Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
d4fc3dbb
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d4fc3dbb
编写于
9月 04, 2020
作者:
G
Guo Sheng
提交者:
GitHub
9月 04, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update some used apis in Transformer apis to 2.0 apis. (#26831) (#26989)
Fix some code samples in Tranoformer apis. test=develop
上级
e69836d2
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
37 addition
and
42 deletion
+37
-42
python/paddle/nn/layer/transformer.py
python/paddle/nn/layer/transformer.py
+37
-42
未找到文件。
python/paddle/nn/layer/transformer.py
浏览文件 @
d4fc3dbb
...
...
@@ -25,12 +25,13 @@ __all__ = [
import
copy
import
collections
from
.common
import
Linear
,
Dropout
from
.norm
import
LayerNorm
from
..
import
functional
as
F
from
...
import
tensor
from
...fluid
import
layers
from
...fluid.dygraph
import
Layer
,
LayerList
from
...fluid.param_attr
import
ParamAttr
from
...fluid.dygraph
import
Layer
,
Linear
,
Dropout
,
LayerNorm
,
LayerList
from
..
import
functional
as
F
from
...fluid.layers
import
utils
from
...fluid.layers.utils
import
map_structure
def
_convert_param_attr_to_list
(
param_attr
,
n
):
...
...
@@ -103,7 +104,7 @@ class MultiHeadAttention(Layer):
# self attention mask: [batch_size, num_heads, query_len, query_len]
attn_mask = paddle.rand((2, 2, 4, 4))
multi_head_attn = paddle.MultiHeadAttention(128, 2)
output = multi_head_attn(query, attn_mask=attn_mask) # [2, 4, 128]
output = multi_head_attn(query,
None, None,
attn_mask=attn_mask) # [2, 4, 128]
"""
Cache
=
collections
.
namedtuple
(
"Cache"
,
[
"k"
,
"v"
])
...
...
@@ -176,8 +177,8 @@ class MultiHeadAttention(Layer):
and their data types are same as inputs.
"""
q
=
self
.
q_proj
(
query
)
q
=
layers
.
reshape
(
x
=
q
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
q
=
layers
.
transpose
(
x
=
q
,
perm
=
[
0
,
2
,
1
,
3
])
q
=
tensor
.
reshape
(
x
=
q
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
q
=
tensor
.
transpose
(
x
=
q
,
perm
=
[
0
,
2
,
1
,
3
])
if
isinstance
(
cache
,
self
.
StaticCache
):
# for encoder-decoder attention in inference and has cached
...
...
@@ -187,8 +188,8 @@ class MultiHeadAttention(Layer):
if
isinstance
(
cache
,
self
.
Cache
):
# for decoder self-attention in inference
k
=
layers
.
concat
([
cache
.
k
,
k
],
axis
=
2
)
v
=
layers
.
concat
([
cache
.
v
,
v
],
axis
=
2
)
k
=
tensor
.
concat
([
cache
.
k
,
k
],
axis
=
2
)
v
=
tensor
.
concat
([
cache
.
v
,
v
],
axis
=
2
)
cache
=
self
.
Cache
(
k
,
v
)
return
(
q
,
k
,
v
)
if
cache
is
None
else
(
q
,
k
,
v
,
cache
)
...
...
@@ -219,10 +220,10 @@ class MultiHeadAttention(Layer):
"""
k
=
self
.
k_proj
(
key
)
v
=
self
.
v_proj
(
value
)
k
=
layers
.
reshape
(
x
=
k
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
k
=
layers
.
transpose
(
x
=
k
,
perm
=
[
0
,
2
,
1
,
3
])
v
=
layers
.
reshape
(
x
=
v
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
v
=
layers
.
transpose
(
x
=
v
,
perm
=
[
0
,
2
,
1
,
3
])
k
=
tensor
.
reshape
(
x
=
k
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
k
=
tensor
.
transpose
(
x
=
k
,
perm
=
[
0
,
2
,
1
,
3
])
v
=
tensor
.
reshape
(
x
=
v
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
v
=
tensor
.
transpose
(
x
=
v
,
perm
=
[
0
,
2
,
1
,
3
])
return
k
,
v
def
gen_cache
(
self
,
key
,
value
=
None
,
type
=
Cache
):
...
...
@@ -352,24 +353,25 @@ class MultiHeadAttention(Layer):
q
,
k
,
v
,
cache
=
self
.
_prepare_qkv
(
query
,
key
,
value
,
cache
)
# scale dot product attention
# TODO(guosheng): use tensor.matmul, however it doesn't support `alpha`
product
=
layers
.
matmul
(
x
=
q
,
y
=
k
,
transpose_y
=
True
,
alpha
=
self
.
head_dim
**-
0.5
)
if
attn_mask
is
not
None
:
# TODO(guosheng): support bool mask
product
=
product
+
attn_mask
weights
=
layers
.
softmax
(
product
)
weights
=
F
.
softmax
(
product
)
if
self
.
dropout
:
weights
=
layers
.
dropout
(
weights
=
F
.
dropout
(
weights
,
dropout_prob
=
self
.
dropout
,
dropout_implementation
=
"upscale_in_train"
,
is_test
=
False
)
self
.
dropout
,
training
=
self
.
training
,
mode
=
"upscale_in_train"
)
out
=
layers
.
matmul
(
weights
,
v
)
out
=
tensor
.
matmul
(
weights
,
v
)
# combine heads
out
=
layers
.
transpose
(
out
,
perm
=
[
0
,
2
,
1
,
3
])
out
=
layers
.
reshape
(
x
=
out
,
shape
=
[
0
,
0
,
out
.
shape
[
2
]
*
out
.
shape
[
3
]])
out
=
tensor
.
transpose
(
out
,
perm
=
[
0
,
2
,
1
,
3
])
out
=
tensor
.
reshape
(
x
=
out
,
shape
=
[
0
,
0
,
out
.
shape
[
2
]
*
out
.
shape
[
3
]])
# project to output
out
=
self
.
out_proj
(
out
)
...
...
@@ -429,7 +431,7 @@ class TransformerEncoderLayer(Layer):
.. code-block:: python
import paddle
from paddle import TransformerEncoderLayer
from paddle
.nn
import TransformerEncoderLayer
# encoder input: [batch_size, src_len, d_model]
enc_input = paddle.rand((2, 4, 128))
...
...
@@ -470,17 +472,14 @@ class TransformerEncoderLayer(Layer):
bias_attr
=
bias_attrs
[
0
])
self
.
linear1
=
Linear
(
d_model
,
dim_feedforward
,
weight_attrs
[
1
],
bias_attr
=
bias_attrs
[
1
])
self
.
dropout
=
Dropout
(
act_dropout
,
dropout_implementation
=
"upscale_in_train"
)
self
.
dropout
=
Dropout
(
act_dropout
,
mode
=
"upscale_in_train"
)
self
.
linear2
=
Linear
(
dim_feedforward
,
d_model
,
weight_attrs
[
1
],
bias_attr
=
bias_attrs
[
1
])
self
.
norm1
=
LayerNorm
(
d_model
)
self
.
norm2
=
LayerNorm
(
d_model
)
self
.
dropout1
=
Dropout
(
dropout
,
dropout_implementation
=
"upscale_in_train"
)
self
.
dropout2
=
Dropout
(
dropout
,
dropout_implementation
=
"upscale_in_train"
)
self
.
activation
=
getattr
(
layers
,
activation
)
self
.
dropout1
=
Dropout
(
dropout
,
mode
=
"upscale_in_train"
)
self
.
dropout2
=
Dropout
(
dropout
,
mode
=
"upscale_in_train"
)
self
.
activation
=
getattr
(
F
,
activation
)
def
forward
(
self
,
src
,
src_mask
=
None
):
"""
...
...
@@ -539,7 +538,7 @@ class TransformerEncoder(Layer):
.. code-block:: python
import paddle
from paddle import TransformerEncoderLayer, TransformerEncoder
from paddle
.nn
import TransformerEncoderLayer, TransformerEncoder
# encoder input: [batch_size, src_len, d_model]
enc_input = paddle.rand((2, 4, 128))
...
...
@@ -643,7 +642,7 @@ class TransformerDecoderLayer(Layer):
.. code-block:: python
import paddle
from paddle import TransformerDecoderLayer
from paddle
.nn
import TransformerDecoderLayer
# decoder input: [batch_size, tgt_len, d_model]
dec_input = paddle.rand((2, 4, 128))
...
...
@@ -697,20 +696,16 @@ class TransformerDecoderLayer(Layer):
bias_attr
=
bias_attrs
[
1
])
self
.
linear1
=
Linear
(
d_model
,
dim_feedforward
,
weight_attrs
[
2
],
bias_attr
=
bias_attrs
[
2
])
self
.
dropout
=
Dropout
(
act_dropout
,
dropout_implementation
=
"upscale_in_train"
)
self
.
dropout
=
Dropout
(
act_dropout
,
mode
=
"upscale_in_train"
)
self
.
linear2
=
Linear
(
dim_feedforward
,
d_model
,
weight_attrs
[
2
],
bias_attr
=
bias_attrs
[
2
])
self
.
norm1
=
LayerNorm
(
d_model
)
self
.
norm2
=
LayerNorm
(
d_model
)
self
.
norm3
=
LayerNorm
(
d_model
)
self
.
dropout1
=
Dropout
(
dropout
,
dropout_implementation
=
"upscale_in_train"
)
self
.
dropout2
=
Dropout
(
dropout
,
dropout_implementation
=
"upscale_in_train"
)
self
.
dropout3
=
Dropout
(
dropout
,
dropout_implementation
=
"upscale_in_train"
)
self
.
activation
=
getattr
(
layers
,
activation
)
self
.
dropout1
=
Dropout
(
dropout
,
mode
=
"upscale_in_train"
)
self
.
dropout2
=
Dropout
(
dropout
,
mode
=
"upscale_in_train"
)
self
.
dropout3
=
Dropout
(
dropout
,
mode
=
"upscale_in_train"
)
self
.
activation
=
getattr
(
F
,
activation
)
def
forward
(
self
,
tgt
,
memory
,
tgt_mask
=
None
,
memory_mask
=
None
,
cache
=
None
):
"""
...
...
@@ -834,7 +829,7 @@ class TransformerDecoder(Layer):
.. code-block:: python
import paddle
from paddle import TransformerDecoderLayer, TransformerDecoder
from paddle
.nn
import TransformerDecoderLayer, TransformerDecoder
# decoder input: [batch_size, tgt_len, d_model]
dec_input = paddle.rand((2, 4, 128))
...
...
@@ -1017,7 +1012,7 @@ class Transformer(Layer):
.. code-block:: python
import paddle
from paddle import Transformer
from paddle
.nn
import Transformer
# src: [batch_size, tgt_len, d_model]
enc_input = paddle.rand((2, 4, 128))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录