Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
d31e1940
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d31e1940
编写于
11月 02, 2018
作者:
W
wangguibao
浏览文件
操作
浏览文件
下载
差异文件
Merge branch develop of
https://github.com/PaddlePaddle/Paddle
into async_executor
上级
48031c41
2eaa291e
变更
26
隐藏空白更改
内联
并排
Showing
26 changed file
with
798 addition
and
389 deletion
+798
-389
CMakeLists.txt
CMakeLists.txt
+0
-1
README.md
README.md
+11
-11
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+1
-0
paddle/fluid/framework/details/broadcast_op_handle_test.cc
paddle/fluid/framework/details/broadcast_op_handle_test.cc
+1
-221
paddle/fluid/framework/details/broadcast_op_handle_test.h
paddle/fluid/framework/details/broadcast_op_handle_test.h
+271
-0
paddle/fluid/framework/details/fused_broadcast_op_handle_test.cc
...fluid/framework/details/fused_broadcast_op_handle_test.cc
+165
-0
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+17
-4
paddle/fluid/framework/lod_tensor.cc
paddle/fluid/framework/lod_tensor.cc
+1
-1
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+16
-15
paddle/fluid/framework/operator.h
paddle/fluid/framework/operator.h
+1
-1
paddle/fluid/framework/tensor_test.cc
paddle/fluid/framework/tensor_test.cc
+13
-0
paddle/fluid/inference/CMakeLists.txt
paddle/fluid/inference/CMakeLists.txt
+5
-1
paddle/fluid/inference/analysis/CMakeLists.txt
paddle/fluid/inference/analysis/CMakeLists.txt
+11
-16
paddle/fluid/inference/api/CMakeLists.txt
paddle/fluid/inference/api/CMakeLists.txt
+10
-32
paddle/fluid/inference/api/api_impl_tester.cc
paddle/fluid/inference/api/api_impl_tester.cc
+8
-6
paddle/fluid/inference/api/api_tensorrt_subgraph_engine_tester.cc
...luid/inference/api/api_tensorrt_subgraph_engine_tester.cc
+2
-2
paddle/fluid/inference/api/demo_ci/run.sh
paddle/fluid/inference/api/demo_ci/run.sh
+1
-1
paddle/fluid/inference/api/demo_ci/simple_on_word2vec.cc
paddle/fluid/inference/api/demo_ci/simple_on_word2vec.cc
+2
-6
paddle/fluid/inference/test.cmake
paddle/fluid/inference/test.cmake
+31
-0
paddle/fluid/inference/tests/api/CMakeLists.txt
paddle/fluid/inference/tests/api/CMakeLists.txt
+0
-14
paddle/fluid/operators/sum_op.cc
paddle/fluid/operators/sum_op.cc
+5
-3
paddle/scripts/paddle_build.sh
paddle/scripts/paddle_build.sh
+0
-2
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
+118
-46
python/paddle/fluid/tests/unittests/test_listen_and_serv_op.py
...n/paddle/fluid/tests/unittests/test_listen_and_serv_op.py
+61
-4
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+19
-2
python/paddle/fluid/transpiler/inference_transpiler.py
python/paddle/fluid/transpiler/inference_transpiler.py
+28
-0
未找到文件。
CMakeLists.txt
浏览文件 @
d31e1940
...
@@ -62,7 +62,6 @@ option(WITH_DISTRIBUTE "Compile with distributed support" OFF)
...
@@ -62,7 +62,6 @@ option(WITH_DISTRIBUTE "Compile with distributed support" OFF)
option
(
USE_EIGEN_FOR_BLAS
"Use matrix multiplication in Eigen"
OFF
)
option
(
USE_EIGEN_FOR_BLAS
"Use matrix multiplication in Eigen"
OFF
)
option
(
EIGEN_USE_THREADS
"Compile with multi-threaded Eigen"
OFF
)
option
(
EIGEN_USE_THREADS
"Compile with multi-threaded Eigen"
OFF
)
option
(
WITH_ARM_FP16
"Use half precision support on armv8.2-a cpu"
OFF
)
option
(
WITH_ARM_FP16
"Use half precision support on armv8.2-a cpu"
OFF
)
option
(
WITH_FAST_BUNDLE_TEST
"Bundle tests that can be run in a single process together to reduce launch overhead"
OFF
)
option
(
WITH_CONTRIB
"Compile the third-party contributation"
OFF
)
option
(
WITH_CONTRIB
"Compile the third-party contributation"
OFF
)
option
(
REPLACE_ENFORCE_GLOG
"Replace PADDLE_ENFORCE with glog/CHECK for better debug."
OFF
)
option
(
REPLACE_ENFORCE_GLOG
"Replace PADDLE_ENFORCE with glog/CHECK for better debug."
OFF
)
option
(
WITH_ANAKIN
"Compile with Anakin library"
OFF
)
option
(
WITH_ANAKIN
"Compile with Anakin library"
OFF
)
...
...
README.md
浏览文件 @
d31e1940
...
@@ -2,8 +2,8 @@
...
@@ -2,8 +2,8 @@
[

](https://travis-ci.org/PaddlePaddle/Paddle)
[

](https://travis-ci.org/PaddlePaddle/Paddle)
[

](http://paddlepaddle.org/documentation/docs/en/1.
0
/getstarted/index_en.html)
[

](http://paddlepaddle.org/documentation/docs/en/1.
1
/getstarted/index_en.html)
[

](http://paddlepaddle.org/documentation/docs/zh/1.
0
/beginners_guide/index.html)
[

](http://paddlepaddle.org/documentation/docs/zh/1.
1
/beginners_guide/index.html)
[

](https://github.com/PaddlePaddle/Paddle/releases)
[

](https://github.com/PaddlePaddle/Paddle/releases)
[

](LICENSE)
[

](LICENSE)
...
@@ -19,7 +19,7 @@ Our vision is to enable deep learning for everyone via PaddlePaddle.
...
@@ -19,7 +19,7 @@ Our vision is to enable deep learning for everyone via PaddlePaddle.
Please refer to our
[
release announcement
](
https://github.com/PaddlePaddle/Paddle/releases
)
to track the latest feature of PaddlePaddle.
Please refer to our
[
release announcement
](
https://github.com/PaddlePaddle/Paddle/releases
)
to track the latest feature of PaddlePaddle.
### Latest PaddlePaddle Release: [Fluid 1.
0.1](https://github.com/PaddlePaddle/Paddle/tree/release/1.0.0
)
### Latest PaddlePaddle Release: [Fluid 1.
1.0](https://github.com/PaddlePaddle/Paddle/tree/release/1.1
)
### Install Latest Stable Release:
### Install Latest Stable Release:
```
```
# Linux CPU
# Linux CPU
...
@@ -27,9 +27,9 @@ pip install paddlepaddle
...
@@ -27,9 +27,9 @@ pip install paddlepaddle
# Linux GPU cuda9cudnn7
# Linux GPU cuda9cudnn7
pip install paddlepaddle-gpu
pip install paddlepaddle-gpu
# Linux GPU cuda8cudnn7
# Linux GPU cuda8cudnn7
pip install paddlepaddle-gpu==1.
0.1
.post87
pip install paddlepaddle-gpu==1.
1.0
.post87
# Linux GPU cuda8cudnn5
# Linux GPU cuda8cudnn5
pip install paddlepaddle-gpu==1.
0.1
.post85
pip install paddlepaddle-gpu==1.
1.0
.post85
# For installation on other platform, refer to http://paddlepaddle.org/
# For installation on other platform, refer to http://paddlepaddle.org/
```
```
...
@@ -76,26 +76,26 @@ pip install paddlepaddle-gpu==1.0.1.post85
...
@@ -76,26 +76,26 @@ pip install paddlepaddle-gpu==1.0.1.post85
## Installation
## Installation
It is recommended to read
[
this doc
](
http://paddlepaddle.org/documentation/docs/zh/1.
0
/beginners_guide/index.html
)
on our website.
It is recommended to read
[
this doc
](
http://paddlepaddle.org/documentation/docs/zh/1.
1
/beginners_guide/index.html
)
on our website.
## Documentation
## Documentation
We provide
[
English
](
http://paddlepaddle.org/documentation/docs/en/1.
0.0
/getstarted/index_en.html
)
and
We provide
[
English
](
http://paddlepaddle.org/documentation/docs/en/1.
1
/getstarted/index_en.html
)
and
[
Chinese
](
http://paddlepaddle.org/documentation/docs/zh/1.
0
/beginners_guide/index.html
)
documentation.
[
Chinese
](
http://paddlepaddle.org/documentation/docs/zh/1.
1
/beginners_guide/index.html
)
documentation.
-
[
Deep Learning 101
](
https://github.com/PaddlePaddle/book
)
-
[
Deep Learning 101
](
https://github.com/PaddlePaddle/book
)
You might want to start from this online interactive book that can run in a Jupyter Notebook.
You might want to start from this online interactive book that can run in a Jupyter Notebook.
-
[
Distributed Training
](
http://paddlepaddle.org/documentation/docs/zh/1.
0
/user_guides/howto/training/cluster_howto.html
)
-
[
Distributed Training
](
http://paddlepaddle.org/documentation/docs/zh/1.
1
/user_guides/howto/training/cluster_howto.html
)
You can run distributed training jobs on MPI clusters.
You can run distributed training jobs on MPI clusters.
-
[
Python API
](
http://paddlepaddle.org/documentation/api/zh/1.
0
/fluid.html
)
-
[
Python API
](
http://paddlepaddle.org/documentation/api/zh/1.
1
/fluid.html
)
Our new API enables much shorter programs.
Our new API enables much shorter programs.
-
[
How to Contribute
](
http://paddlepaddle.org/documentation/docs/zh/1.
0
/advanced_usage/development/contribute_to_paddle.html
)
-
[
How to Contribute
](
http://paddlepaddle.org/documentation/docs/zh/1.
1
/advanced_usage/development/contribute_to_paddle.html
)
We appreciate your contributions!
We appreciate your contributions!
...
...
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
d31e1940
...
@@ -56,6 +56,7 @@ cc_library(scope_buffered_ssa_graph_executor SRCS scope_buffered_ssa_graph_execu
...
@@ -56,6 +56,7 @@ cc_library(scope_buffered_ssa_graph_executor SRCS scope_buffered_ssa_graph_execu
# device_context reduce_op_handle )
# device_context reduce_op_handle )
cc_library
(
fast_threaded_ssa_graph_executor SRCS fast_threaded_ssa_graph_executor.cc
cc_library
(
fast_threaded_ssa_graph_executor SRCS fast_threaded_ssa_graph_executor.cc
DEPS fetch_op_handle ssa_graph_executor scope simple_threadpool device_context
)
DEPS fetch_op_handle ssa_graph_executor scope simple_threadpool device_context
)
cc_test
(
fused_broadcast_op_test SRCS fused_broadcast_op_handle_test.cc DEPS fused_broadcast_op_handle
)
cc_library
(
build_strategy SRCS build_strategy.cc DEPS
cc_library
(
build_strategy SRCS build_strategy.cc DEPS
graph_viz_pass multi_devices_graph_pass
graph_viz_pass multi_devices_graph_pass
...
...
paddle/fluid/framework/details/broadcast_op_handle_test.cc
浏览文件 @
d31e1940
...
@@ -12,232 +12,12 @@
...
@@ -12,232 +12,12 @@
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
#include "paddle/fluid/framework/details/broadcast_op_handle_test.h"
#include "gtest/gtest.h"
#include "paddle/fluid/platform/device_context.h"
namespace
paddle
{
namespace
paddle
{
namespace
framework
{
namespace
framework
{
namespace
details
{
namespace
details
{
namespace
f
=
paddle
::
framework
;
namespace
p
=
paddle
::
platform
;
// test data amount
const
f
::
DDim
kDims
=
{
20
,
20
};
struct
TestBroadcastOpHandle
{
std
::
vector
<
std
::
unique_ptr
<
p
::
DeviceContext
>>
ctxs_
;
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
vector
<
Scope
*>
param_scopes_
;
Scope
g_scope_
;
std
::
unique_ptr
<
OpHandleBase
>
op_handle_
;
std
::
vector
<
std
::
unique_ptr
<
VarHandleBase
>>
vars_
;
std
::
vector
<
p
::
Place
>
gpu_list_
;
bool
use_gpu_
;
#ifdef PADDLE_WITH_CUDA
std
::
unique_ptr
<
platform
::
NCCLContextMap
>
nccl_ctxs_
;
#endif
void
WaitAll
()
{
for
(
size_t
j
=
0
;
j
<
ctxs_
.
size
();
++
j
)
{
ctxs_
[
j
]
->
Wait
();
}
#ifdef PADDLE_WITH_CUDA
if
(
nccl_ctxs_
)
{
nccl_ctxs_
->
WaitAll
();
}
#endif
}
void
InitCtxOnGpu
(
bool
use_gpu
)
{
use_gpu_
=
use_gpu
;
if
(
use_gpu_
)
{
#ifdef PADDLE_WITH_CUDA
int
count
=
p
::
GetCUDADeviceCount
();
if
(
count
<=
1
)
{
LOG
(
WARNING
)
<<
"Cannot test multi-gpu Broadcast, because the CUDA "
"device count is "
<<
count
;
exit
(
0
);
}
for
(
int
i
=
0
;
i
<
count
;
++
i
)
{
auto
p
=
p
::
CUDAPlace
(
i
);
gpu_list_
.
push_back
(
p
);
ctxs_
.
emplace_back
(
new
p
::
CUDADeviceContext
(
p
));
}
nccl_ctxs_
.
reset
(
new
platform
::
NCCLContextMap
(
gpu_list_
));
#else
PADDLE_THROW
(
"CUDA is not support."
);
#endif
}
else
{
int
count
=
8
;
for
(
int
i
=
0
;
i
<
count
;
++
i
)
{
auto
p
=
p
::
CPUPlace
();
gpu_list_
.
push_back
(
p
);
ctxs_
.
emplace_back
(
new
p
::
CPUDeviceContext
(
p
));
}
#ifdef PADDLE_WITH_CUDA
nccl_ctxs_
.
reset
(
nullptr
);
#endif
}
}
void
InitBroadcastOp
(
size_t
input_scope_idx
)
{
for
(
size_t
j
=
0
;
j
<
gpu_list_
.
size
();
++
j
)
{
local_scopes_
.
push_back
(
&
(
g_scope_
.
NewScope
()));
Scope
&
local_scope
=
local_scopes_
.
back
()
->
NewScope
();
*
local_scopes_
.
back
()
->
Var
(
details
::
kLocalExecScopeName
)
->
GetMutable
<
Scope
*>
()
=
&
local_scope
;
local_scope
.
Var
(
"out"
);
param_scopes_
.
emplace_back
(
&
local_scope
);
}
param_scopes_
[
input_scope_idx
]
->
Var
(
"input"
);
std
::
unique_ptr
<
ir
::
Node
>
n
=
ir
::
CreateNodeForTest
(
"node0"
,
ir
::
Node
::
Type
::
kOperation
);
if
(
use_gpu_
)
{
#ifdef PADDLE_WITH_CUDA
op_handle_
.
reset
(
new
BroadcastOpHandle
(
n
.
get
(),
local_scopes_
,
gpu_list_
,
nccl_ctxs_
.
get
()));
#else
PADDLE_THROW
(
"CUDA is not support."
);
#endif
}
else
{
#ifdef PADDLE_WITH_CUDA
op_handle_
.
reset
(
new
BroadcastOpHandle
(
n
.
get
(),
local_scopes_
,
gpu_list_
,
nccl_ctxs_
.
get
()));
#else
op_handle_
.
reset
(
new
BroadcastOpHandle
(
n
.
get
(),
local_scopes_
,
gpu_list_
));
#endif
}
std
::
unique_ptr
<
ir
::
Node
>
v
=
ir
::
CreateNodeForTest
(
"node1"
,
ir
::
Node
::
Type
::
kVariable
);
auto
*
in_var_handle
=
new
VarHandle
(
v
.
get
(),
1
,
input_scope_idx
,
"input"
,
gpu_list_
[
input_scope_idx
]);
vars_
.
emplace_back
(
in_var_handle
);
op_handle_
->
AddInput
(
in_var_handle
);
// add dummy var
std
::
unique_ptr
<
ir
::
Node
>
v2
=
ir
::
CreateNodeForTest
(
"node2"
,
ir
::
Node
::
Type
::
kVariable
);
vars_
.
emplace_back
(
new
DummyVarHandle
(
v2
.
get
()));
DummyVarHandle
*
dummy_var_handle
=
static_cast
<
DummyVarHandle
*>
(
vars_
.
back
().
get
());
dummy_var_handle
->
ClearGeneratedOp
();
op_handle_
->
AddInput
(
dummy_var_handle
);
for
(
size_t
j
=
0
;
j
<
gpu_list_
.
size
();
++
j
)
{
if
(
!
use_gpu_
)
{
op_handle_
->
SetDeviceContext
(
gpu_list_
[
j
],
ctxs_
[
j
].
get
());
}
std
::
unique_ptr
<
ir
::
Node
>
v3
=
ir
::
CreateNodeForTest
(
"node3"
,
ir
::
Node
::
Type
::
kVariable
);
VarHandle
*
out_var_handle
=
new
VarHandle
(
v3
.
get
(),
2
,
j
,
"out"
,
gpu_list_
[
j
]);
vars_
.
emplace_back
(
out_var_handle
);
op_handle_
->
AddOutput
(
out_var_handle
);
}
// add dummy var
std
::
unique_ptr
<
ir
::
Node
>
v4
=
ir
::
CreateNodeForTest
(
"node4"
,
ir
::
Node
::
Type
::
kVariable
);
vars_
.
emplace_back
(
new
DummyVarHandle
(
v4
.
get
()));
DummyVarHandle
*
out_dummy_var_handle
=
static_cast
<
DummyVarHandle
*>
(
vars_
.
back
().
get
());
out_dummy_var_handle
->
ClearGeneratedOp
();
op_handle_
->
AddOutput
(
out_dummy_var_handle
);
}
void
TestBroadcastLodTensor
(
size_t
input_scope_idx
)
{
auto
in_var
=
param_scopes_
[
input_scope_idx
]
->
FindVar
(
"input"
);
PADDLE_ENFORCE_NOT_NULL
(
in_var
);
auto
in_lod_tensor
=
in_var
->
GetMutable
<
f
::
LoDTensor
>
();
in_lod_tensor
->
mutable_data
<
float
>
(
kDims
,
gpu_list_
[
input_scope_idx
]);
std
::
vector
<
float
>
send_vector
(
static_cast
<
size_t
>
(
f
::
product
(
kDims
)));
for
(
size_t
k
=
0
;
k
<
send_vector
.
size
();
++
k
)
{
send_vector
[
k
]
=
k
;
}
f
::
LoD
lod
{{
0
,
10
,
20
}};
paddle
::
framework
::
TensorFromVector
<
float
>
(
send_vector
,
*
(
ctxs_
[
input_scope_idx
]),
in_lod_tensor
);
in_lod_tensor
->
set_lod
(
lod
);
in_lod_tensor
->
Resize
(
kDims
);
op_handle_
->
Run
(
false
);
WaitAll
();
p
::
CPUPlace
cpu_place
;
for
(
size_t
j
=
0
;
j
<
gpu_list_
.
size
();
++
j
)
{
auto
out_var
=
param_scopes_
[
j
]
->
FindVar
(
"out"
);
PADDLE_ENFORCE_NOT_NULL
(
out_var
);
auto
out_tensor
=
out_var
->
Get
<
f
::
LoDTensor
>
();
PADDLE_ENFORCE_EQ
(
out_tensor
.
lod
(),
lod
,
"lod is not equal."
);
f
::
Tensor
result_tensor
;
f
::
TensorCopySync
(
out_tensor
,
cpu_place
,
&
result_tensor
);
float
*
ct
=
result_tensor
.
mutable_data
<
float
>
(
cpu_place
);
for
(
int64_t
i
=
0
;
i
<
f
::
product
(
kDims
);
++
i
)
{
ASSERT_NEAR
(
ct
[
i
],
send_vector
[
i
],
1e-5
);
}
}
}
void
TestBroadcastSelectedRows
(
size_t
input_scope_idx
)
{
auto
in_var
=
param_scopes_
[
input_scope_idx
]
->
FindVar
(
"input"
);
PADDLE_ENFORCE_NOT_NULL
(
in_var
);
auto
in_selected_rows
=
in_var
->
GetMutable
<
f
::
SelectedRows
>
();
auto
value
=
in_selected_rows
->
mutable_value
();
value
->
mutable_data
<
float
>
(
kDims
,
gpu_list_
[
input_scope_idx
]);
int
height
=
static_cast
<
int
>
(
kDims
[
0
])
*
2
;
std
::
vector
<
int64_t
>
rows
{
0
,
1
,
2
,
3
,
3
,
0
,
14
,
7
,
3
,
1
,
2
,
4
,
6
,
3
,
1
,
1
,
1
,
1
,
3
,
7
};
in_selected_rows
->
set_height
(
height
);
in_selected_rows
->
set_rows
(
rows
);
std
::
vector
<
float
>
send_vector
(
static_cast
<
size_t
>
(
f
::
product
(
kDims
)));
for
(
size_t
k
=
0
;
k
<
send_vector
.
size
();
++
k
)
{
send_vector
[
k
]
=
k
;
}
paddle
::
framework
::
TensorFromVector
<
float
>
(
send_vector
,
*
(
ctxs_
[
input_scope_idx
]),
value
);
op_handle_
->
Run
(
false
);
WaitAll
();
p
::
CPUPlace
cpu_place
;
for
(
size_t
j
=
0
;
j
<
gpu_list_
.
size
();
++
j
)
{
auto
out_var
=
param_scopes_
[
j
]
->
FindVar
(
"out"
);
PADDLE_ENFORCE_NOT_NULL
(
out_var
);
auto
&
out_select_rows
=
out_var
->
Get
<
f
::
SelectedRows
>
();
auto
rt
=
out_select_rows
.
value
();
PADDLE_ENFORCE_EQ
(
out_select_rows
.
height
(),
height
,
"height is not equal."
);
for
(
size_t
k
=
0
;
k
<
out_select_rows
.
rows
().
size
();
++
k
)
{
PADDLE_ENFORCE_EQ
(
out_select_rows
.
rows
()[
k
],
rows
[
k
]);
}
f
::
Tensor
result_tensor
;
f
::
TensorCopySync
(
rt
,
cpu_place
,
&
result_tensor
);
float
*
ct
=
result_tensor
.
data
<
float
>
();
for
(
int64_t
i
=
0
;
i
<
f
::
product
(
kDims
);
++
i
)
{
ASSERT_NEAR
(
ct
[
i
],
send_vector
[
i
],
1e-5
);
}
}
}
};
TEST
(
BroadcastTester
,
TestCPUBroadcastTestLodTensor
)
{
TEST
(
BroadcastTester
,
TestCPUBroadcastTestLodTensor
)
{
TestBroadcastOpHandle
test_op
;
TestBroadcastOpHandle
test_op
;
size_t
input_scope_idx
=
0
;
size_t
input_scope_idx
=
0
;
...
...
paddle/fluid/framework/details/broadcast_op_handle_test.h
0 → 100644
浏览文件 @
d31e1940
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
#include "paddle/fluid/platform/device_context.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
namespace
f
=
paddle
::
framework
;
namespace
p
=
paddle
::
platform
;
// test data amount
const
f
::
DDim
kDims
=
{
20
,
20
};
struct
TestBroadcastOpHandle
{
std
::
vector
<
std
::
unique_ptr
<
p
::
DeviceContext
>>
ctxs_
;
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
vector
<
Scope
*>
param_scopes_
;
Scope
g_scope_
;
std
::
unique_ptr
<
OpHandleBase
>
op_handle_
;
std
::
vector
<
std
::
unique_ptr
<
VarHandleBase
>>
vars_
;
std
::
vector
<
p
::
Place
>
place_list_
;
bool
use_gpu_
;
#ifdef PADDLE_WITH_CUDA
std
::
unique_ptr
<
platform
::
NCCLContextMap
>
nccl_ctxs_
;
#endif
void
WaitAll
()
{
for
(
size_t
j
=
0
;
j
<
ctxs_
.
size
();
++
j
)
{
ctxs_
[
j
]
->
Wait
();
}
#ifdef PADDLE_WITH_CUDA
if
(
nccl_ctxs_
)
{
nccl_ctxs_
->
WaitAll
();
}
#endif
}
void
InitCtxOnGpu
(
bool
use_gpu
)
{
use_gpu_
=
use_gpu
;
if
(
use_gpu_
)
{
#ifdef PADDLE_WITH_CUDA
int
count
=
p
::
GetCUDADeviceCount
();
if
(
count
<=
1
)
{
LOG
(
WARNING
)
<<
"Cannot test multi-gpu Broadcast, because the CUDA "
"device count is "
<<
count
;
exit
(
0
);
}
for
(
int
i
=
0
;
i
<
count
;
++
i
)
{
auto
p
=
p
::
CUDAPlace
(
i
);
place_list_
.
push_back
(
p
);
ctxs_
.
emplace_back
(
new
p
::
CUDADeviceContext
(
p
));
}
nccl_ctxs_
.
reset
(
new
platform
::
NCCLContextMap
(
place_list_
));
#else
PADDLE_THROW
(
"CUDA is not support."
);
#endif
}
else
{
int
count
=
8
;
for
(
int
i
=
0
;
i
<
count
;
++
i
)
{
auto
p
=
p
::
CPUPlace
();
place_list_
.
push_back
(
p
);
ctxs_
.
emplace_back
(
new
p
::
CPUDeviceContext
(
p
));
}
#ifdef PADDLE_WITH_CUDA
nccl_ctxs_
.
reset
(
nullptr
);
#endif
}
}
void
InitBroadcastOp
(
size_t
input_scope_idx
)
{
for
(
size_t
j
=
0
;
j
<
place_list_
.
size
();
++
j
)
{
local_scopes_
.
push_back
(
&
(
g_scope_
.
NewScope
()));
Scope
&
local_scope
=
local_scopes_
.
back
()
->
NewScope
();
*
local_scopes_
.
back
()
->
Var
(
details
::
kLocalExecScopeName
)
->
GetMutable
<
Scope
*>
()
=
&
local_scope
;
local_scope
.
Var
(
"out"
);
param_scopes_
.
emplace_back
(
&
local_scope
);
}
param_scopes_
[
input_scope_idx
]
->
Var
(
"input"
);
std
::
unique_ptr
<
ir
::
Node
>
n
=
ir
::
CreateNodeForTest
(
"node0"
,
ir
::
Node
::
Type
::
kOperation
);
if
(
use_gpu_
)
{
#ifdef PADDLE_WITH_CUDA
op_handle_
.
reset
(
new
BroadcastOpHandle
(
n
.
get
(),
local_scopes_
,
place_list_
,
nccl_ctxs_
.
get
()));
#else
PADDLE_THROW
(
"CUDA is not support."
);
#endif
}
else
{
#ifdef PADDLE_WITH_CUDA
op_handle_
.
reset
(
new
BroadcastOpHandle
(
n
.
get
(),
local_scopes_
,
place_list_
,
nccl_ctxs_
.
get
()));
#else
op_handle_
.
reset
(
new
BroadcastOpHandle
(
n
.
get
(),
local_scopes_
,
place_list_
));
#endif
}
std
::
unique_ptr
<
ir
::
Node
>
v
=
ir
::
CreateNodeForTest
(
"node1"
,
ir
::
Node
::
Type
::
kVariable
);
auto
*
in_var_handle
=
new
VarHandle
(
v
.
get
(),
1
,
input_scope_idx
,
"input"
,
place_list_
[
input_scope_idx
]);
vars_
.
emplace_back
(
in_var_handle
);
op_handle_
->
AddInput
(
in_var_handle
);
// add dummy var
std
::
unique_ptr
<
ir
::
Node
>
v2
=
ir
::
CreateNodeForTest
(
"node2"
,
ir
::
Node
::
Type
::
kVariable
);
vars_
.
emplace_back
(
new
DummyVarHandle
(
v2
.
get
()));
DummyVarHandle
*
dummy_var_handle
=
static_cast
<
DummyVarHandle
*>
(
vars_
.
back
().
get
());
dummy_var_handle
->
ClearGeneratedOp
();
op_handle_
->
AddInput
(
dummy_var_handle
);
for
(
size_t
j
=
0
;
j
<
place_list_
.
size
();
++
j
)
{
if
(
!
use_gpu_
)
{
op_handle_
->
SetDeviceContext
(
place_list_
[
j
],
ctxs_
[
j
].
get
());
}
std
::
unique_ptr
<
ir
::
Node
>
v3
=
ir
::
CreateNodeForTest
(
"node3"
,
ir
::
Node
::
Type
::
kVariable
);
VarHandle
*
out_var_handle
=
new
VarHandle
(
v3
.
get
(),
2
,
j
,
"out"
,
place_list_
[
j
]);
vars_
.
emplace_back
(
out_var_handle
);
op_handle_
->
AddOutput
(
out_var_handle
);
}
// add dummy var
std
::
unique_ptr
<
ir
::
Node
>
v4
=
ir
::
CreateNodeForTest
(
"node4"
,
ir
::
Node
::
Type
::
kVariable
);
vars_
.
emplace_back
(
new
DummyVarHandle
(
v4
.
get
()));
DummyVarHandle
*
out_dummy_var_handle
=
static_cast
<
DummyVarHandle
*>
(
vars_
.
back
().
get
());
out_dummy_var_handle
->
ClearGeneratedOp
();
op_handle_
->
AddOutput
(
out_dummy_var_handle
);
}
std
::
vector
<
float
>
InitLoDTensor
(
const
std
::
string
&
varname
,
size_t
input_scope_idx
,
const
f
::
LoD
&
lod
,
float
val_scalar
=
0.0
)
{
auto
var
=
param_scopes_
[
input_scope_idx
]
->
FindVar
(
varname
);
PADDLE_ENFORCE_NOT_NULL
(
var
);
auto
lod_tensor
=
var
->
GetMutable
<
f
::
LoDTensor
>
();
std
::
vector
<
float
>
send_vector
(
static_cast
<
size_t
>
(
f
::
product
(
kDims
)));
for
(
size_t
k
=
0
;
k
<
send_vector
.
size
();
++
k
)
{
send_vector
[
k
]
=
k
+
val_scalar
;
}
paddle
::
framework
::
TensorFromVector
<
float
>
(
send_vector
,
*
(
ctxs_
[
input_scope_idx
]),
lod_tensor
);
lod_tensor
->
set_lod
(
lod
);
lod_tensor
->
Resize
(
kDims
);
return
send_vector
;
}
std
::
vector
<
float
>
InitSelectedRows
(
const
std
::
string
&
varname
,
size_t
input_scope_idx
,
const
std
::
vector
<
int64_t
>&
rows
,
int
height
,
float
value_scalar
=
0.0
)
{
std
::
vector
<
float
>
send_vector
(
static_cast
<
size_t
>
(
f
::
product
(
kDims
)));
for
(
size_t
k
=
0
;
k
<
send_vector
.
size
();
++
k
)
{
send_vector
[
k
]
=
k
+
value_scalar
;
}
auto
var
=
param_scopes_
[
input_scope_idx
]
->
FindVar
(
varname
);
PADDLE_ENFORCE_NOT_NULL
(
var
);
auto
selected_rows
=
var
->
GetMutable
<
f
::
SelectedRows
>
();
auto
value
=
selected_rows
->
mutable_value
();
value
->
mutable_data
<
float
>
(
kDims
,
place_list_
[
input_scope_idx
]);
selected_rows
->
set_height
(
height
);
selected_rows
->
set_rows
(
rows
);
paddle
::
framework
::
TensorFromVector
<
float
>
(
send_vector
,
*
(
ctxs_
[
input_scope_idx
]),
value
);
return
send_vector
;
}
void
SelectedRowsEqual
(
const
std
::
string
&
varname
,
int
input_scope_idx
,
const
std
::
vector
<
float
>&
send_vector
,
const
std
::
vector
<
int64_t
>&
rows
,
int
height
)
{
auto
var
=
param_scopes_
[
input_scope_idx
]
->
FindVar
(
varname
);
PADDLE_ENFORCE_NOT_NULL
(
var
);
auto
&
selected_rows
=
var
->
Get
<
f
::
SelectedRows
>
();
auto
rt
=
selected_rows
.
value
();
PADDLE_ENFORCE_EQ
(
selected_rows
.
height
(),
height
,
"height is not equal."
);
for
(
size_t
k
=
0
;
k
<
selected_rows
.
rows
().
size
();
++
k
)
{
PADDLE_ENFORCE_EQ
(
selected_rows
.
rows
()[
k
],
rows
[
k
]);
}
p
::
CPUPlace
cpu_place
;
f
::
Tensor
result_tensor
;
f
::
TensorCopySync
(
rt
,
cpu_place
,
&
result_tensor
);
float
*
ct
=
result_tensor
.
data
<
float
>
();
for
(
int64_t
i
=
0
;
i
<
f
::
product
(
kDims
);
++
i
)
{
ASSERT_NEAR
(
ct
[
i
],
send_vector
[
i
],
1e-5
);
}
}
void
LoDTensorEqual
(
const
std
::
string
&
varname
,
const
std
::
vector
<
float
>&
send_vec
,
const
f
::
LoD
&
lod
,
framework
::
Scope
*
scope
)
{
p
::
CPUPlace
cpu_place
;
auto
var
=
scope
->
FindVar
(
varname
);
PADDLE_ENFORCE_NOT_NULL
(
var
);
auto
tensor
=
var
->
Get
<
f
::
LoDTensor
>
();
PADDLE_ENFORCE_EQ
(
tensor
.
lod
(),
lod
,
"lod is not equal."
);
f
::
Tensor
result_tensor
;
f
::
TensorCopySync
(
tensor
,
cpu_place
,
&
result_tensor
);
float
*
ct
=
result_tensor
.
mutable_data
<
float
>
(
cpu_place
);
for
(
int64_t
k
=
0
;
k
<
f
::
product
(
kDims
);
++
k
)
{
ASSERT_NEAR
(
ct
[
k
],
send_vec
[
k
],
1e-5
);
}
}
void
TestBroadcastLodTensor
(
size_t
input_scope_idx
)
{
f
::
LoD
lod
{{
0
,
10
,
20
}};
auto
send_vector
=
InitLoDTensor
(
"input"
,
input_scope_idx
,
lod
);
op_handle_
->
Run
(
false
);
WaitAll
();
for
(
size_t
j
=
0
;
j
<
place_list_
.
size
();
++
j
)
{
LoDTensorEqual
(
"out"
,
send_vector
,
lod
,
param_scopes_
[
j
]);
}
}
void
TestBroadcastSelectedRows
(
size_t
input_scope_idx
)
{
std
::
vector
<
int64_t
>
rows
{
0
,
1
,
2
,
3
,
3
,
0
,
14
,
7
,
3
,
1
,
2
,
4
,
6
,
3
,
1
,
1
,
1
,
1
,
3
,
7
};
int
height
=
static_cast
<
int
>
(
kDims
[
0
]
*
2
);
auto
send_vector
=
InitSelectedRows
(
"input"
,
input_scope_idx
,
rows
,
height
);
op_handle_
->
Run
(
false
);
WaitAll
();
for
(
size_t
j
=
0
;
j
<
place_list_
.
size
();
++
j
)
{
SelectedRowsEqual
(
"out"
,
input_scope_idx
,
send_vector
,
rows
,
height
);
}
}
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/fused_broadcast_op_handle_test.cc
0 → 100644
浏览文件 @
d31e1940
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/fused_broadcast_op_handle.h"
#include "gtest/gtest.h"
#include "paddle/fluid/framework/details/broadcast_op_handle_test.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
struct
TestFusedBroadcastOpHandle
:
TestBroadcastOpHandle
{
std
::
vector
<
std
::
string
>
out_varnames_
;
void
InitFusedBroadcastOp
(
std
::
vector
<
size_t
>
input_scope_idxes
)
{
// initialize scope and var
for
(
size_t
i
=
0
;
i
<
place_list_
.
size
();
++
i
)
{
local_scopes_
.
push_back
(
&
(
g_scope_
.
NewScope
()));
Scope
&
local_scope
=
local_scopes_
.
back
()
->
NewScope
();
*
local_scopes_
.
back
()
->
Var
(
details
::
kLocalExecScopeName
)
->
GetMutable
<
Scope
*>
()
=
&
local_scope
;
for
(
size_t
j
=
0
;
j
<
input_scope_idxes
.
size
();
++
j
)
{
local_scope
.
Var
(
"out_var"
+
j
);
if
(
i
==
j
)
local_scope
.
Var
(
"in_var"
+
j
);
}
param_scopes_
.
emplace_back
(
&
local_scope
);
}
// create op handle node
std
::
unique_ptr
<
ir
::
Node
>
n
=
ir
::
CreateNodeForTest
(
"fused_broadcast"
,
ir
::
Node
::
Type
::
kOperation
);
if
(
use_gpu_
)
{
#ifdef PADDLE_WITH_CUDA
op_handle_
.
reset
(
new
FusedBroadcastOpHandle
(
n
.
get
(),
local_scopes_
,
place_list_
,
nccl_ctxs_
.
get
()));
#else
PADDLE_THROW
(
"CUDA is not supported."
);
#endif
}
else
{
#ifdef PADDLE_WITH_CUDA
op_handle_
.
reset
(
new
FusedBroadcastOpHandle
(
n
.
get
(),
local_scopes_
,
place_list_
,
nccl_ctxs_
.
get
()));
#else
op_handle_
.
reset
(
new
FusedBroadcastOpHandle
(
n
.
get
(),
local_scopes_
,
place_list_
));
#endif
}
for
(
size_t
i
=
0
;
i
<
input_scope_idxes
.
size
();
++
i
)
{
// add input var handle
std
::
unique_ptr
<
ir
::
Node
>
in_node
=
ir
::
CreateNodeForTest
(
"in_node"
+
i
,
ir
::
Node
::
Type
::
kVariable
);
VarHandle
*
in_var_handle
=
new
VarHandle
(
in_node
.
get
(),
1
,
input_scope_idxes
[
i
],
"in_var"
+
i
,
place_list_
[
input_scope_idxes
[
i
]]);
vars_
.
emplace_back
(
in_var_handle
);
op_handle_
->
AddInput
(
in_var_handle
);
// add output var handle
for
(
size_t
j
=
0
;
j
<
place_list_
.
size
();
++
j
)
{
std
::
unique_ptr
<
ir
::
Node
>
out_node
=
ir
::
CreateNodeForTest
(
"out_node"
+
i
,
ir
::
Node
::
Type
::
kVariable
);
VarHandle
*
out_var_handle
=
new
VarHandle
(
out_node
.
get
(),
2
,
j
,
"out_var"
+
i
,
place_list_
[
j
]);
vars_
.
emplace_back
(
out_var_handle
);
op_handle_
->
AddOutput
(
out_var_handle
);
}
}
}
void
TestFusedBroadcastLoDTensor
(
std
::
vector
<
size_t
>
input_scope_idxes
)
{
std
::
vector
<
std
::
vector
<
float
>>
send_vec
;
f
::
LoD
lod
{{
0
,
10
,
20
}};
for
(
size_t
i
=
0
;
i
<
input_scope_idxes
.
size
();
++
i
)
{
const
std
::
string
varname
(
"in_var"
+
i
);
float
val_scalar
=
static_cast
<
float
>
(
i
);
send_vec
.
push_back
(
InitLoDTensor
(
varname
,
input_scope_idxes
[
i
],
lod
,
val_scalar
));
}
op_handle_
->
Run
(
false
);
WaitAll
();
for
(
size_t
i
=
0
;
i
<
input_scope_idxes
.
size
();
++
i
)
{
const
std
::
string
&
varname
(
"out_var"
+
i
);
for
(
size_t
j
=
0
;
j
<
place_list_
.
size
();
++
j
)
{
LoDTensorEqual
(
varname
,
send_vec
[
i
],
lod
,
param_scopes_
[
j
]);
}
}
}
void
TestFusedBroadcastSelectedRows
(
std
::
vector
<
size_t
>
input_scope_idxes
)
{
std
::
vector
<
std
::
vector
<
float
>>
send_vector
;
std
::
vector
<
int64_t
>
rows
{
0
,
1
,
2
,
3
,
3
,
0
,
14
,
7
,
3
,
1
,
2
,
4
,
6
,
3
,
1
,
1
,
1
,
1
,
3
,
7
};
int
height
=
static_cast
<
int
>
(
kDims
[
0
]
*
2
);
for
(
size_t
i
=
0
;
i
<
input_scope_idxes
.
size
();
++
i
)
{
const
std
::
string
varname
(
"in_var"
+
i
);
float
val_scalar
=
static_cast
<
float
>
(
i
);
send_vector
.
push_back
(
InitSelectedRows
(
varname
,
input_scope_idxes
[
i
],
rows
,
height
,
val_scalar
));
}
op_handle_
->
Run
(
false
);
WaitAll
();
for
(
size_t
i
=
0
;
i
<
input_scope_idxes
.
size
();
++
i
)
{
const
std
::
string
&
varname
(
"out_var"
+
i
);
for
(
size_t
j
=
0
;
j
<
place_list_
.
size
();
++
j
)
{
SelectedRowsEqual
(
varname
,
input_scope_idxes
[
i
],
send_vector
[
i
],
rows
,
height
);
}
}
}
};
TEST
(
FusedBroadcastTester
,
CPULodTensor
)
{
TestFusedBroadcastOpHandle
test_op
;
std
::
vector
<
size_t
>
input_scope_idxes
=
{
0
,
1
};
test_op
.
InitCtxOnGpu
(
false
);
test_op
.
InitFusedBroadcastOp
(
input_scope_idxes
);
test_op
.
TestFusedBroadcastLoDTensor
(
input_scope_idxes
);
}
TEST
(
FusedBroadcastTester
,
CPUSelectedRows
)
{
TestFusedBroadcastOpHandle
test_op
;
std
::
vector
<
size_t
>
input_scope_idxes
=
{
0
,
1
};
test_op
.
InitCtxOnGpu
(
false
);
test_op
.
InitFusedBroadcastOp
(
input_scope_idxes
);
test_op
.
TestFusedBroadcastSelectedRows
(
input_scope_idxes
);
}
#ifdef PADDLE_WITH_CUDA
TEST
(
FusedBroadcastTester
,
GPULodTensor
)
{
TestFusedBroadcastOpHandle
test_op
;
std
::
vector
<
size_t
>
input_scope_idxes
=
{
0
,
1
};
test_op
.
InitCtxOnGpu
(
true
);
test_op
.
InitFusedBroadcastOp
(
input_scope_idxes
);
test_op
.
TestFusedBroadcastLoDTensor
(
input_scope_idxes
);
}
TEST
(
FusedBroadcastTester
,
GPUSelectedRows
)
{
TestFusedBroadcastOpHandle
test_op
;
std
::
vector
<
size_t
>
input_scope_idxes
=
{
0
,
1
};
test_op
.
InitCtxOnGpu
(
true
);
test_op
.
InitFusedBroadcastOp
(
input_scope_idxes
);
test_op
.
TestFusedBroadcastSelectedRows
(
input_scope_idxes
);
}
#endif
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
d31e1940
...
@@ -259,6 +259,15 @@ GraphPatternDetector::DetectPatterns() {
...
@@ -259,6 +259,15 @@ GraphPatternDetector::DetectPatterns() {
return
result
;
return
result
;
}
}
bool
GraphItemCMP
(
const
std
::
pair
<
PDNode
*
,
Node
*>
&
a
,
const
std
::
pair
<
PDNode
*
,
Node
*>
&
b
)
{
if
(
a
.
first
!=
b
.
first
)
{
return
a
.
first
<
b
.
first
;
}
else
{
return
a
.
second
<
b
.
second
;
}
}
// TODO(Superjomn) enhance the function as it marks unique unique as duplicates
// TODO(Superjomn) enhance the function as it marks unique unique as duplicates
// see https://github.com/PaddlePaddle/Paddle/issues/13550
// see https://github.com/PaddlePaddle/Paddle/issues/13550
void
GraphPatternDetector
::
UniquePatterns
(
void
GraphPatternDetector
::
UniquePatterns
(
...
@@ -267,12 +276,16 @@ void GraphPatternDetector::UniquePatterns(
...
@@ -267,12 +276,16 @@ void GraphPatternDetector::UniquePatterns(
std
::
vector
<
GraphPatternDetector
::
subgraph_t
>
result
;
std
::
vector
<
GraphPatternDetector
::
subgraph_t
>
result
;
std
::
unordered_set
<
size_t
>
set
;
std
::
unordered_set
<
size_t
>
set
;
std
::
hash
<
std
::
string
>
hasher
;
for
(
auto
&
g
:
*
subgraphs
)
{
for
(
auto
&
g
:
*
subgraphs
)
{
size_t
key
=
0
;
// Sort the items in the sub-graph, and transform to a string key.
for
(
auto
&
item
:
g
)
{
std
::
vector
<
std
::
pair
<
PDNode
*
,
Node
*>>
sorted_keys
(
g
.
begin
(),
g
.
end
());
key
^=
std
::
hash
<
void
*>
{}(
item
.
first
);
std
::
sort
(
sorted_keys
.
begin
(),
sorted_keys
.
end
(),
GraphItemCMP
);
key
^=
std
::
hash
<
void
*>
{}(
item
.
second
);
std
::
stringstream
ss
;
for
(
auto
&
item
:
sorted_keys
)
{
ss
<<
item
.
first
<<
":"
<<
item
.
second
;
}
}
auto
key
=
hasher
(
ss
.
str
());
if
(
!
set
.
count
(
key
))
{
if
(
!
set
.
count
(
key
))
{
result
.
emplace_back
(
g
);
result
.
emplace_back
(
g
);
set
.
insert
(
key
);
set
.
insert
(
key
);
...
...
paddle/fluid/framework/lod_tensor.cc
浏览文件 @
d31e1940
...
@@ -418,7 +418,7 @@ void LoDTensor::MergeLoDTensor(
...
@@ -418,7 +418,7 @@ void LoDTensor::MergeLoDTensor(
PADDLE_ENFORCE_EQ
(
new_lod
.
size
(),
lod
.
size
());
PADDLE_ENFORCE_EQ
(
new_lod
.
size
(),
lod
.
size
());
for
(
size_t
j
=
0
;
j
<
lod
.
size
();
++
j
)
{
for
(
size_t
j
=
0
;
j
<
lod
.
size
();
++
j
)
{
auto
&
sub_lod
=
new_lod
[
j
];
auto
&
sub_lod
=
new_lod
[
j
];
auto
&
offset
=
sub_lod
.
back
();
size_t
offset
=
sub_lod
.
back
();
for
(
size_t
k
=
1
;
k
<
lod
[
j
].
size
();
++
k
)
{
for
(
size_t
k
=
1
;
k
<
lod
[
j
].
size
();
++
k
)
{
sub_lod
.
push_back
(
lod
[
j
][
k
]
+
offset
);
sub_lod
.
push_back
(
lod
[
j
][
k
]
+
offset
);
}
}
...
...
paddle/fluid/framework/operator.cc
浏览文件 @
d31e1940
...
@@ -354,18 +354,18 @@ void OperatorBase::GenerateTemporaryNames() {
...
@@ -354,18 +354,18 @@ void OperatorBase::GenerateTemporaryNames() {
}
}
}
}
static
bool
VarIsTensor
(
const
Variable
*
var
)
{
static
bool
VarIsTensor
(
const
Variable
&
var
)
{
return
var
->
IsType
<
LoDTensor
>
()
||
var
->
IsType
<
SelectedRows
>
();
return
var
.
IsType
<
LoDTensor
>
()
||
var
.
IsType
<
SelectedRows
>
();
}
}
const
Tensor
*
GetTensorFromVar
(
Variable
*
var
)
{
const
Tensor
*
GetTensorFromVar
(
const
Variable
&
var
)
{
if
(
var
->
IsType
<
LoDTensor
>
())
{
if
(
var
.
IsType
<
LoDTensor
>
())
{
return
var
->
GetMutable
<
LoDTensor
>
(
);
return
static_cast
<
const
Tensor
*>
(
&
(
var
.
Get
<
LoDTensor
>
())
);
}
else
if
(
var
->
IsType
<
SelectedRows
>
())
{
}
else
if
(
var
.
IsType
<
SelectedRows
>
())
{
return
var
->
GetMutable
<
SelectedRows
>
()
->
mutable_value
(
);
return
&
(
var
.
Get
<
SelectedRows
>
().
value
()
);
}
else
{
}
else
{
PADDLE_THROW
(
"Variable type_id %s, expect LoDTensor/SelectedRows."
,
PADDLE_THROW
(
"Variable type_id %s, expect LoDTensor/SelectedRows."
,
var
->
Type
().
name
());
var
.
Type
().
name
());
}
}
}
}
...
@@ -415,8 +415,7 @@ bool ExecutionContext::HasOutput(const std::string& name) const {
...
@@ -415,8 +415,7 @@ bool ExecutionContext::HasOutput(const std::string& name) const {
template
<
>
template
<
>
const
Tensor
*
ExecutionContext
::
Input
<
Tensor
>
(
const
std
::
string
&
name
)
const
{
const
Tensor
*
ExecutionContext
::
Input
<
Tensor
>
(
const
std
::
string
&
name
)
const
{
auto
*
var
=
InputVar
(
name
);
auto
*
var
=
InputVar
(
name
);
return
var
==
nullptr
?
nullptr
return
var
==
nullptr
?
nullptr
:
GetTensorFromVar
(
*
var
);
:
GetTensorFromVar
(
const_cast
<
Variable
*>
(
var
));
}
}
template
<
>
template
<
>
...
@@ -428,7 +427,7 @@ const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
...
@@ -428,7 +427,7 @@ const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
std
::
transform
(
names
.
begin
(),
names
.
end
(),
std
::
back_inserter
(
res
),
std
::
transform
(
names
.
begin
(),
names
.
end
(),
std
::
back_inserter
(
res
),
[
&
](
const
std
::
string
&
sub_name
)
{
[
&
](
const
std
::
string
&
sub_name
)
{
auto
var
=
scope_
.
FindVar
(
sub_name
);
auto
var
=
scope_
.
FindVar
(
sub_name
);
return
var
==
nullptr
?
nullptr
:
GetTensorFromVar
(
var
);
return
var
==
nullptr
?
nullptr
:
GetTensorFromVar
(
*
var
);
});
});
return
res
;
return
res
;
}
}
...
@@ -770,8 +769,10 @@ void OperatorWithKernel::TransferInplaceVarsBack(
...
@@ -770,8 +769,10 @@ void OperatorWithKernel::TransferInplaceVarsBack(
for
(
auto
&
var_name
:
inplace_vars
)
{
for
(
auto
&
var_name
:
inplace_vars
)
{
VLOG
(
3
)
<<
"share inplace var "
+
var_name
+
" back to it's original scope"
;
VLOG
(
3
)
<<
"share inplace var "
+
var_name
+
" back to it's original scope"
;
auto
*
original_tensor
=
GetMutableTensorFromVar
(
scope
.
FindVar
(
var_name
));
auto
*
original_tensor
=
GetMutableTensorFromVar
(
scope
.
FindVar
(
var_name
));
auto
*
transformed_tensor
=
auto
*
var
=
transfer_scope
.
FindVar
(
var_name
);
GetTensorFromVar
(
transfer_scope
.
FindVar
(
var_name
));
PADDLE_ENFORCE
(
var
!=
nullptr
,
"The var[%s] should not be nullptr"
,
var_name
);
auto
*
transformed_tensor
=
GetTensorFromVar
(
*
var
);
original_tensor
->
ShareDataWith
(
*
transformed_tensor
);
original_tensor
->
ShareDataWith
(
*
transformed_tensor
);
}
}
}
}
...
@@ -784,11 +785,11 @@ Scope* OperatorWithKernel::TryTransferData(
...
@@ -784,11 +785,11 @@ Scope* OperatorWithKernel::TryTransferData(
for
(
auto
&
var_name
:
var_name_item
.
second
)
{
for
(
auto
&
var_name
:
var_name_item
.
second
)
{
auto
*
var
=
scope
.
FindVar
(
var_name
);
auto
*
var
=
scope
.
FindVar
(
var_name
);
// Only tensor can be tranfer to another device.
// Only tensor can be tranfer to another device.
if
(
var
==
nullptr
||
!
VarIsTensor
(
var
))
{
if
(
var
==
nullptr
||
!
VarIsTensor
(
*
var
))
{
continue
;
continue
;
}
}
auto
*
tensor_in
=
GetTensorFromVar
(
var
);
auto
*
tensor_in
=
GetTensorFromVar
(
*
var
);
if
(
!
tensor_in
->
IsInitialized
())
{
if
(
!
tensor_in
->
IsInitialized
())
{
continue
;
continue
;
}
}
...
...
paddle/fluid/framework/operator.h
浏览文件 @
d31e1940
...
@@ -63,7 +63,7 @@ inline std::string GradVarName(const std::string& var_name) {
...
@@ -63,7 +63,7 @@ inline std::string GradVarName(const std::string& var_name) {
}
}
proto
::
VarType
::
Type
GetDataTypeOfVar
(
const
Variable
*
var
);
proto
::
VarType
::
Type
GetDataTypeOfVar
(
const
Variable
*
var
);
const
Tensor
*
GetTensorFromVar
(
Variable
*
var
);
const
Tensor
*
GetTensorFromVar
(
const
Variable
&
var
);
class
OperatorBase
;
class
OperatorBase
;
class
ExecutionContext
;
class
ExecutionContext
;
...
...
paddle/fluid/framework/tensor_test.cc
浏览文件 @
d31e1940
...
@@ -75,6 +75,19 @@ TEST(Tensor, MutableData) {
...
@@ -75,6 +75,19 @@ TEST(Tensor, MutableData) {
platform
::
CPUPlace
());
platform
::
CPUPlace
());
EXPECT_EQ
(
p1
,
p2
);
EXPECT_EQ
(
p1
,
p2
);
}
}
// Not sure if it's desired, but currently, Tensor type can be changed.
{
framework
::
Tensor
src_tensor
;
int8_t
*
p1
=
src_tensor
.
mutable_data
<
int8_t
>
(
framework
::
make_ddim
({
1
}),
platform
::
CPUPlace
());
EXPECT_NE
(
p1
,
nullptr
);
*
p1
=
1
;
uint8_t
*
p2
=
src_tensor
.
mutable_data
<
uint8_t
>
(
framework
::
make_ddim
({
1
}),
platform
::
CPUPlace
());
EXPECT_NE
(
p2
,
nullptr
);
EXPECT_EQ
(
static_cast
<
int
>
(
p2
[
0
]),
1
);
}
#ifdef PADDLE_WITH_CUDA
#ifdef PADDLE_WITH_CUDA
{
{
...
...
paddle/fluid/inference/CMakeLists.txt
浏览文件 @
d31e1940
cc_library
(
inference_io SRCS io.cc
)
if
(
WITH_TESTING
)
include
(
test.cmake
)
# some generic cmake funtion for inference
endif
()
# analysis and tensorrt must be added before creating static library,
# analysis and tensorrt must be added before creating static library,
# otherwise, there would be undefined reference to them in static library.
# otherwise, there would be undefined reference to them in static library.
add_subdirectory
(
analysis
)
add_subdirectory
(
analysis
)
...
@@ -8,6 +10,8 @@ endif()
...
@@ -8,6 +10,8 @@ endif()
set
(
FLUID_CORE_MODULES proto_desc memory lod_tensor executor
)
set
(
FLUID_CORE_MODULES proto_desc memory lod_tensor executor
)
cc_library
(
inference_io SRCS io.cc
)
# TODO(panyx0718): Should this be called paddle_fluid_inference_api_internal?
# TODO(panyx0718): Should this be called paddle_fluid_inference_api_internal?
cc_library
(
paddle_fluid_api
cc_library
(
paddle_fluid_api
SRCS io.cc
SRCS io.cc
...
...
paddle/fluid/inference/analysis/CMakeLists.txt
浏览文件 @
d31e1940
...
@@ -20,22 +20,17 @@ cc_test(test_node SRCS node_tester.cc DEPS analysis)
...
@@ -20,22 +20,17 @@ cc_test(test_node SRCS node_tester.cc DEPS analysis)
cc_test
(
test_dot SRCS dot_tester.cc DEPS analysis
)
cc_test
(
test_dot SRCS dot_tester.cc DEPS analysis
)
cc_binary
(
inference_analyzer SRCS analyzer_main.cc DEPS analysis paddle_fluid
)
cc_binary
(
inference_analyzer SRCS analyzer_main.cc DEPS analysis paddle_fluid
)
function
(
inference_analysis_test TARGET
)
function
(
inference_analysis_test TARGET
)
if
(
WITH_TESTING
)
if
(
WITH_TESTING
)
set
(
options
""
)
set
(
options
""
)
set
(
oneValueArgs
""
)
set
(
oneValueArgs
""
)
set
(
multiValueArgs SRCS ARGS EXTRA_DEPS
)
set
(
multiValueArgs SRCS ARGS EXTRA_DEPS
)
cmake_parse_arguments
(
analysis_test
"
${
options
}
"
"
${
oneValueArgs
}
"
"
${
multiValueArgs
}
"
${
ARGN
}
)
cmake_parse_arguments
(
analysis_test
"
${
options
}
"
"
${
oneValueArgs
}
"
"
${
multiValueArgs
}
"
${
ARGN
}
)
set
(
mem_opt
""
)
inference_base_test
(
${
TARGET
}
if
(
WITH_GPU
)
SRCS
${
analysis_test_SRCS
}
set
(
mem_opt
"--fraction_of_gpu_memory_to_use=0.5"
)
DEPS analysis pass
${
GLOB_PASS_LIB
}
${
analysis_test_EXTRA_DEPS
}
endif
()
ARGS --inference_model_dir=
${
WORD2VEC_MODEL_DIR
}
${
analysis_test_ARGS
}
)
cc_test
(
${
TARGET
}
endif
()
SRCS
"
${
analysis_test_SRCS
}
"
DEPS analysis pass
${
GLOB_PASS_LIB
}
${
analysis_test_EXTRA_DEPS
}
ARGS --inference_model_dir=
${
PYTHON_TESTS_DIR
}
/book/word2vec.inference.model
${
mem_opt
}
${
analysis_test_ARGS
}
)
set_tests_properties
(
${
TARGET
}
PROPERTIES DEPENDS test_word2vec
)
endif
(
WITH_TESTING
)
endfunction
(
inference_analysis_test
)
endfunction
(
inference_analysis_test
)
inference_analysis_test
(
test_analyzer SRCS analyzer_tester.cc EXTRA_DEPS paddle_inference_api
)
inference_analysis_test
(
test_analyzer SRCS analyzer_tester.cc EXTRA_DEPS paddle_inference_api
)
...
...
paddle/fluid/inference/api/CMakeLists.txt
浏览文件 @
d31e1940
...
@@ -17,39 +17,12 @@ if(APPLE)
...
@@ -17,39 +17,12 @@ if(APPLE)
set
(
CMAKE_CXX_FLAGS
"
${
CMAKE_CXX_FLAGS
}
-Wno-error=pessimizing-move"
)
set
(
CMAKE_CXX_FLAGS
"
${
CMAKE_CXX_FLAGS
}
-Wno-error=pessimizing-move"
)
endif
(
APPLE
)
endif
(
APPLE
)
set
(
inference_deps paddle_inference_api paddle_fluid_api analysis pass ir_pass_manager naive_executor
${
GLOB_PASS_LIB
}
)
set
(
inference_deps paddle_inference_api paddle_fluid_api analysis pass ir_pass_manager naive_executor
${
GLOB_PASS_LIB
}
)
if
(
WITH_GPU AND TENSORRT_FOUND
)
if
(
WITH_GPU AND TENSORRT_FOUND
)
set
(
inference_deps
${
inference_deps
}
paddle_inference_tensorrt_subgraph_engine analysis_predictor
)
set
(
inference_deps
${
inference_deps
}
paddle_inference_tensorrt_subgraph_engine analysis_predictor
)
endif
()
endif
()
function
(
inference_api_test TARGET_NAME
)
if
(
WITH_TESTING
)
set
(
options
""
)
set
(
oneValueArgs SRC
)
set
(
multiValueArgs ARGS
)
cmake_parse_arguments
(
inference_test
"
${
options
}
"
"
${
oneValueArgs
}
"
"
${
multiValueArgs
}
"
${
ARGN
}
)
if
(
WITH_GPU
)
cc_test
(
${
TARGET_NAME
}
SRCS
${
inference_test_SRC
}
DEPS
"
${
inference_deps
}
"
ARGS --dirname=
${
PYTHON_TESTS_DIR
}
/book/ --fraction_of_gpu_memory_to_use=0.15
)
else
()
cc_test
(
${
TARGET_NAME
}
SRCS
${
inference_test_SRC
}
DEPS
"
${
inference_deps
}
"
ARGS --dirname=
${
PYTHON_TESTS_DIR
}
/book/
)
endif
()
if
(
inference_test_ARGS
)
set_tests_properties
(
${
TARGET_NAME
}
PROPERTIES DEPENDS
"
${
inference_test_ARGS
}
"
)
endif
()
endif
(
WITH_TESTING
)
endfunction
(
inference_api_test
)
cc_library
(
reset_tensor_array SRCS details/reset_tensor_array.cc DEPS lod_tensor scope
)
cc_library
(
reset_tensor_array SRCS details/reset_tensor_array.cc DEPS lod_tensor scope
)
cc_library
(
paddle_inference_api SRCS api.cc api_impl.cc helper.cc DEPS reset_tensor_array lod_tensor scope
)
cc_library
(
paddle_inference_api SRCS api.cc api_impl.cc helper.cc DEPS reset_tensor_array lod_tensor scope
)
cc_library
(
analysis_predictor SRCS analysis_predictor.cc DEPS paddle_inference_api analysis naive_executor zero_copy_tensor
)
cc_library
(
analysis_predictor SRCS analysis_predictor.cc DEPS paddle_inference_api analysis naive_executor zero_copy_tensor
)
...
@@ -59,8 +32,11 @@ cc_test(test_paddle_inference_api
...
@@ -59,8 +32,11 @@ cc_test(test_paddle_inference_api
SRCS api_tester.cc
SRCS api_tester.cc
DEPS paddle_inference_api
)
DEPS paddle_inference_api
)
inference_api_test
(
test_api_impl SRC api_impl_tester.cc
if
(
WITH_TESTING
)
ARGS test_word2vec test_image_classification
)
inference_base_test
(
test_api_impl SRCS api_impl_tester.cc DEPS
${
inference_deps
}
ARGS --word2vec_dirname=
${
WORD2VEC_MODEL_DIR
}
--book_dirname=
${
PYTHON_TESTS_DIR
}
/book
)
set_tests_properties
(
test_api_impl PROPERTIES DEPENDS test_image_classification
)
endif
()
cc_test
(
test_analysis_predictor SRCS analysis_predictor_tester.cc DEPS analysis_predictor
${
inference_deps
}
paddle_inference_api
cc_test
(
test_analysis_predictor SRCS analysis_predictor_tester.cc DEPS analysis_predictor
${
inference_deps
}
paddle_inference_api
ARGS --dirname=
${
PYTHON_TESTS_DIR
}
/book
)
ARGS --dirname=
${
PYTHON_TESTS_DIR
}
/book
)
...
@@ -68,8 +44,10 @@ if(WITH_GPU AND TENSORRT_FOUND)
...
@@ -68,8 +44,10 @@ if(WITH_GPU AND TENSORRT_FOUND)
cc_library
(
paddle_inference_tensorrt_subgraph_engine
cc_library
(
paddle_inference_tensorrt_subgraph_engine
SRCS api_tensorrt_subgraph_engine.cc
SRCS api_tensorrt_subgraph_engine.cc
DEPS paddle_inference_api analysis tensorrt_engine paddle_inference_api paddle_fluid_api tensorrt_converter zero_copy_tensor_dummy
)
DEPS paddle_inference_api analysis tensorrt_engine paddle_inference_api paddle_fluid_api tensorrt_converter zero_copy_tensor_dummy
)
if
(
WITH_TESTING
)
inference_api_test
(
test_api_tensorrt_subgraph_engine SRC api_tensorrt_subgraph_engine_tester.cc ARGS test_word2vec
)
inference_base_test
(
test_api_tensorrt_subgraph_engine SRCS api_tensorrt_subgraph_engine_tester.cc DEPS
${
inference_deps
}
ARGS --dirname=
${
WORD2VEC_MODEL_DIR
}
)
endif
()
endif
()
endif
()
if
(
WITH_ANAKIN AND WITH_MKL
)
# only needed in CI
if
(
WITH_ANAKIN AND WITH_MKL
)
# only needed in CI
...
...
paddle/fluid/inference/api/api_impl_tester.cc
浏览文件 @
d31e1940
...
@@ -22,12 +22,14 @@ limitations under the License. */
...
@@ -22,12 +22,14 @@ limitations under the License. */
#include "paddle/fluid/inference/tests/test_helper.h"
#include "paddle/fluid/inference/tests/test_helper.h"
#ifdef __clang__
#ifdef __clang__
#define ACC_DIFF 4e-
2
#define ACC_DIFF 4e-
3
#else
#else
#define ACC_DIFF 1e-
2
#define ACC_DIFF 1e-
3
#endif
#endif
DEFINE_string
(
dirname
,
""
,
"Directory of the inference model."
);
DEFINE_string
(
word2vec_dirname
,
""
,
"Directory of the word2vec inference model."
);
DEFINE_string
(
book_dirname
,
""
,
"Directory of the book inference model."
);
namespace
paddle
{
namespace
paddle
{
...
@@ -49,7 +51,7 @@ PaddleTensor LodTensorToPaddleTensor(framework::LoDTensor* t) {
...
@@ -49,7 +51,7 @@ PaddleTensor LodTensorToPaddleTensor(framework::LoDTensor* t) {
NativeConfig
GetConfig
()
{
NativeConfig
GetConfig
()
{
NativeConfig
config
;
NativeConfig
config
;
config
.
model_dir
=
FLAGS_
dirname
+
"/word2vec.inference.model"
;
config
.
model_dir
=
FLAGS_
word2vec_dirname
;
LOG
(
INFO
)
<<
"dirname "
<<
config
.
model_dir
;
LOG
(
INFO
)
<<
"dirname "
<<
config
.
model_dir
;
config
.
fraction_of_gpu_memory
=
0.15
;
config
.
fraction_of_gpu_memory
=
0.15
;
#ifdef PADDLE_WITH_CUDA
#ifdef PADDLE_WITH_CUDA
...
@@ -116,7 +118,7 @@ void MainImageClassification(bool use_gpu) {
...
@@ -116,7 +118,7 @@ void MainImageClassification(bool use_gpu) {
NativeConfig
config
=
GetConfig
();
NativeConfig
config
=
GetConfig
();
config
.
use_gpu
=
use_gpu
;
config
.
use_gpu
=
use_gpu
;
config
.
model_dir
=
config
.
model_dir
=
FLAGS_dirname
+
"/image_classification_resnet.inference.model"
;
FLAGS_
book_
dirname
+
"/image_classification_resnet.inference.model"
;
const
bool
is_combined
=
false
;
const
bool
is_combined
=
false
;
std
::
vector
<
std
::
vector
<
int64_t
>>
feed_target_shapes
=
std
::
vector
<
std
::
vector
<
int64_t
>>
feed_target_shapes
=
...
@@ -220,7 +222,7 @@ void MainThreadsImageClassification(bool use_gpu) {
...
@@ -220,7 +222,7 @@ void MainThreadsImageClassification(bool use_gpu) {
NativeConfig
config
=
GetConfig
();
NativeConfig
config
=
GetConfig
();
config
.
use_gpu
=
use_gpu
;
config
.
use_gpu
=
use_gpu
;
config
.
model_dir
=
config
.
model_dir
=
FLAGS_dirname
+
"/image_classification_resnet.inference.model"
;
FLAGS_
book_
dirname
+
"/image_classification_resnet.inference.model"
;
auto
main_predictor
=
CreatePaddlePredictor
<
NativeConfig
>
(
config
);
auto
main_predictor
=
CreatePaddlePredictor
<
NativeConfig
>
(
config
);
std
::
vector
<
framework
::
LoDTensor
>
jobs
(
num_jobs
);
std
::
vector
<
framework
::
LoDTensor
>
jobs
(
num_jobs
);
...
...
paddle/fluid/inference/api/api_tensorrt_subgraph_engine_tester.cc
浏览文件 @
d31e1940
...
@@ -29,13 +29,13 @@ void CompareTensorRTWithFluid(bool enable_tensorrt) {
...
@@ -29,13 +29,13 @@ void CompareTensorRTWithFluid(bool enable_tensorrt) {
//# 1. Create PaddlePredictor with a config.
//# 1. Create PaddlePredictor with a config.
NativeConfig
config0
;
NativeConfig
config0
;
config0
.
model_dir
=
FLAGS_dirname
+
"word2vec.inference.model"
;
config0
.
model_dir
=
FLAGS_dirname
;
config0
.
use_gpu
=
true
;
config0
.
use_gpu
=
true
;
config0
.
fraction_of_gpu_memory
=
0.3
;
config0
.
fraction_of_gpu_memory
=
0.3
;
config0
.
device
=
0
;
config0
.
device
=
0
;
MixedRTConfig
config1
;
MixedRTConfig
config1
;
config1
.
model_dir
=
FLAGS_dirname
+
"word2vec.inference.model"
;
config1
.
model_dir
=
FLAGS_dirname
;
config1
.
use_gpu
=
true
;
config1
.
use_gpu
=
true
;
config1
.
fraction_of_gpu_memory
=
0.3
;
config1
.
fraction_of_gpu_memory
=
0.3
;
config1
.
device
=
0
;
config1
.
device
=
0
;
...
...
paddle/fluid/inference/api/demo_ci/run.sh
浏览文件 @
d31e1940
...
@@ -62,7 +62,7 @@ for WITH_STATIC_LIB in ON OFF; do
...
@@ -62,7 +62,7 @@ for WITH_STATIC_LIB in ON OFF; do
-DWITH_GPU
=
$TEST_GPU_CPU
\
-DWITH_GPU
=
$TEST_GPU_CPU
\
-DWITH_STATIC_LIB
=
$WITH_STATIC_LIB
-DWITH_STATIC_LIB
=
$WITH_STATIC_LIB
make
-j
make
-j
word2vec_model
=
$
{
PADDLE_ROOT
}
'/build/python/paddle/fluid/tests/book
/word2vec.inference.model'
word2vec_model
=
$
DATA_DIR
'/word2vec
/word2vec.inference.model'
if
[
-d
$word2vec_model
]
;
then
if
[
-d
$word2vec_model
]
;
then
for
use_gpu
in
$use_gpu_list
;
do
for
use_gpu
in
$use_gpu_list
;
do
./simple_on_word2vec
\
./simple_on_word2vec
\
...
...
paddle/fluid/inference/api/demo_ci/simple_on_word2vec.cc
浏览文件 @
d31e1940
...
@@ -70,12 +70,8 @@ void Main(bool use_gpu) {
...
@@ -70,12 +70,8 @@ void Main(bool use_gpu) {
// The outputs' buffers are in CPU memory.
// The outputs' buffers are in CPU memory.
for
(
size_t
i
=
0
;
i
<
std
::
min
(
static_cast
<
size_t
>
(
5
),
num_elements
);
for
(
size_t
i
=
0
;
i
<
std
::
min
(
static_cast
<
size_t
>
(
5
),
num_elements
);
i
++
)
{
i
++
)
{
// Here will result random fail, for that the model is trained by CI, the
CHECK_NEAR
(
static_cast
<
float
*>
(
outputs
.
front
().
data
.
data
())[
i
],
result
[
i
],
// train phase is not stable, so the result will be random.
0.001
);
// TODO(Superjomn) will restore after the model is upload.
// CHECK_NEAR(static_cast<float*>(outputs.front().data.data())[i],
// result[i],
// 0.001);
}
}
}
}
}
}
...
...
paddle/fluid/inference/test.cmake
0 → 100644
浏览文件 @
d31e1940
set
(
INFERENCE_URL
"http://paddle-inference-dist.cdn.bcebos.com"
CACHE STRING
"inference download url"
)
set
(
INFERENCE_DEMO_INSTALL_DIR
"
${
THIRD_PARTY_PATH
}
/inference_demo"
CACHE STRING
"A path setting inference demo download directories."
)
function
(
inference_download install_dir url filename
)
message
(
STATUS
"Download inference test stuff from
${
url
}
/
${
filename
}
"
)
execute_process
(
COMMAND bash -c
"mkdir -p
${
install_dir
}
"
)
execute_process
(
COMMAND bash -c
"cd
${
install_dir
}
&& wget -q
${
url
}
/
${
filename
}
"
)
message
(
STATUS
"finish downloading
${
filename
}
"
)
endfunction
()
function
(
inference_download_and_uncompress install_dir url filename
)
inference_download
(
${
install_dir
}
${
url
}
${
filename
}
)
execute_process
(
COMMAND bash -c
"cd
${
install_dir
}
&& tar xzf
${
filename
}
"
)
endfunction
()
set
(
WORD2VEC_INSTALL_DIR
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/word2vec"
)
if
(
NOT EXISTS
${
WORD2VEC_INSTALL_DIR
}
)
inference_download_and_uncompress
(
${
WORD2VEC_INSTALL_DIR
}
${
INFERENCE_URL
}
"word2vec.inference.model.tar.gz"
)
endif
()
set
(
WORD2VEC_MODEL_DIR
"
${
WORD2VEC_INSTALL_DIR
}
/word2vec.inference.model"
)
function
(
inference_base_test TARGET
)
set
(
options
""
)
set
(
oneValueArgs
""
)
set
(
multiValueArgs SRCS ARGS DEPS
)
cmake_parse_arguments
(
base_test
"
${
options
}
"
"
${
oneValueArgs
}
"
"
${
multiValueArgs
}
"
${
ARGN
}
)
if
(
WITH_GPU
)
set
(
mem_opt
"--fraction_of_gpu_memory_to_use=0.5"
)
endif
()
cc_test
(
${
TARGET
}
SRCS
${
base_test_SRCS
}
DEPS
${
base_test_DEPS
}
ARGS
${
mem_opt
}
${
base_test_ARGS
}
)
endfunction
()
paddle/fluid/inference/tests/api/CMakeLists.txt
浏览文件 @
d31e1940
set
(
INFERENCE_URL
"http://paddle-inference-dist.cdn.bcebos.com"
)
set
(
INFERENCE_DEMO_INSTALL_DIR
"
${
THIRD_PARTY_PATH
}
/inference_demo"
CACHE STRING
"A path setting inference demo download directories."
)
set
(
INFERENCE_EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis_predictor
)
set
(
INFERENCE_EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis_predictor
)
function
(
inference_download install_dir url filename
)
message
(
STATUS
"Download inference test stuff from
${
url
}
/
${
filename
}
"
)
execute_process
(
COMMAND bash -c
"mkdir -p
${
install_dir
}
"
)
execute_process
(
COMMAND bash -c
"cd
${
install_dir
}
&& wget -q
${
url
}
/
${
filename
}
"
)
message
(
STATUS
"finish downloading
${
filename
}
"
)
endfunction
()
function
(
inference_download_and_uncompress install_dir url filename
)
inference_download
(
${
install_dir
}
${
url
}
${
filename
}
)
execute_process
(
COMMAND bash -c
"cd
${
install_dir
}
&& tar xzf
${
filename
}
"
)
endfunction
()
function
(
download_model_and_data install_dir model_name data_name
)
function
(
download_model_and_data install_dir model_name data_name
)
if
(
NOT EXISTS
${
install_dir
}
)
if
(
NOT EXISTS
${
install_dir
}
)
...
...
paddle/fluid/operators/sum_op.cc
浏览文件 @
d31e1940
...
@@ -67,6 +67,7 @@ class SumOp : public framework::OperatorWithKernel {
...
@@ -67,6 +67,7 @@ class SumOp : public framework::OperatorWithKernel {
framework
::
OpKernelType
GetExpectedKernelType
(
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
x_vars
=
ctx
.
MultiInputVar
(
"X"
);
auto
x_vars
=
ctx
.
MultiInputVar
(
"X"
);
auto
x_vars_name
=
ctx
.
Inputs
(
"X"
);
framework
::
LibraryType
library
{
framework
::
LibraryType
::
kPlain
};
framework
::
LibraryType
library
{
framework
::
LibraryType
::
kPlain
};
framework
::
DataLayout
layout
{
framework
::
DataLayout
::
kAnyLayout
};
framework
::
DataLayout
layout
{
framework
::
DataLayout
::
kAnyLayout
};
...
@@ -81,10 +82,11 @@ class SumOp : public framework::OperatorWithKernel {
...
@@ -81,10 +82,11 @@ class SumOp : public framework::OperatorWithKernel {
if
(
x_vars
[
0
]
->
IsType
<
framework
::
LoDTensor
>
())
{
if
(
x_vars
[
0
]
->
IsType
<
framework
::
LoDTensor
>
())
{
int
dtype
=
-
1
;
int
dtype
=
-
1
;
for
(
auto
&
x_var
:
x_vars
)
{
for
(
size_t
idx
=
0
;
idx
<
x_vars
.
size
();
++
idx
)
{
PADDLE_ENFORCE
(
x_vars
[
idx
]
!=
nullptr
,
"Input var[%s] should not be nullptr"
,
x_vars_name
[
idx
]);
// FIXME(zcd): The input x_var may be SelectedRows or LoDTensor.
// FIXME(zcd): The input x_var may be SelectedRows or LoDTensor.
auto
tensor
=
framework
::
GetTensorFromVar
(
auto
tensor
=
framework
::
GetTensorFromVar
(
*
x_vars
[
idx
]);
const_cast
<
framework
::
Variable
*>
(
x_var
));
if
(
tensor
->
numel
()
==
0
)
{
if
(
tensor
->
numel
()
==
0
)
{
continue
;
continue
;
}
}
...
...
paddle/scripts/paddle_build.sh
浏览文件 @
d31e1940
...
@@ -147,7 +147,6 @@ function cmake_gen() {
...
@@ -147,7 +147,6 @@ function cmake_gen() {
-DWITH_SWIG_PY=
${
WITH_SWIG_PY
:-
ON
}
-DWITH_SWIG_PY=
${
WITH_SWIG_PY
:-
ON
}
-DCUDNN_ROOT=/usr/
-DCUDNN_ROOT=/usr/
-DWITH_TESTING=
${
WITH_TESTING
:-
ON
}
-DWITH_TESTING=
${
WITH_TESTING
:-
ON
}
-DWITH_FAST_BUNDLE_TEST=ON
-DCMAKE_MODULE_PATH=/opt/rocm/hip/cmake
-DCMAKE_MODULE_PATH=/opt/rocm/hip/cmake
-DCMAKE_EXPORT_COMPILE_COMMANDS=ON
-DCMAKE_EXPORT_COMPILE_COMMANDS=ON
-DWITH_FLUID_ONLY=
${
WITH_FLUID_ONLY
:-
OFF
}
-DWITH_FLUID_ONLY=
${
WITH_FLUID_ONLY
:-
OFF
}
...
@@ -180,7 +179,6 @@ EOF
...
@@ -180,7 +179,6 @@ EOF
-DWITH_PYTHON
=
${
WITH_PYTHON
:-
ON
}
\
-DWITH_PYTHON
=
${
WITH_PYTHON
:-
ON
}
\
-DCUDNN_ROOT
=
/usr/
\
-DCUDNN_ROOT
=
/usr/
\
-DWITH_TESTING
=
${
WITH_TESTING
:-
ON
}
\
-DWITH_TESTING
=
${
WITH_TESTING
:-
ON
}
\
-DWITH_FAST_BUNDLE_TEST
=
ON
\
-DCMAKE_MODULE_PATH
=
/opt/rocm/hip/cmake
\
-DCMAKE_MODULE_PATH
=
/opt/rocm/hip/cmake
\
-DWITH_FLUID_ONLY
=
${
WITH_FLUID_ONLY
:-
OFF
}
\
-DWITH_FLUID_ONLY
=
${
WITH_FLUID_ONLY
:-
OFF
}
\
-DCMAKE_EXPORT_COMPILE_COMMANDS
=
ON
\
-DCMAKE_EXPORT_COMPILE_COMMANDS
=
ON
\
...
...
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
浏览文件 @
d31e1940
...
@@ -283,6 +283,25 @@ class TestDecayedAdagrad(TranspilerTest):
...
@@ -283,6 +283,25 @@ class TestDecayedAdagrad(TranspilerTest):
trainer
,
_
=
self
.
get_trainer
()
trainer
,
_
=
self
.
get_trainer
()
class
TestFtrl
(
TranspilerTest
):
def
net_conf
(
self
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1000
],
dtype
=
'float32'
)
y_predict
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
1000
,
act
=
None
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'fc_w'
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
'fc_b'
))
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'float32'
)
cost
=
fluid
.
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
opt
=
fluid
.
optimizer
.
Ftrl
(
learning_rate
=
0.1
)
opt
.
minimize
(
avg_cost
)
def
transpiler_test_impl
(
self
):
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
trainer
,
_
=
self
.
get_trainer
()
class
TestLRDecayConditional
(
TranspilerTest
):
class
TestLRDecayConditional
(
TranspilerTest
):
def
net_conf
(
self
):
def
net_conf
(
self
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1000
],
dtype
=
'float32'
)
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1000
],
dtype
=
'float32'
)
...
@@ -405,18 +424,43 @@ class TestL2DecayWithPiecewise(TranspilerTest):
...
@@ -405,18 +424,43 @@ class TestL2DecayWithPiecewise(TranspilerTest):
[
"sum"
,
"scale"
,
"scale"
,
"elementwise_add"
,
"momentum"
])
[
"sum"
,
"scale"
,
"scale"
,
"elementwise_add"
,
"momentum"
])
class
TestEmptyPserverOptimizeBlocks
(
TranspilerTest
):
def
net_conf
(
self
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1000
],
dtype
=
'float32'
)
# only one parameter
y_predict
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
1000
,
act
=
None
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'fc_w'
),
bias_attr
=
False
)
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'float32'
)
cost
=
fluid
.
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
1.0
)
sgd_optimizer
.
minimize
(
avg_cost
)
def
transpiler_test_impl
(
self
):
config
=
fluid
.
DistributeTranspilerConfig
()
config
.
slice_var_up
=
False
pserver
,
startup
=
self
.
get_pserver
(
ep
=
self
.
pserver2_ep
,
config
=
config
)
self
.
assertEqual
(
len
(
pserver
.
blocks
),
2
)
self
.
assertEqual
(
len
(
pserver
.
blocks
[
1
].
ops
),
0
)
class
TestDistLookupTableBase
(
TranspilerTest
):
class
TestDistLookupTableBase
(
TranspilerTest
):
def
network_with_table
(
self
,
is_sparse
,
is_distributed
):
def
network_with_table
(
self
,
is_sparse
,
is_distributed
):
self
.
table_size
=
1000
self
.
table_size
=
1000
self
.
emb_size
=
64
self
.
emb_size
=
64
self
.
lookup_table_name
=
'shared_w'
self
.
lookup_table_name
=
'shared_w'
def
emb_pool
(
ids
):
def
emb_pool
(
ids
,
table_name
,
is_distributed
):
emb
=
fluid
.
layers
.
embedding
(
emb
=
fluid
.
layers
.
embedding
(
input
=
ids
,
input
=
ids
,
size
=
[
self
.
table_size
,
self
.
emb_size
],
size
=
[
self
.
table_size
,
self
.
emb_size
],
dtype
=
'float32'
,
dtype
=
'float32'
,
param_attr
=
self
.
lookup_table_name
,
# share parameter
param_attr
=
table_name
,
is_sparse
=
is_sparse
,
is_sparse
=
is_sparse
,
is_distributed
=
is_distributed
)
is_distributed
=
is_distributed
)
pool
=
fluid
.
layers
.
sequence_pool
(
input
=
emb
,
pool_type
=
'average'
)
pool
=
fluid
.
layers
.
sequence_pool
(
input
=
emb
,
pool_type
=
'average'
)
...
@@ -426,9 +470,13 @@ class TestDistLookupTableBase(TranspilerTest):
...
@@ -426,9 +470,13 @@ class TestDistLookupTableBase(TranspilerTest):
name
=
'title_ids'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
name
=
'title_ids'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
brand_ids
=
fluid
.
layers
.
data
(
brand_ids
=
fluid
.
layers
.
data
(
name
=
'brand_ids'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
name
=
'brand_ids'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
title_emb
=
emb_pool
(
title_ids
)
profile_ids
=
fluid
.
layers
.
data
(
brand_emb
=
emb_pool
(
brand_ids
)
name
=
'brand_ids'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
fc0
=
fluid
.
layers
.
concat
(
input
=
[
title_emb
,
brand_emb
],
axis
=
1
)
title_emb
=
emb_pool
(
title_ids
,
self
.
lookup_table_name
,
is_distributed
)
brand_emb
=
emb_pool
(
brand_ids
,
self
.
lookup_table_name
,
is_distributed
)
profile_emb
=
emb_pool
(
profile_ids
,
"profile_emb"
,
False
)
fc0
=
fluid
.
layers
.
concat
(
input
=
[
title_emb
,
brand_emb
,
profile_emb
],
axis
=
1
)
predict
=
fluid
.
layers
.
fc
(
input
=
fc0
,
predict
=
fluid
.
layers
.
fc
(
input
=
fc0
,
size
=
2
,
size
=
2
,
act
=
None
,
act
=
None
,
...
@@ -449,7 +497,7 @@ class TestLocalLookupTable(TestDistLookupTableBase):
...
@@ -449,7 +497,7 @@ class TestLocalLookupTable(TestDistLookupTableBase):
def
transpiler_test_impl
(
self
):
def
transpiler_test_impl
(
self
):
pserver1
,
startup1
=
self
.
get_pserver
(
self
.
pserver1_ep
)
pserver1
,
startup1
=
self
.
get_pserver
(
self
.
pserver1_ep
)
self
.
assertEqual
(
len
(
pserver1
.
blocks
),
3
)
self
.
assertEqual
(
len
(
pserver1
.
blocks
),
4
)
# 0 listen_and_serv
# 0 listen_and_serv
# 1 optimize for fc_w or fc_b adam
# 1 optimize for fc_w or fc_b adam
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
1
].
ops
],
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
1
].
ops
],
...
@@ -459,16 +507,23 @@ class TestLocalLookupTable(TestDistLookupTableBase):
...
@@ -459,16 +507,23 @@ class TestLocalLookupTable(TestDistLookupTableBase):
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
2
].
ops
],
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
2
].
ops
],
[
"sum"
,
"scale"
,
"adam"
,
"scale"
,
"scale"
])
[
"sum"
,
"scale"
,
"adam"
,
"scale"
,
"scale"
])
# 3 optimize for table 2 adam
# NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
3
].
ops
],
[
"sum"
,
"scale"
,
"adam"
,
"scale"
,
"scale"
])
trainer
,
_
=
self
.
get_trainer
()
trainer
,
_
=
self
.
get_trainer
()
self
.
assertEqual
(
len
(
trainer
.
blocks
),
1
)
self
.
assertEqual
(
len
(
trainer
.
blocks
),
1
)
ops
=
[
ops
=
[
'lookup_table'
,
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
'concat'
,
'mul'
,
'elementwise_add'
,
'cross_entropy'
,
'mean'
,
'lookup_table'
,
'sequence_pool'
,
'concat'
,
'mul'
,
'elementwise_add'
,
'fill_constant'
,
'mean_grad'
,
'cross_entropy_grad'
,
'cross_entropy'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'send'
,
'concat_grad'
,
'cross_entropy_grad'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sequence_pool_grad'
,
'send'
,
'concat_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'lookup_table_grad'
,
'sum'
,
'split_selected_rows'
,
'send'
,
'split_selected_rows'
,
'send'
,
'sequence_pool_grad'
,
'send_barrier'
,
'recv'
,
'recv'
,
'recv'
,
'fetch_barrier'
,
'concat'
'lookup_table_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sum'
,
'split_selected_rows'
,
'send'
,
'send_barrier'
,
'recv'
,
'recv'
,
'recv'
,
'recv'
,
'fetch_barrier'
,
'concat'
,
'concat'
]
]
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
blocks
[
0
].
ops
],
ops
)
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
blocks
[
0
].
ops
],
ops
)
...
@@ -480,39 +535,45 @@ class TestDistLookupTable(TestDistLookupTableBase):
...
@@ -480,39 +535,45 @@ class TestDistLookupTable(TestDistLookupTableBase):
def
transpiler_test_impl
(
self
):
def
transpiler_test_impl
(
self
):
pserver1
,
startup1
=
self
.
get_pserver
(
self
.
pserver1_ep
)
pserver1
,
startup1
=
self
.
get_pserver
(
self
.
pserver1_ep
)
self
.
assertEqual
(
len
(
pserver1
.
blocks
),
5
)
self
.
assertEqual
(
len
(
pserver1
.
blocks
),
6
)
# 0 listen_and_serv
# 0 listen_and_serv
# 1 optimize for fc_w or fc_b adam
# 1 optimize for fc_w or fc_b adam
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
1
].
ops
],
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
1
].
ops
],
[
"sum"
,
"scale"
,
"adam"
,
"scale"
,
"scale"
])
[
"sum"
,
"scale"
,
"adam"
,
"scale"
,
"scale"
])
#
2 optimize for table sgd
#
4 prefetch -> lookup_sparse_table for data0
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
2
].
ops
],
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
2
].
ops
],
[
"sum"
,
"scale"
,
"adam"
,
"scale"
,
"scale"
])
# 2 optimize for table sgd
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
3
].
ops
],
[
"sum"
,
"sgd"
])
[
"sum"
,
"sgd"
])
# 3 prefetch -> lookup_sparse_table for data0
# 3 prefetch -> lookup_sparse_table for data0
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
3
].
ops
],
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
4
].
ops
],
[
"lookup_sparse_table"
])
[
"lookup_sparse_table"
])
#
4
save table
#
5
save table
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
4
].
ops
],
[
"save"
])
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
5
].
ops
],
[
"save"
])
trainer
,
trainer_startup
=
self
.
get_trainer
()
trainer
,
trainer_startup
=
self
.
get_trainer
()
self
.
assertEqual
(
len
(
trainer
.
blocks
),
1
)
self
.
assertEqual
(
len
(
trainer
.
blocks
),
1
)
ops
=
[
ops
=
[
'split_ids'
,
'prefetch'
,
'merge_ids'
,
'sequence_pool'
,
'split_ids'
,
'prefetch'
,
'merge_ids'
,
'sequence_pool'
,
'sequence_pool'
,
'concat'
,
'mul'
,
'elementwise_add'
,
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
'concat'
,
'mul'
,
'cross_entropy'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'elementwise_add'
,
'cross_entropy'
,
'mean'
,
'fill_constant'
,
'cross_entropy_grad'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'mean_grad'
,
'cross_entropy_grad'
,
'elementwise_add_grad'
,
'send'
,
'send'
,
'concat_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'mul_grad'
,
'send'
,
'concat_grad'
,
'sequence_pool_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sum'
,
'split_ids'
,
'lookup_table_grad'
,
'split_selected_rows'
,
'send'
,
'send'
,
'send_barrier'
,
'recv'
,
'recv'
,
'fetch_barrier'
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sum'
,
'split_ids'
,
'send'
,
'send_barrier'
,
'recv'
,
'recv'
,
'recv'
,
'fetch_barrier'
,
'concat'
]
]
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
blocks
[
0
].
ops
],
ops
)
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
blocks
[
0
].
ops
],
ops
)
startup_ops
=
[
startup_ops
=
[
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'uniform_random'
,
'recv'
,
'recv'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fetch_barrier'
,
'fake_init'
'fill_constant'
,
'fill_constant'
,
'uniform_random'
,
'uniform_random'
,
'recv'
,
'recv'
,
'recv'
,
'fetch_barrier'
,
'concat'
,
'fake_init'
]
]
self
.
assertEqual
([
op
.
type
for
op
in
trainer_startup
.
blocks
[
0
].
ops
],
self
.
assertEqual
([
op
.
type
for
op
in
trainer_startup
.
blocks
[
0
].
ops
],
startup_ops
)
startup_ops
)
...
@@ -526,7 +587,7 @@ class TestAsyncLocalLookupTable(TestDistLookupTableBase):
...
@@ -526,7 +587,7 @@ class TestAsyncLocalLookupTable(TestDistLookupTableBase):
config
=
fluid
.
DistributeTranspilerConfig
()
config
=
fluid
.
DistributeTranspilerConfig
()
pserver1
,
startup1
=
self
.
get_pserver
(
self
.
pserver1_ep
,
config
,
False
)
pserver1
,
startup1
=
self
.
get_pserver
(
self
.
pserver1_ep
,
config
,
False
)
self
.
assertEqual
(
len
(
pserver1
.
blocks
),
3
)
self
.
assertEqual
(
len
(
pserver1
.
blocks
),
4
)
# 0 listen_and_serv
# 0 listen_and_serv
# 1 optimize for fc_w or fc_b adam
# 1 optimize for fc_w or fc_b adam
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
1
].
ops
],
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
1
].
ops
],
...
@@ -535,17 +596,23 @@ class TestAsyncLocalLookupTable(TestDistLookupTableBase):
...
@@ -535,17 +596,23 @@ class TestAsyncLocalLookupTable(TestDistLookupTableBase):
# NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
# NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
2
].
ops
],
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
2
].
ops
],
[
"adam"
,
"scale"
,
"scale"
])
[
"adam"
,
"scale"
,
"scale"
])
# 3 optimize for table adam
# NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
3
].
ops
],
[
"adam"
,
"scale"
,
"scale"
])
trainer
,
_
=
self
.
get_trainer
(
config
)
trainer
,
_
=
self
.
get_trainer
(
config
)
self
.
assertEqual
(
len
(
trainer
.
blocks
),
1
)
self
.
assertEqual
(
len
(
trainer
.
blocks
),
1
)
ops
=
[
ops
=
[
'lookup_table'
,
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
'concat'
,
'mul'
,
'elementwise_add'
,
'cross_entropy'
,
'mean'
,
'lookup_table'
,
'sequence_pool'
,
'concat'
,
'mul'
,
'elementwise_add'
,
'fill_constant'
,
'mean_grad'
,
'cross_entropy_grad'
,
'cross_entropy'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'send'
,
'concat_grad'
,
'cross_entropy_grad'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sequence_pool_grad'
,
'send'
,
'concat_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'lookup_table_grad'
,
'sum'
,
'split_selected_rows'
,
'send'
,
'recv'
,
'split_selected_rows'
,
'send'
,
'sequence_pool_grad'
,
'recv'
,
'recv'
,
'concat'
'lookup_table_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sum'
,
'split_selected_rows'
,
'send'
,
'recv'
,
'recv'
,
'recv'
,
'recv'
,
'concat'
,
'concat'
]
]
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
blocks
[
0
].
ops
],
ops
)
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
blocks
[
0
].
ops
],
ops
)
...
@@ -559,29 +626,34 @@ class TestAsyncDistLookupTable(TestDistLookupTableBase):
...
@@ -559,29 +626,34 @@ class TestAsyncDistLookupTable(TestDistLookupTableBase):
pserver1
,
startup1
=
self
.
get_pserver
(
self
.
pserver1_ep
,
config
,
False
)
pserver1
,
startup1
=
self
.
get_pserver
(
self
.
pserver1_ep
,
config
,
False
)
self
.
assertEqual
(
len
(
pserver1
.
blocks
),
5
)
self
.
assertEqual
(
len
(
pserver1
.
blocks
),
6
)
# 0 listen_and_serv
# 0 listen_and_serv
# 1 optimize for fc_w or fc_b adam
# 1 optimize for fc_w or fc_b adam
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
1
].
ops
],
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
1
].
ops
],
[
"adam"
,
"scale"
,
"scale"
])
[
"adam"
,
"scale"
,
"scale"
])
# 2 optimize for table sgd
# 2 optimize for table adam
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
2
].
ops
],
[
"sgd"
])
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
2
].
ops
],
# 3 prefetch -> lookup_sparse_table for data0
[
"adam"
,
"scale"
,
"scale"
])
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
3
].
ops
],
# 3 optimize for table sgd
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
3
].
ops
],
[
"sgd"
])
# 4 prefetch -> lookup_sparse_table for data0
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
4
].
ops
],
[
"lookup_sparse_table"
])
[
"lookup_sparse_table"
])
#
4
save table
#
5
save table
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
4
].
ops
],
[
"save"
])
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
5
].
ops
],
[
"save"
])
trainer
,
_
=
self
.
get_trainer
(
config
)
trainer
,
_
=
self
.
get_trainer
(
config
)
self
.
assertEqual
(
len
(
trainer
.
blocks
),
1
)
self
.
assertEqual
(
len
(
trainer
.
blocks
),
1
)
ops
=
[
ops
=
[
'split_ids'
,
'prefetch'
,
'merge_ids'
,
'sequence_pool'
,
'split_ids'
,
'prefetch'
,
'merge_ids'
,
'sequence_pool'
,
'sequence_pool'
,
'concat'
,
'mul'
,
'elementwise_add'
,
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
'concat'
,
'mul'
,
'cross_entropy'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'elementwise_add'
,
'cross_entropy'
,
'mean'
,
'fill_constant'
,
'cross_entropy_grad'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'mean_grad'
,
'cross_entropy_grad'
,
'elementwise_add_grad'
,
'send'
,
'send'
,
'concat_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'mul_grad'
,
'send'
,
'concat_grad'
,
'sequence_pool_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sum'
,
'split_ids'
,
'lookup_table_grad'
,
'split_selected_rows'
,
'send'
,
'send'
,
'recv'
,
'recv'
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sum'
,
'split_ids'
,
'send'
,
'recv'
,
'recv'
,
'recv'
,
'concat'
]
]
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
blocks
[
0
].
ops
],
ops
)
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
blocks
[
0
].
ops
],
ops
)
...
...
python/paddle/fluid/tests/unittests/test_listen_and_serv_op.py
浏览文件 @
d31e1940
...
@@ -55,6 +55,46 @@ def run_pserver(use_cuda, sync_mode, ip, port, trainers, trainer_id):
...
@@ -55,6 +55,46 @@ def run_pserver(use_cuda, sync_mode, ip, port, trainers, trainer_id):
exe
.
run
(
pserver_prog
)
exe
.
run
(
pserver_prog
)
def
run_pserver_with_empty_block
(
use_cuda
,
sync_mode
,
ip
,
port
,
trainers
,
trainer_id
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1
],
dtype
=
'float32'
)
y_predict
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
1
,
act
=
None
,
bias_attr
=
False
)
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'float32'
)
# loss function
cost
=
fluid
.
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
# optimizer
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
)
sgd_optimizer
.
minimize
(
avg_cost
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
ps1
=
ip
+
":"
+
str
(
int
(
port
)
+
1
)
ps2
=
ip
+
":"
+
port
pserver_endpoints
=
ps1
+
","
+
ps2
config
=
fluid
.
DistributeTranspilerConfig
()
config
.
slice_var_up
=
False
t
=
fluid
.
DistributeTranspiler
(
config
=
config
)
t
.
transpile
(
trainer_id
,
pservers
=
pserver_endpoints
,
trainers
=
trainers
,
sync_mode
=
sync_mode
)
pserver_prog
=
t
.
get_pserver_program
(
ps2
)
# pserver2 have no parameter
assert
(
len
(
pserver_prog
.
blocks
)
==
2
)
assert
(
len
(
pserver_prog
.
blocks
[
1
].
ops
)
==
0
)
pserver_startup
=
t
.
get_startup_program
(
ps2
,
pserver_prog
)
exe
.
run
(
pserver_startup
)
exe
.
run
(
pserver_prog
)
class
TestListenAndServOp
(
OpTest
):
class
TestListenAndServOp
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
ps_timeout
=
5
self
.
ps_timeout
=
5
...
@@ -63,9 +103,9 @@ class TestListenAndServOp(OpTest):
...
@@ -63,9 +103,9 @@ class TestListenAndServOp(OpTest):
self
.
trainers
=
1
self
.
trainers
=
1
self
.
trainer_id
=
0
self
.
trainer_id
=
0
def
_start_pserver
(
self
,
use_cuda
,
sync_mode
):
def
_start_pserver
(
self
,
use_cuda
,
sync_mode
,
pserver_func
):
p
=
Process
(
p
=
Process
(
target
=
run_pserver
,
target
=
pserver_func
,
args
=
(
use_cuda
,
sync_mode
,
self
.
ip
,
self
.
port
,
self
.
trainers
,
args
=
(
use_cuda
,
sync_mode
,
self
.
ip
,
self
.
port
,
self
.
trainers
,
self
.
trainer_id
))
self
.
trainer_id
))
p
.
daemon
=
True
p
.
daemon
=
True
...
@@ -92,7 +132,24 @@ class TestListenAndServOp(OpTest):
...
@@ -92,7 +132,24 @@ class TestListenAndServOp(OpTest):
def
test_handle_signal_in_serv_op
(
self
):
def
test_handle_signal_in_serv_op
(
self
):
# run pserver on CPU in sync mode
# run pserver on CPU in sync mode
p1
=
self
.
_start_pserver
(
False
,
True
)
p1
=
self
.
_start_pserver
(
False
,
True
,
run_pserver
)
self
.
_wait_ps_ready
(
p1
.
pid
)
# raise SIGTERM to pserver
os
.
kill
(
p1
.
pid
,
signal
.
SIGINT
)
p1
.
join
()
# run pserver on CPU in async mode
p2
=
self
.
_start_pserver
(
False
,
False
,
run_pserver
)
self
.
_wait_ps_ready
(
p2
.
pid
)
# raise SIGTERM to pserver
os
.
kill
(
p2
.
pid
,
signal
.
SIGTERM
)
p2
.
join
()
def
test_list_and_serv_run_empty_optimize_block
(
self
):
# run pserver on CPU in sync mode
p1
=
self
.
_start_pserver
(
False
,
True
,
run_pserver_with_empty_block
)
self
.
_wait_ps_ready
(
p1
.
pid
)
self
.
_wait_ps_ready
(
p1
.
pid
)
# raise SIGTERM to pserver
# raise SIGTERM to pserver
...
@@ -100,7 +157,7 @@ class TestListenAndServOp(OpTest):
...
@@ -100,7 +157,7 @@ class TestListenAndServOp(OpTest):
p1
.
join
()
p1
.
join
()
# run pserver on CPU in async mode
# run pserver on CPU in async mode
p2
=
self
.
_start_pserver
(
False
,
False
)
p2
=
self
.
_start_pserver
(
False
,
False
,
run_pserver_with_empty_block
)
self
.
_wait_ps_ready
(
p2
.
pid
)
self
.
_wait_ps_ready
(
p2
.
pid
)
# raise SIGTERM to pserver
# raise SIGTERM to pserver
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
d31e1940
...
@@ -35,6 +35,7 @@ import sys
...
@@ -35,6 +35,7 @@ import sys
import
numpy
as
np
import
numpy
as
np
import
collections
import
collections
import
six
import
six
import
logging
from
.ps_dispatcher
import
RoundRobin
,
HashName
,
PSDispatcher
from
.ps_dispatcher
import
RoundRobin
,
HashName
,
PSDispatcher
from
..
import
core
,
framework
from
..
import
core
,
framework
...
@@ -767,6 +768,15 @@ in a single call.")
...
@@ -767,6 +768,15 @@ in a single call.")
prefetch_var_name_to_block_id
.
extend
(
prefetch_var_name_to_block_id
.
extend
(
lookup_table_var_name_to_block_id
)
lookup_table_var_name_to_block_id
)
if
len
(
optimize_blocks
)
==
0
:
logging
.
warn
(
"pserver ["
+
str
(
endpoint
)
+
"] has no optimize block!!"
)
pre_block_idx
=
pserver_program
.
num_blocks
-
1
empty_block
=
pserver_program
.
_create_block
(
pre_block_idx
)
optimize_blocks
.
append
(
empty_block
)
# In some case, some parameter server will have no parameter to optimize
# So we give an empty optimize block to parameter server.
attrs
=
{
attrs
=
{
"optimize_blocks"
:
optimize_blocks
,
"optimize_blocks"
:
optimize_blocks
,
"endpoint"
:
endpoint
,
"endpoint"
:
endpoint
,
...
@@ -1065,7 +1075,12 @@ to transpile() call.")
...
@@ -1065,7 +1075,12 @@ to transpile() call.")
continue_search_lookup_table_op
=
False
continue_search_lookup_table_op
=
False
all_ops
=
program
.
global_block
().
ops
all_ops
=
program
.
global_block
().
ops
for
op
in
all_ops
:
for
op
in
all_ops
:
if
op
.
type
==
LOOKUP_TABLE_TYPE
:
if
op
.
type
==
LOOKUP_TABLE_TYPE
and
self
.
table_name
==
op
.
input
(
"W"
)[
0
]:
if
not
op
.
attr
(
'is_distributed'
):
raise
RuntimeError
(
"lookup_table_op that lookup an distributed embedding table"
"should set is_distributed to true"
)
continue_search_lookup_table_op
=
True
continue_search_lookup_table_op
=
True
lookup_table_op_index
=
lookup_table_op_index
if
lookup_table_op_index
!=
-
1
else
list
(
lookup_table_op_index
=
lookup_table_op_index
if
lookup_table_op_index
!=
-
1
else
list
(
...
@@ -1275,7 +1290,6 @@ to transpile() call.")
...
@@ -1275,7 +1290,6 @@ to transpile() call.")
}
}
outputs
=
{
"ParamOut"
:
[
param_var
]}
outputs
=
{
"ParamOut"
:
[
param_var
]}
# only support sgd now
# only support sgd now
import
logging
logging
.
warn
(
logging
.
warn
(
"distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
"distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
+
table_opt_op
.
type
)
+
table_opt_op
.
type
)
...
@@ -1442,6 +1456,9 @@ to transpile() call.")
...
@@ -1442,6 +1456,9 @@ to transpile() call.")
elif
op_type
==
"decayed_adagrad"
:
elif
op_type
==
"decayed_adagrad"
:
if
varkey
==
"Moment"
:
if
varkey
==
"Moment"
:
return
param_shape
return
param_shape
elif
op_type
==
"ftrl"
:
if
varkey
in
[
"SquaredAccumulator"
,
"LinearAccumulator"
]:
return
param_shape
elif
op_type
==
"sgd"
:
elif
op_type
==
"sgd"
:
pass
pass
else
:
else
:
...
...
python/paddle/fluid/transpiler/inference_transpiler.py
浏览文件 @
d31e1940
...
@@ -61,6 +61,9 @@ class InferenceTranspiler(object):
...
@@ -61,6 +61,9 @@ class InferenceTranspiler(object):
raise
TypeError
(
"scope should be as Scope type or None"
)
raise
TypeError
(
"scope should be as Scope type or None"
)
use_mkldnn
=
bool
(
os
.
getenv
(
"FLAGS_use_mkldnn"
,
False
))
use_mkldnn
=
bool
(
os
.
getenv
(
"FLAGS_use_mkldnn"
,
False
))
if
use_mkldnn
:
self
.
_depthwise_conv_mkldnn
(
program
)
self
.
_fuse_batch_norm
(
program
,
place
,
scope
)
self
.
_fuse_batch_norm
(
program
,
place
,
scope
)
if
use_mkldnn
:
if
use_mkldnn
:
self
.
_fuse_conv_bias_mkldnn
(
program
)
self
.
_fuse_conv_bias_mkldnn
(
program
)
...
@@ -70,6 +73,31 @@ class InferenceTranspiler(object):
...
@@ -70,6 +73,31 @@ class InferenceTranspiler(object):
program
)
# ResNet residual block merging
program
)
# ResNet residual block merging
self
.
_fuse_bn_relu_mkldnn
(
program
)
self
.
_fuse_bn_relu_mkldnn
(
program
)
def
_depthwise_conv_mkldnn
(
self
,
program
):
'''
Transpile the program by replacing depthwise_conv2d to conv2d for MKLDNN program.
The result is:
- before:
- any_other_op->depthwise_conv->any_other_op
- after:
- any_other_op->conv->any_other_op
:param program: program to transpile
:type program: Program
'''
self
.
block
=
program
.
block
(
0
)
i
=
0
while
i
<
len
(
self
.
block
.
ops
):
current_op
=
self
.
block
.
ops
[
i
]
if
current_op
.
type
==
'depthwise_conv2d'
:
current_op
.
desc
.
set_type
(
"conv2d"
)
i
=
i
+
1
# TODO(luotao): use clone() method to flush the program.desc in force,
# since some large program.desc will not be flushed immediately.
# And a better solution will be considered later.
program
=
program
.
clone
()
def
_fuse_conv_eltwise_mkldnn
(
self
,
program
):
def
_fuse_conv_eltwise_mkldnn
(
self
,
program
):
'''
'''
Transpile the program fusing elementwise_add into conv for MKLDNN
Transpile the program fusing elementwise_add into conv for MKLDNN
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录