
)
==
1
:
iomap
[
key
]
=
vars
[
0
]
else
:
iomap
[
key
]
=
vars
return
iomap
def
_get_output_map_from_op
(
self
,
varmap
,
op
):
iomap
=
dict
()
for
key
in
op
.
output_names
:
vars
=
[]
for
varname
in
op
.
output
(
key
):
vars
.
append
(
varmap
[
varname
])
if
len
(
vars
)
==
1
:
iomap
[
key
]
=
vars
[
0
]
else
:
iomap
[
key
]
=
vars
return
iomap
def
get_startup_program
(
self
,
endpoint
,
pserver_program
):
"""
Get startup program for current parameter server.
...
...
@@ -529,17 +577,21 @@ class DistributeTranspiler:
# 2. rename op outputs
for
op
in
orig_s_prog
.
global_block
().
ops
:
new_inputs
=
dict
()
new_outputs
=
dict
()
# do not append startup op if var is not on this pserver
op_on_pserver
=
False
for
key
,
var
in
op
.
outputs
.
iteritems
()
:
newname
,
_
=
_get_splited_name_and_shape
(
var
.
name
)
for
key
in
op
.
output_names
:
newname
,
_
=
_get_splited_name_and_shape
(
op
.
output
(
key
)[
0
]
)
if
newname
:
op_on_pserver
=
True
new_outputs
[
key
]
=
created_var_map
[
newname
]
elif
var
.
name
in
pserver_vars
:
elif
op
.
output
(
key
)[
0
]
in
pserver_vars
:
op_on_pserver
=
True
new_outputs
[
key
]
=
pserver_vars
[
var
.
name
]
new_outputs
[
key
]
=
pserver_vars
[
op
.
output
(
key
)[
0
]]
# most startup program ops have no inputs
new_inputs
=
self
.
_get_input_map_from_op
(
pserver_vars
,
op
)
if
op_on_pserver
:
if
op
.
type
in
[
...
...
@@ -548,7 +600,7 @@ class DistributeTranspiler:
op
.
attrs
[
"shape"
]
=
new_outputs
[
"Out"
].
shape
s_prog
.
global_block
().
append_op
(
type
=
op
.
type
,
inputs
=
op
.
inputs
,
inputs
=
new_
inputs
,
outputs
=
new_outputs
,
attrs
=
op
.
attrs
)
return
s_prog
python/paddle/v2/fluid/tests/test_layer_norm_op.py
浏览文件 @
d63b7c60
...
...
@@ -20,6 +20,8 @@ import paddle.v2.fluid.core as core
from
paddle.v2.fluid.op
import
Operator
from
paddle.v2.fluid.framework
import
grad_var_name
np
.
random
.
random
(
123
)
def
_reference_layer_norm_naive
(
x
,
scale
,
beta
,
epsilon
,
begin_norm_axis
=
1
):
x_shape
=
x
.
shape
...
...
@@ -62,9 +64,9 @@ def _reference_layer_norm_grad(x, grad_y, scale, mean, var, begin_norm_axis=1):
grad_x
=
dx_end
+
d_mean
+
d_std
grad_y
.
shape
=
x_shape
x
.
shape
=
x_shape
grad_x
.
shape
,
x
.
shape
,
grad_y
.
shape
=
x_shape
,
x_shape
,
x_shape
scale
.
shape
=
scale_shape
var
.
shape
,
mean
.
shape
=
[
N
,
],
[
N
,
]
return
grad_x
,
d_scale
,
d_bias
...
...
@@ -112,10 +114,7 @@ def set_output_grad(scope, outputs, place, feed_dict=None):
class
TestLayerNormdOp
(
OpTest
):
def
__assert_close
(
self
,
tensor
,
np_array
,
msg
,
atol
=
1e-4
):
self
.
assertTrue
(
np
.
allclose
(
np
.
array
(
tensor
).
reshape
(
np_array
.
shape
),
np_array
,
atol
=
atol
),
msg
)
self
.
assertTrue
(
np
.
allclose
(
np
.
array
(
tensor
),
np_array
,
atol
=
atol
),
msg
)
def
__assert_grad_close
(
self
,
tensor
,
...
...
@@ -123,7 +122,7 @@ class TestLayerNormdOp(OpTest):
name
,
place
,
max_relative_error
=
0.02
):
a
=
np
.
array
(
tensor
)
.
reshape
(
np_array
.
shape
)
a
=
np
.
array
(
tensor
)
b
=
np_array
abs_a
=
np
.
abs
(
a
)
abs_a
[
abs_a
<
1e-5
]
=
1
...
...
@@ -151,7 +150,7 @@ class TestLayerNormdOp(OpTest):
x_shape
=
shape
D
=
reduce
(
mul
,
x_shape
[
begin_norm_axis
:
len
(
x_shape
)],
1
)
scale_shape
=
[
D
]
np
.
random
.
random
(
123
)
x_val
=
np
.
random
.
random_sample
(
x_shape
).
astype
(
np
.
float32
)
scale_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
bias_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录