Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
d2f7ac61
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d2f7ac61
编写于
7月 28, 2020
作者:
Z
zhupengyang
提交者:
GitHub
7月 28, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
ones_like API: remove device, input -> x (#25663)
上级
1e4ab728
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
109 addition
and
56 deletion
+109
-56
python/paddle/fluid/tests/unittests/test_ones_like.py
python/paddle/fluid/tests/unittests/test_ones_like.py
+80
-0
python/paddle/tensor/creation.py
python/paddle/tensor/creation.py
+29
-56
未找到文件。
python/paddle/fluid/tests/unittests/test_ones_like.py
0 → 100644
浏览文件 @
d2f7ac61
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
from
paddle
import
ones_like
from
paddle.fluid
import
core
,
Program
,
program_guard
class
TestOnesLikeAPIError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
x
=
paddle
.
data
(
'x'
,
[
3
,
4
])
self
.
assertRaises
(
TypeError
,
ones_like
,
x
,
'int8'
)
class
TestOnesLikeAPI
(
unittest
.
TestCase
):
def
test_api
(
self
):
shape
=
[
3
,
4
]
startup_program
=
Program
()
train_program
=
Program
()
with
program_guard
(
train_program
,
startup_program
):
x
=
paddle
.
data
(
'X'
,
shape
)
# 'bool', 'float32', 'float64', 'int32', 'int64'
out1
=
ones_like
(
x
)
out2
=
ones_like
(
x
,
np
.
bool
)
out3
=
ones_like
(
x
,
'float64'
)
out4
=
ones_like
(
x
,
'int32'
)
out5
=
ones_like
(
x
,
'int64'
)
place
=
fluid
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
outs
=
exe
.
run
(
train_program
,
feed
=
{
'X'
:
np
.
ones
(
shape
).
astype
(
'float32'
)},
fetch_list
=
[
out1
,
out2
,
out3
,
out4
,
out5
])
for
i
,
dtype
in
enumerate
(
[
np
.
float32
,
np
.
bool
,
np
.
float64
,
np
.
int32
,
np
.
int64
]):
self
.
assertEqual
(
outs
[
i
].
dtype
,
dtype
)
self
.
assertEqual
((
outs
[
i
]
==
np
.
ones
(
shape
,
dtype
)).
all
(),
True
)
class
TestOnesLikeImpeartive
(
unittest
.
TestCase
):
def
test_out
(
self
):
shape
=
[
3
,
4
]
place
=
fluid
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
with
paddle
.
imperative
.
guard
(
place
):
x
=
paddle
.
imperative
.
to_variable
(
np
.
ones
(
shape
))
for
dtype
in
[
np
.
bool
,
np
.
float32
,
np
.
float64
,
np
.
int32
,
np
.
int64
]:
out
=
ones_like
(
x
,
dtype
)
self
.
assertEqual
((
out
.
numpy
()
==
np
.
ones
(
shape
,
dtype
)).
all
(),
True
)
out
=
paddle
.
tensor
.
ones_like
(
x
)
self
.
assertEqual
((
out
.
numpy
()
==
np
.
ones
(
shape
,
dtype
)).
all
(),
True
)
out
=
paddle
.
tensor
.
creation
.
ones_like
(
x
)
self
.
assertEqual
((
out
.
numpy
()
==
np
.
ones
(
shape
,
dtype
)).
all
(),
True
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/tensor/creation.py
浏览文件 @
d2f7ac61
...
@@ -103,7 +103,7 @@ def full_like(x, fill_value, dtype=None, name=None):
...
@@ -103,7 +103,7 @@ def full_like(x, fill_value, dtype=None, name=None):
helper
=
LayerHelper
(
"full_like"
,
**
locals
())
helper
=
LayerHelper
(
"full_like"
,
**
locals
())
check_dtype
(
dtype
,
'dtype'
,
check_dtype
(
dtype
,
'dtype'
,
[
'bool'
,
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
[
'bool'
,
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'full_like'
)
'full_like
/zeros_like/ones_like
'
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
helper
.
append_op
(
helper
.
append_op
(
...
@@ -164,74 +164,47 @@ def ones(shape, dtype=None, name=None):
...
@@ -164,74 +164,47 @@ def ones(shape, dtype=None, name=None):
return
fill_constant
(
value
=
1.0
,
shape
=
shape
,
dtype
=
dtype
,
name
=
name
)
return
fill_constant
(
value
=
1.0
,
shape
=
shape
,
dtype
=
dtype
,
name
=
name
)
def
ones_like
(
input
,
dtype
=
None
,
devic
e
=
None
,
name
=
None
):
def
ones_like
(
x
,
dtyp
e
=
None
,
name
=
None
):
"""
"""
:alias_main: paddle.ones_like
:alias_main: paddle.ones_like
:alias: paddle.
ones_like,paddle.tensor.ones_like,
paddle.tensor.creation.ones_like
:alias: paddle.
tensor.ones_like,
paddle.tensor.creation.ones_like
This
function creates a ones tensor which has identical shape and dtype
This
OP returns a Tensor filled with the value 1, with the same shape and
with `input
`.
data type (use ``dtype`` if ``dtype`` is not None) as ``x`
`.
Args:
Args:
input(Variable): The input tensor which specifies shape and dtype.The dtype of input can be
x(Tensor): The input tensor which specifies shape and dtype. The
float32, float64, int32, int64.
dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set bool, float32, float64, int32, int64.
dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
The default value is None, the dtype is the same as input.
output tensor. Supported data types: bool, float16, float32, float64,
device(str, optional): Which device to run the operator. The :attr:`device` must be
int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
None, 'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in
Default is None.
the paddle program. Default value is None.
name(str, optional): The default value is None. Normally there is no
name(str, optional): The name of output variable, normally there is no need for user to set this this property.
need for user to set this property. For more information, please
Default value is None, the framework set the name of output variable.
refer to :ref:`api_guide_Name`.
Returns:
Returns:
out(Variable): The tensor variable storing the output.
Tensor: A Tensor filled with the value 1, with the same shape and
data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
Raise:
TypeError: If ``dtype`` is not None and is not bool, float16, float32,
float64, int32 or int64.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
import paddle
import paddle
import paddle.fluid as fluid
import numpy as np
x = fluid.data(name='x', dtype='float32', shape=[3])
data = paddle.ones_like(x) # data=[1.0, 1.0, 1.0]
data1 = paddle.ones_like(input=x, device="gpu") data1=[1.0, 1.0. 1.0]
"""
helper
=
LayerHelper
(
"zeros_like"
,
**
locals
())
attrs
=
{
"value"
:
1.0
}
paddle.enable_imperative()
var_dtype
=
None
if
dtype
is
not
None
:
check_dtype
(
dtype
,
'create data type'
,
[
'bool'
,
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'zeros_like'
)
var_dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
attrs
[
"dtype"
]
=
var_dtype
else
:
var_dtype
=
input
.
dtype
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
var_dtype
)
x = paddle.imperative.to_variable(np.array([1,2,3], dtype='float32'))
out1 = paddle.zeros_like(x) # [1., 1., 1.]
out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1]
if
device
is
not
None
:
"""
if
device
not
in
[
'cpu'
,
'gpu'
]:
return
full_like
(
x
=
x
,
fill_value
=
1
,
dtype
=
dtype
,
name
=
name
)
raise
ValueError
(
"The value of 'device' in zeros_op must be cpu or gpu, but received %s."
%
(
device
))
with
fluid
.
device_guard
(
device
):
helper
.
append_op
(
type
=
'fill_any_like'
,
inputs
=
{
'X'
:
[
input
]},
attrs
=
attrs
,
outputs
=
{
'Out'
:
[
out
]})
return
out
helper
.
append_op
(
type
=
'fill_any_like'
,
inputs
=
{
'X'
:
[
input
]},
attrs
=
attrs
,
outputs
=
{
'Out'
:
[
out
]})
out
.
stop_gradient
=
True
return
out
def
zeros
(
shape
,
dtype
=
None
,
name
=
None
):
def
zeros
(
shape
,
dtype
=
None
,
name
=
None
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录