Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
d5bebf0b
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d5bebf0b
编写于
3月 24, 2022
作者:
王
王明冬
提交者:
GitHub
3月 24, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[infrt] fix bug in emit si32 attribute. (#40860)
上级
83ae1619
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
24 addition
and
14 deletion
+24
-14
paddle/infrt/dialect/phi/pass/phi_op_convert_pass.cc
paddle/infrt/dialect/phi/pass/phi_op_convert_pass.cc
+3
-2
paddle/infrt/host_context/mlir_to_runtime_translate.cc
paddle/infrt/host_context/mlir_to_runtime_translate.cc
+3
-3
paddle/infrt/tests/dialect/phi/phi_test.mlir
paddle/infrt/tests/dialect/phi/phi_test.mlir
+14
-9
paddle/phi/core/compat/op_utils.h
paddle/phi/core/compat/op_utils.h
+4
-0
未找到文件。
paddle/infrt/dialect/phi/pass/phi_op_convert_pass.cc
浏览文件 @
d5bebf0b
...
@@ -97,8 +97,9 @@ void PhiOpConvertPass::convertStage() {
...
@@ -97,8 +97,9 @@ void PhiOpConvertPass::convertStage() {
}
}
auto
loc
=
getFunction
().
getLoc
();
auto
loc
=
getFunction
().
getLoc
();
builder
.
setInsertionPoint
(
op
);
builder
.
setInsertionPoint
(
op
);
op_name
=
phi
::
TransToPhiKernelName
(
op_name
);
if
(
!::
phi
::
OpUtilsMap
::
Instance
().
Contains
(
op_name
))
{
if
(
!::
phi
::
OpUtilsMap
::
Instance
().
HasArgumentMappingFn
(
op_name
))
{
op_name
=
phi
::
TransToPhiKernelName
(
op_name
);
auto
kernel_op
=
builder
.
create
<
infrt
::
KernelOp
>
(
loc
,
auto
kernel_op
=
builder
.
create
<
infrt
::
KernelOp
>
(
loc
,
op
->
getResultTypes
(),
op
->
getResultTypes
(),
op
->
getOperands
(),
op
->
getOperands
(),
...
...
paddle/infrt/host_context/mlir_to_runtime_translate.cc
浏览文件 @
d5bebf0b
...
@@ -130,7 +130,7 @@ boost::optional<int32_t> MlirToRuntimeTranslator::EmitAttribute(
...
@@ -130,7 +130,7 @@ boost::optional<int32_t> MlirToRuntimeTranslator::EmitAttribute(
if
(
attr
.
isa
<
mlir
::
IntegerAttr
>
())
{
if
(
attr
.
isa
<
mlir
::
IntegerAttr
>
())
{
auto
val
=
attr
.
cast
<
mlir
::
IntegerAttr
>
();
auto
val
=
attr
.
cast
<
mlir
::
IntegerAttr
>
();
if
(
val
.
getType
().
isInteger
(
32
))
{
if
(
val
.
getType
().
isInteger
(
32
))
{
return
val
.
get
Int
();
return
val
.
get
Value
().
getSExtValue
();
}
}
}
}
return
boost
::
none
;
return
boost
::
none
;
...
@@ -142,7 +142,7 @@ boost::optional<int64_t> MlirToRuntimeTranslator::EmitAttribute(
...
@@ -142,7 +142,7 @@ boost::optional<int64_t> MlirToRuntimeTranslator::EmitAttribute(
if
(
attr
.
isa
<
mlir
::
IntegerAttr
>
())
{
if
(
attr
.
isa
<
mlir
::
IntegerAttr
>
())
{
auto
val
=
attr
.
cast
<
mlir
::
IntegerAttr
>
();
auto
val
=
attr
.
cast
<
mlir
::
IntegerAttr
>
();
if
(
val
.
getType
().
isInteger
(
64
))
{
if
(
val
.
getType
().
isInteger
(
64
))
{
return
val
.
get
Int
();
return
val
.
get
Value
().
getSExtValue
();
}
}
}
}
return
boost
::
none
;
return
boost
::
none
;
...
@@ -233,7 +233,7 @@ boost::optional<std::string> MlirToRuntimeTranslator::EmitAttribute(
...
@@ -233,7 +233,7 @@ boost::optional<std::string> MlirToRuntimeTranslator::EmitAttribute(
\
\
std::vector<type__> res; \
std::vector<type__> res; \
for (auto& v : array) { \
for (auto& v : array) { \
res.push_back(v.cast<mlir::IntegerAttr>().get
Int());
\
res.push_back(v.cast<mlir::IntegerAttr>().get
Value().getSExtValue());
\
} \
} \
return res; \
return res; \
}
}
...
...
paddle/infrt/tests/dialect/phi/phi_test.mlir
浏览文件 @
d5bebf0b
// RUN: infrtexec -i %s
// RUN: infrtexec -i %s
module {
module {
func @predict(%arg0: !infrt.dense_tensor<CPU, FP32, NCHW>, %arg1: !infrt.dense_tensor<CPU, FP32, NCHW>, %arg2: !infrt.dense_tensor<CPU, FP32, NCHW>, %arg3: !infrt.dense_tensor<CPU, FP32, NCHW>, %arg4: !infrt.dense_tensor<CPU, FP32, NCHW>) -> !infrt.dense_tensor<CPU, FP32, NCHW> {
func @predict(%arg0: !infrt.dense_tensor<CPU, FP32, NCHW>,
%filter: !infrt.dense_tensor<CPU, FP32, NCHW>,
%arg1: !infrt.dense_tensor<CPU, FP32, NCHW>, %arg2: !infrt.dense_tensor<CPU, FP32, NCHW>, %arg3: !infrt.dense_tensor<CPU, FP32, NCHW>, %arg4: !infrt.dense_tensor<CPU, FP32, NCHW>) -> !infrt.dense_tensor<CPU, FP32, NCHW> {
%2 = "pd.abs"(%arg0) : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> !infrt.dense_tensor<CPU, FP32, NCHW>
%2 = "pd.abs"(%arg0) : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> !infrt.dense_tensor<CPU, FP32, NCHW>
%3 = "pd.matmul_v2"(%arg0, %2) {trans_x = false, trans_y = false} : (!infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>) -> !infrt.dense_tensor<CPU, FP32, NCHW>
%3 = "pd.matmul_v2"(%arg0, %2) {trans_x = false, trans_y = false} : (!infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>) -> !infrt.dense_tensor<CPU, FP32, NCHW>
%Y, %MeanOut, %VarianceOut = "pd.batch_norm"(%3, %arg1, %arg2, %arg3, %arg4) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>)
%4 = "pd.conv2d"(%3, %filter) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [1 : i32, 1 : i32], strides = [2 : i32, 2 : i32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>) -> !infrt.dense_tensor<CPU, FP32, NCHW>
infrt.return %Y : !infrt.dense_tensor<CPU, FP32, NCHW>
%Y, %MeanOut, %VarianceOut = "pd.batch_norm"(%4, %arg1, %arg2, %arg3, %arg4) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>)
%out = "pd.relu"(%Y) : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> !infrt.dense_tensor<CPU, FP32, NCHW>
%5 = "pd.elementwise_add"(%out, %out) {axis = -1:si32} : (!infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>) -> !infrt.dense_tensor<CPU, FP32, NCHW>
infrt.return %5 : !infrt.dense_tensor<CPU, FP32, NCHW>
}
}
func @main() {
func @main() {
%ctx = "phi_dt.create_context.cpu" (): () -> !phi.context<CPU>
%ctx = "phi_dt.create_context.cpu" (): () -> !phi.context<CPU>
%t = "phi_dt.create_dense_tensor.cpu" (%ctx) {precision=#infrt.precision<FP32>, layout=#infrt.layout<NCHW>, lod=[1
:i64], dims=[1:i64, 3:i64, 8:i64, 8:i64
]}: (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
%t = "phi_dt.create_dense_tensor.cpu" (%ctx) {precision=#infrt.precision<FP32>, layout=#infrt.layout<NCHW>, lod=[1
], dims=[1, 3, 8, 8
]}: (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
"phi_dt.fill_dense_tensor.f32"(%t) {value=[3.8:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
"phi_dt.fill_dense_tensor.f32"(%t) {value=[3.8:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
%bias = "phi_dt.create_dense_tensor.cpu" (%ctx) {precision=#infrt.precision<FP32>, layout=#infrt.layout<NCHW>, lod=[1:i64], dims=[3:i64]}: (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
%filter = "phi_dt.create_dense_tensor.cpu" (%ctx) {precision=#infrt.precision<FP32>, layout=#infrt.layout<NCHW>, lod=[1], dims=[3, 3, 8, 8]}: (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
"phi_dt.fill_dense_tensor.f32"(%filter) {value=[3.8:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
%bias = "phi_dt.create_dense_tensor.cpu" (%ctx) {precision=#infrt.precision<FP32>, layout=#infrt.layout<NCHW>, lod=[1], dims=[3]}: (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
"phi_dt.fill_dense_tensor.f32"(%bias) {value=[1.5:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
"phi_dt.fill_dense_tensor.f32"(%bias) {value=[1.5:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
%mean = "phi_dt.create_dense_tensor.cpu" (%ctx) {precision=#infrt.precision<FP32>, layout=#infrt.layout<NCHW>, lod=[1
:i64], dims=[3:i64
]}: (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
%mean = "phi_dt.create_dense_tensor.cpu" (%ctx) {precision=#infrt.precision<FP32>, layout=#infrt.layout<NCHW>, lod=[1
], dims=[3
]}: (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
"phi_dt.fill_dense_tensor.f32"(%mean) {value=[3.5:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
"phi_dt.fill_dense_tensor.f32"(%mean) {value=[3.5:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
%scale = "phi_dt.create_dense_tensor.cpu" (%ctx) {precision=#infrt.precision<FP32>, layout=#infrt.layout<NCHW>, lod=[1
:i64], dims=[3:i64
]}: (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
%scale = "phi_dt.create_dense_tensor.cpu" (%ctx) {precision=#infrt.precision<FP32>, layout=#infrt.layout<NCHW>, lod=[1
], dims=[3
]}: (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
"phi_dt.fill_dense_tensor.f32"(%scale) {value=[1.0:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
"phi_dt.fill_dense_tensor.f32"(%scale) {value=[1.0:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
%var = "phi_dt.create_dense_tensor.cpu" (%ctx) {precision=#infrt.precision<FP32>, layout=#infrt.layout<NCHW>, lod=[1
:i64], dims=[3:i64
]}: (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
%var = "phi_dt.create_dense_tensor.cpu" (%ctx) {precision=#infrt.precision<FP32>, layout=#infrt.layout<NCHW>, lod=[1
], dims=[3
]}: (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
"phi_dt.fill_dense_tensor.f32"(%var) {value=[0.0:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
"phi_dt.fill_dense_tensor.f32"(%var) {value=[0.0:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
%2 = infrt.call@predict(%t, %
bias, %mean, %scale, %var) : (
!infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>,!infrt.dense_tensor<CPU, FP32, NCHW>,!infrt.dense_tensor<CPU, FP32, NCHW>,!infrt.dense_tensor<CPU, FP32, NCHW>) -> !infrt.dense_tensor<CPU, FP32, NCHW>
%2 = infrt.call@predict(%t, %
filter, %bias, %mean, %scale, %var) : (!infrt.dense_tensor<CPU, FP32, NCHW>,
!infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>,!infrt.dense_tensor<CPU, FP32, NCHW>,!infrt.dense_tensor<CPU, FP32, NCHW>,!infrt.dense_tensor<CPU, FP32, NCHW>) -> !infrt.dense_tensor<CPU, FP32, NCHW>
//phi_dt.print_tensor(%t : !infrt.dense_tensor<CPU, FP32, NCHW>)
//phi_dt.print_tensor(%t : !infrt.dense_tensor<CPU, FP32, NCHW>)
phi_dt.print_tensor(%2 : !infrt.dense_tensor<CPU, FP32, NCHW>)
phi_dt.print_tensor(%2 : !infrt.dense_tensor<CPU, FP32, NCHW>)
...
...
paddle/phi/core/compat/op_utils.h
浏览文件 @
d5bebf0b
...
@@ -124,6 +124,10 @@ class OpUtilsMap {
...
@@ -124,6 +124,10 @@ class OpUtilsMap {
{
std
::
move
(
op_type
),
std
::
move
(
base_kernel_name
)});
{
std
::
move
(
op_type
),
std
::
move
(
base_kernel_name
)});
}
}
bool
HasArgumentMappingFn
(
const
std
::
string
&
op_type
)
const
{
return
arg_mapping_fn_map_
.
count
(
op_type
);
}
void
InsertArgumentMappingFn
(
std
::
string
op_type
,
ArgumentMappingFn
fn
)
{
void
InsertArgumentMappingFn
(
std
::
string
op_type
,
ArgumentMappingFn
fn
)
{
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
arg_mapping_fn_map_
.
count
(
op_type
),
arg_mapping_fn_map_
.
count
(
op_type
),
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录