未验证 提交 d5f1e300 编写于 作者: H Huihuang Zheng 提交者: GitHub

Add 0d Tensor Test Cases for cond, case, switch_case (#49544)

Add 0d Tensor Test Cases for cond, case, switch_case. Since the 3 APIs are control flow APIs, their support for 0d tensor relies on the underneath APIs. This PR just added test cases to prove that the 3 APIs have already handled 0d tensor well.
上级 5feadc0b
......@@ -89,6 +89,67 @@ class TestAPICase(unittest.TestCase):
np.testing.assert_allclose(res[3], 2, rtol=1e-05)
np.testing.assert_allclose(res[4], 2, rtol=1e-05)
def test_0d_tensor(self):
def fn_1():
return paddle.full(shape=[], dtype='int32', fill_value=1)
def fn_2():
return paddle.full(shape=[], dtype='int32', fill_value=2)
def fn_3():
return paddle.full(shape=[], dtype='int32', fill_value=3)
main_program = Program()
startup_program = Program()
with program_guard(main_program, startup_program):
x = paddle.full(shape=[], dtype='float32', fill_value=0.3)
y = paddle.full(shape=[], dtype='float32', fill_value=0.1)
z = paddle.full(shape=[], dtype='float32', fill_value=0.2)
pred_2 = paddle.less_than(x, y) # false: 0.3 < 0.1
pred_1 = paddle.less_than(z, x) # true: 0.2 < 0.3
# call fn_1
out_0 = paddle.static.nn.control_flow.case(
pred_fn_pairs=[(pred_1, fn_1), (pred_1, fn_2)], default=fn_3
)
# call fn_2
out_1 = paddle.static.nn.control_flow.case(
pred_fn_pairs=[(pred_2, fn_1), (pred_1, fn_2)], default=fn_3
)
# call default fn_3
out_2 = paddle.static.nn.control_flow.case(
pred_fn_pairs=((pred_2, fn_1), (pred_2, fn_2)), default=fn_3
)
# no default, call fn_2
out_3 = paddle.static.nn.control_flow.case(
pred_fn_pairs=[(pred_1, fn_2)]
)
# no default, call fn_2. but pred_2 is false
out_4 = paddle.static.nn.control_flow.case(
pred_fn_pairs=[(pred_2, fn_2)]
)
place = (
fluid.CUDAPlace(0)
if core.is_compiled_with_cuda()
else fluid.CPUPlace()
)
exe = fluid.Executor(place)
res = exe.run(
main_program, fetch_list=[out_0, out_1, out_2, out_3, out_4]
)
np.testing.assert_allclose(res[0], 1, rtol=1e-05)
np.testing.assert_allclose(res[1], 2, rtol=1e-05)
np.testing.assert_allclose(res[2], 3, rtol=1e-05)
np.testing.assert_allclose(res[3], 2, rtol=1e-05)
np.testing.assert_allclose(res[4], 2, rtol=1e-05)
def test_return_var_tuple(self):
def fn_1():
return layers.fill_constant(
......@@ -236,6 +297,106 @@ class TestAPICase_Nested(unittest.TestCase):
np.testing.assert_allclose(res[1], 2, rtol=1e-05)
np.testing.assert_allclose(res[2], 3, rtol=1e-05)
def test_nested_0d_tensor(self):
def fn_1(x=1):
var_5 = paddle.full(shape=[], dtype='int32', fill_value=5)
var_6 = paddle.full(shape=[], dtype='int32', fill_value=6)
out = paddle.static.nn.control_flow.case(
pred_fn_pairs=[
(
var_5 < var_6,
partial(
paddle.full,
shape=[],
dtype='int32',
fill_value=x,
),
),
(
var_5 == var_6,
partial(
paddle.full,
shape=[],
dtype='int32',
fill_value=x,
),
),
]
)
return out
def fn_2(x=2):
var_5 = paddle.full(shape=[], dtype='int32', fill_value=5)
var_6 = paddle.full(shape=[], dtype='int32', fill_value=6)
out = paddle.static.nn.control_flow.case(
pred_fn_pairs=[
(var_5 < var_6, partial(fn_1, x=x)),
(
var_5 == var_6,
partial(
paddle.full,
shape=[],
dtype='int32',
fill_value=x,
),
),
]
)
return out
def fn_3():
var_5 = paddle.full(shape=[], dtype='int32', fill_value=5)
var_6 = paddle.full(shape=[], dtype='int32', fill_value=6)
out = paddle.static.nn.control_flow.case(
pred_fn_pairs=[
(var_5 < var_6, partial(fn_2, x=3)),
(
var_5 == var_6,
partial(
paddle.full,
shape=[],
dtype='int32',
fill_value=7,
),
),
]
)
return out
main_program = Program()
startup_program = Program()
with program_guard(main_program, startup_program):
x = paddle.full(shape=[], dtype='float32', fill_value=0.3)
y = paddle.full(shape=[], dtype='float32', fill_value=0.1)
z = paddle.full(shape=[], dtype='float32', fill_value=0.2)
pred_2 = paddle.less_than(x, y) # false: 0.3 < 0.1
pred_1 = paddle.less_than(z, x) # true: 0.2 < 0.3
out_1 = paddle.static.nn.control_flow.case(
pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
)
out_2 = paddle.static.nn.control_flow.case(
pred_fn_pairs=[(pred_2, fn_1), (pred_1, fn_2)], default=fn_3
)
out_3 = paddle.static.nn.control_flow.case(
pred_fn_pairs=[(x == y, fn_1), (x == z, fn_2)], default=fn_3
)
place = (
fluid.CUDAPlace(0)
if core.is_compiled_with_cuda()
else fluid.CPUPlace()
)
exe = fluid.Executor(place)
res = exe.run(main_program, fetch_list=[out_1, out_2, out_3])
np.testing.assert_allclose(res[0], 1, rtol=1e-05)
np.testing.assert_allclose(res[1], 2, rtol=1e-05)
np.testing.assert_allclose(res[2], 3, rtol=1e-05)
class TestAPICase_Error(unittest.TestCase):
def test_error(self):
......
......@@ -68,6 +68,115 @@ class TestCondInputOutput(unittest.TestCase):
np.asarray(ret), np.full((3, 2), -1, np.int32), rtol=1e-05
)
def test_return_0d_tensor(self):
"""
pseudocode:
if 0.23 >= 0.1:
return 2
else:
return -1
"""
paddle.enable_static()
def true_func():
return paddle.full(shape=[], dtype='int32', fill_value=2)
def false_func():
return paddle.full(shape=[], dtype='int32', fill_value=-1)
main_program = Program()
startup_program = Program()
with program_guard(main_program, startup_program):
x = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
y = paddle.full(shape=[1], dtype='float32', fill_value=0.23)
pred = paddle.greater_equal(y, x)
out = paddle.static.nn.cond(pred, true_func, false_func)
# out is one tensor
place = (
fluid.CUDAPlace(0)
if core.is_compiled_with_cuda()
else fluid.CPUPlace()
)
exe = fluid.Executor(place)
(ret,) = exe.run(main_program, fetch_list=[out.name])
np.testing.assert_allclose(np.asarray(ret), np.array(2), rtol=1e-05)
def test_0d_tensor_as_cond(self):
"""
pseudocode:
if 0.23 >= 0.1:
return 2
else:
return -1
"""
paddle.enable_static()
def true_func():
return paddle.full(shape=[3, 3], dtype='int32', fill_value=2)
def false_func():
return paddle.full(shape=[3, 3], dtype='int32', fill_value=-1)
main_program = Program()
startup_program = Program()
with program_guard(main_program, startup_program):
x = paddle.full(shape=[], dtype='float32', fill_value=0.1)
y = paddle.full(shape=[], dtype='float32', fill_value=0.23)
pred = paddle.greater_equal(y, x)
out = paddle.static.nn.cond(pred, true_func, false_func)
# out is one tensor
place = (
fluid.CUDAPlace(0)
if core.is_compiled_with_cuda()
else fluid.CPUPlace()
)
exe = fluid.Executor(place)
(ret,) = exe.run(main_program, fetch_list=[out.name])
np.testing.assert_allclose(
np.asarray(ret), np.full((3, 3), 2, np.int32), rtol=1e-05
)
def test_0d_tensor_backward(self):
"""
pseudocode:
a = -2.0
if a >= 0:
return a
else:
return -a
"""
paddle.enable_static()
main_program = Program()
startup_program = Program()
with program_guard(main_program, startup_program):
a = paddle.full(shape=[], dtype='float32', fill_value=-2.0)
a.stop_gradient = False
out = paddle.static.nn.cond(a >= 0, lambda: a, lambda: -a)
append_backward(out)
place = (
fluid.CUDAPlace(0)
if core.is_compiled_with_cuda()
else fluid.CPUPlace()
)
exe = fluid.Executor(place)
ret = exe.run(main_program, fetch_list=[out.name, a.grad_name])
np.testing.assert_allclose(
np.asarray(ret[0]), np.array(2.0), rtol=1e-05
)
np.testing.assert_allclose(
np.asarray(ret[1]), np.array(-1.0), rtol=1e-05
)
def test_return_var_tuple(self):
"""
pseudocode:
......@@ -358,6 +467,70 @@ class TestCondNestedControlFlow(unittest.TestCase):
self.assertEqual(ret[0][0], expected_ret)
self.assertEqual(ret[1][0], expected_a_grad)
def test_cond_inside_cond_0d_tensor(self):
"""
pseudocode:
i = 3.0
a = 2 * i
if i < 5:
if i >= 3:
return a + 1
else:
return 1 - a
else:
if i < 8:
return a * 2
else:
return a / 2
"""
paddle.enable_static()
def less_than_branch(i, a):
return paddle.static.nn.cond(
i >= 3.0,
lambda: a + 1,
lambda: 1 - a,
)
def greater_equal_branch(i, a):
return paddle.static.nn.cond(
i < 8.0,
lambda: a * 2,
lambda: a / 2,
)
main_program = Program()
startup_program = Program()
with program_guard(main_program, startup_program):
i = paddle.full(fill_value=3.0, shape=[], dtype='float32')
i.stop_gradient = False
a = 2.0 * i
out = paddle.static.nn.cond(
i < 5.0,
lambda: less_than_branch(i, a),
lambda: greater_equal_branch(i, a),
)
mean = paddle.mean(out)
append_backward(out)
place = (
fluid.CUDAPlace(0)
if core.is_compiled_with_cuda()
else fluid.CPUPlace()
)
exe = fluid.Executor(place)
ret = exe.run(
main_program,
fetch_list=[out.name, i.grad_name],
)
np.testing.assert_allclose(
np.asarray(ret[0]), np.array(7.0), rtol=1e-05
)
np.testing.assert_allclose(
np.asarray(ret[1]), np.array(2.0), rtol=1e-05
)
def test_cond_op_in_condition(self):
paddle.enable_static()
main_program = fluid.Program()
......
......@@ -114,6 +114,93 @@ class TestAPISwitchCase(unittest.TestCase):
err_msg='result is {} but answer is {}'.format(res[0], 2),
)
def test_0d_tensor(self):
def fn_1():
return paddle.full(shape=[], dtype='int32', fill_value=1)
def fn_2():
return paddle.full(shape=[], dtype='int32', fill_value=2)
def fn_3():
return paddle.full(shape=[], dtype='int32', fill_value=3)
main_program = Program()
startup_program = Program()
with program_guard(main_program, startup_program):
index_1 = paddle.full(shape=[], dtype='int32', fill_value=1)
index_2 = paddle.full(shape=[], dtype='int32', fill_value=2)
index_5 = paddle.full(shape=[], dtype='int32', fill_value=5)
# call fn_1
out_0 = paddle.static.nn.switch_case(
branch_index=index_1, branch_fns={1: fn_1, 2: fn_2, 3: fn_3}
)
# call fn_2 : branch_fns={0: fn_1, 1:fn_2, 2:fn_3}
out_1 = paddle.static.nn.switch_case(
branch_index=index_1, branch_fns=(fn_1, fn_2, fn_3)
)
# call default fn_3
out_2 = paddle.static.nn.switch_case(
branch_index=index_5,
branch_fns=((1, fn_1), (2, fn_2)),
default=fn_3,
)
# no default, call fn_2
out_3 = paddle.static.nn.switch_case(
branch_index=index_2, branch_fns=[(1, fn_1), (2, fn_2)]
)
# no default, call fn_2 but branch_index is 5
out_4 = paddle.static.nn.switch_case(
branch_index=index_5,
branch_fns=[(1, fn_1), (3, fn_2), (2, fn_3)],
)
place = (
fluid.CUDAPlace(0)
if core.is_compiled_with_cuda()
else fluid.CPUPlace()
)
exe = fluid.Executor(place)
res = exe.run(
main_program, fetch_list=[out_0, out_1, out_2, out_3, out_4]
)
np.testing.assert_allclose(
res[0],
1,
rtol=1e-05,
err_msg='result is {} but answer is {}'.format(res[0], 1),
)
np.testing.assert_allclose(
res[1],
2,
rtol=1e-05,
err_msg='result is {} but answer is {}'.format(res[0], 2),
)
np.testing.assert_allclose(
res[2],
3,
rtol=1e-05,
err_msg='result is {} but answer is {}'.format(res[0], 3),
)
np.testing.assert_allclose(
res[3],
2,
rtol=1e-05,
err_msg='result is {} but answer is {}'.format(res[0], 2),
)
np.testing.assert_allclose(
res[4],
2,
rtol=1e-05,
err_msg='result is {} but answer is {}'.format(res[0], 2),
)
def test_return_var_tuple(self):
def fn_1():
return layers.fill_constant(
......@@ -257,6 +344,101 @@ class TestAPISwitchCase_Nested(unittest.TestCase):
err_msg='result is {} but answer is {}'.format(res[2], 3),
)
def test_nested_switch_0d_tensor(self):
def fn_1(x=1):
out = paddle.static.nn.switch_case(
branch_index=paddle.full(shape=[], dtype='int32', fill_value=x),
branch_fns={
1: partial(
paddle.full, shape=[], dtype='int32', fill_value=1
),
x: partial(
paddle.full, shape=[], dtype='int32', fill_value=x
),
},
)
return out
def fn_2(x=2):
out = paddle.static.nn.switch_case(
branch_index=paddle.full(shape=[], dtype='int32', fill_value=2),
branch_fns={
1: partial(
paddle.full,
shape=[],
dtype='int32',
fill_value=1,
),
2: partial(fn_1, x=x),
},
)
return out
def fn_3():
out = paddle.static.nn.switch_case(
branch_index=paddle.full(shape=[], dtype='int32', fill_value=3),
branch_fns={
1: partial(
paddle.full,
shape=[],
dtype='int32',
fill_value=1,
),
3: partial(fn_2, x=3),
},
)
return out
main_program = Program()
startup_program = Program()
with program_guard(main_program, startup_program):
index_1 = fluid.data(name="index_1", shape=[1], dtype='uint8')
index_2 = paddle.full(shape=[], dtype='int32', fill_value=2)
index_3 = paddle.full(shape=[], dtype='int64', fill_value=3)
out_1 = paddle.static.nn.switch_case(
branch_index=index_1, branch_fns={1: fn_1, 2: fn_2, 3: fn_3}
)
out_2 = paddle.static.nn.switch_case(
branch_index=index_2, branch_fns={1: fn_1, 2: fn_2, 3: fn_3}
)
out_3 = paddle.static.nn.switch_case(
branch_index=index_3, branch_fns={1: fn_1, 2: fn_2, 3: fn_3}
)
place = (
fluid.CUDAPlace(0)
if core.is_compiled_with_cuda()
else fluid.CPUPlace()
)
exe = fluid.Executor(place)
res = exe.run(
main_program,
feed={"index_1": np.array([1], dtype="uint8")},
fetch_list=[out_1, out_2, out_3],
)
np.testing.assert_allclose(
res[0],
1,
rtol=1e-05,
err_msg='result is {} but answer is {}'.format(res[0], 1),
)
np.testing.assert_allclose(
res[1],
2,
rtol=1e-05,
err_msg='result is {} but answer is {}'.format(res[1], 2),
)
np.testing.assert_allclose(
res[2],
3,
rtol=1e-05,
err_msg='result is {} but answer is {}'.format(res[2], 3),
)
# test TypeError and ValueError of api switch_case
class TestAPISwitchCase_Error(unittest.TestCase):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册