Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
d266bac9
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d266bac9
编写于
2月 22, 2019
作者:
X
xuezhong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove test temporal
test=develop
上级
eb7bc3e7
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
0 addition
and
438 deletion
+0
-438
python/paddle/fluid/tests/unittests/test_sample_logits.py
python/paddle/fluid/tests/unittests/test_sample_logits.py
+0
-420
python/paddle/fluid/tests/unittests/testsuite.py
python/paddle/fluid/tests/unittests/testsuite.py
+0
-18
未找到文件。
python/paddle/fluid/tests/unittests/test_sample_logits.py
已删除
100644 → 0
浏览文件 @
eb7bc3e7
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
class
Sampler
(
object
):
def
__init__
(
self
,
range
,
seed
):
self
.
range_
=
range
self
.
seed_
=
seed
np
.
random
.
seed
(
self
.
seed_
)
def
sample
(
self
):
rasie
(
"No Implementation!"
)
def
probability
(
self
,
value
):
raise
(
"No Implementation!"
)
class
LogUniformSampler
(
Sampler
):
def
__init__
(
self
,
range
,
seed
):
super
(
LogUniformSampler
,
self
).
__init__
(
range
,
seed
)
self
.
log_range_
=
np
.
log
(
self
.
range_
+
1
)
def
sample
(
self
):
value
=
int
(
np
.
exp
(
np
.
random
.
uniform
(
0.0
,
self
.
log_range_
))
-
1
)
return
value
%
self
.
range_
def
probability
(
self
,
value
):
return
np
.
log
((
value
+
2.0
)
/
(
value
+
1.0
))
/
self
.
log_range_
def
adjust_prob
(
prob
,
num_samples
,
num_tries
):
if
num_samples
==
num_tries
:
return
prob
*
num_samples
else
:
return
-
np
.
expm1
(
num_tries
*
np
.
log1p
(
-
prob
))
def
take_along_axis1
(
array
,
index
):
out
=
np
.
zeros_like
(
index
,
dtype
=
array
.
dtype
)
n_row
,
n_col
=
index
.
shape
for
i
in
range
(
n_row
):
for
j
in
range
(
n_col
):
out
[
i
,
j
]
=
array
[
i
,
index
[
i
,
j
]]
return
out
def
sample_prob
(
sampler
,
num_samples
,
labels
):
batch_size
,
num_true
=
labels
.
shape
num_sampled_classes
=
num_samples
+
num_true
samples
=
np
.
zeros
((
batch_size
,
num_sampled_classes
),
dtype
=
np
.
int64
)
probabilities
=
np
.
zeros
(
(
batch_size
,
num_sampled_classes
),
dtype
=
np
.
float64
)
tmp_samples
=
set
()
num_tries
=
0
j
=
0
while
j
<
num_true
:
for
i
in
range
(
batch_size
):
samples
[
i
,
j
]
=
labels
[
i
,
j
]
probabilities
[
i
,
j
]
=
sampler
.
probability
(
labels
[
i
,
j
])
j
+=
1
while
j
<
num_sampled_classes
:
v
=
sampler
.
sample
()
num_tries
+=
1
if
v
not
in
tmp_samples
:
tmp_samples
.
add
(
v
)
for
i
in
range
(
batch_size
):
samples
[
i
,
j
]
=
v
probabilities
[
i
,
j
]
=
sampler
.
probability
(
v
)
j
+=
1
for
k
in
range
(
num_sampled_classes
):
for
i
in
range
(
batch_size
):
probabilities
[
i
,
k
]
=
adjust_prob
(
probabilities
[
i
,
k
],
num_samples
,
num_tries
)
return
(
samples
,
probabilities
)
def
compute_remove_accidental_hits
(
sampled_logits
,
samples
,
num_true
):
batch_size
,
num_sampled_classes
=
samples
.
shape
for
i
in
range
(
batch_size
):
true_labels
=
set
(
samples
[
i
,
np
.
arange
(
num_true
)])
for
j
in
range
(
num_true
,
num_sampled_classes
):
if
samples
[
i
,
j
]
in
true_labels
:
sampled_logits
[
i
,
j
]
-=
1e20
def
sample_logits
(
logits
,
labels
,
num_samples
,
seed
,
remove_accidental_hits
,
use_customized_samples
,
customized_samples
=
None
,
customized_probabilities
=
None
):
batch_size
,
num_classes
=
logits
.
shape
num_true
=
labels
.
shape
[
1
]
num_sampled_classes
=
num_true
+
num_samples
if
use_customized_samples
:
samples
=
customized_samples
probabilities
=
customized_probabilities
else
:
sampler
=
LogUniformSampler
(
num_classes
,
seed
)
samples
,
probabilities
=
sample_prob
(
sampler
,
num_samples
,
labels
)
sampled_logits
=
take_along_axis1
(
logits
,
samples
)
if
remove_accidental_hits
:
compute_remove_accidental_hits
(
sampled_logits
,
samples
,
num_true
)
sampled_logits
-=
np
.
log
(
probabilities
)
sampled_labels
=
np
.
tile
(
np
.
arange
(
num_true
),
(
batch_size
,
1
))
return
(
sampled_logits
,
samples
,
sampled_labels
,
probabilities
)
class
TestSampleLogitsOp
(
OpTest
):
'''
Test SampleLogitsOp, but with random results precomputed
in python and just test the non-random part.
'''
def
generate_data
(
self
,
logits
,
labels
,
num_samples
,
seed
,
remove_accidental_hits
,
use_customized_samples
,
customized_samples
,
customized_probabilities
):
self
.
attrs
=
{
'num_samples'
:
num_samples
,
'use_customized_samples'
:
use_customized_samples
,
'remove_accidental_hits'
:
remove_accidental_hits
,
'seed'
:
seed
}
self
.
inputs
=
{
'Logits'
:
logits
,
'Labels'
:
labels
,
'CustomizedSamples'
:
customized_samples
,
'CustomizedProbabilities'
:
customized_probabilities
}
def
set_data
(
self
,
batch_size
,
num_classes
,
num_true
,
num_samples
,
seed
,
remove_accidental_hits
):
logits
=
np
.
random
.
randn
(
batch_size
,
num_classes
)
labels
=
np
.
stack
([
np
.
random
.
choice
(
range
(
0
,
num_classes
),
num_true
,
replace
=
False
)
for
_
in
range
(
batch_size
)
])
sampler
=
LogUniformSampler
(
num_classes
,
seed
)
customized_samples
,
customized_probabilities
=
\
sample_prob
(
sampler
,
num_samples
,
labels
)
use_customized_samples
=
True
remove_accidental_hits
=
remove_accidental_hits
self
.
generate_data
(
logits
,
labels
,
num_samples
,
seed
,
remove_accidental_hits
,
use_customized_samples
,
customized_samples
,
customized_probabilities
)
def
compute
(
self
):
out
=
sample_logits
(
self
.
inputs
[
"Logits"
],
self
.
inputs
[
"Labels"
],
self
.
attrs
[
"num_samples"
],
self
.
attrs
[
"seed"
],
self
.
attrs
[
"remove_accidental_hits"
],
self
.
attrs
[
"use_customized_samples"
],
self
.
inputs
[
"CustomizedSamples"
],
self
.
inputs
[
"CustomizedProbabilities"
])
self
.
outputs
=
{
'SampledLogits'
:
out
[
0
],
'Samples'
:
out
[
1
],
'SampledLabels'
:
out
[
2
],
'Probabilities'
:
out
[
3
]
}
def
setUp
(
self
):
self
.
op_type
=
'sample_logits'
batch_size
=
5
num_classes
=
20
num_true
=
5
num_samples
=
10
seed
=
10
remove_accidental_hits
=
True
self
.
set_data
(
batch_size
,
num_classes
,
num_true
,
num_samples
,
seed
,
remove_accidental_hits
)
self
.
compute
()
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
pass
self
.
check_grad
(
[
"Logits"
],
[
"SampledLogits"
,
"Samples"
],
max_relative_error
=
0.02
)
class
TestSampleLogitsOp2
(
TestSampleLogitsOp
):
def
setUp
(
self
):
self
.
op_type
=
'sample_logits'
batch_size
=
5
num_classes
=
20
num_true
=
5
num_samples
=
10
seed
=
10
remove_accidental_hits
=
False
self
.
set_data
(
batch_size
,
num_classes
,
num_true
,
num_samples
,
seed
,
remove_accidental_hits
)
self
.
compute
()
class
TestSampleLogitsOp3
(
TestSampleLogitsOp
):
def
setUp
(
self
):
self
.
op_type
=
'sample_logits'
batch_size
=
5
num_classes
=
100
num_true
=
5
num_samples
=
25
seed
=
10
remove_accidental_hits
=
True
self
.
set_data
(
batch_size
,
num_classes
,
num_true
,
num_samples
,
seed
,
remove_accidental_hits
)
self
.
compute
()
class
TestSampleLogitsOp4
(
TestSampleLogitsOp
):
def
setUp
(
self
):
self
.
op_type
=
'sample_logits'
batch_size
=
5
num_classes
=
100
num_true
=
5
num_samples
=
25
seed
=
10
remove_accidental_hits
=
False
self
.
set_data
(
batch_size
,
num_classes
,
num_true
,
num_samples
,
seed
,
remove_accidental_hits
)
self
.
compute
()
class
TestSampleLogitsOpV2
(
OpTest
):
'''
Test SampleLogitsOp, but with random results precomputed
in C++ and copied to python and just test the non-random part.
'''
def
generate_data
(
self
,
logits
,
labels
,
num_samples
,
seed
,
remove_accidental_hits
,
use_customized_samples
):
self
.
attrs
=
{
'num_samples'
:
num_samples
,
'use_customized_samples'
:
use_customized_samples
,
'remove_accidental_hits'
:
remove_accidental_hits
,
'seed'
:
seed
}
self
.
inputs
=
{
'Logits'
:
logits
,
'Labels'
:
labels
.
astype
(
np
.
int64
)}
def
set_data
(
self
,
num_classes
,
num_samples
,
seed
,
remove_accidental_hits
):
labels
=
np
.
array
([[
6
,
12
,
15
,
5
,
1
],
[
0
,
9
,
4
,
1
,
10
],
[
0
,
2
,
10
,
16
,
13
],
[
14
,
4
,
7
,
2
,
1
],
[
3
,
18
,
11
,
8
,
14
]])
batch_size
,
num_true
=
labels
.
shape
use_customized_samples
=
False
num_sampled_classes
=
num_samples
+
num_true
logits
=
np
.
random
.
randn
(
batch_size
,
num_classes
)
remove_accidental_hits
=
remove_accidental_hits
self
.
generate_data
(
logits
,
labels
,
num_samples
,
seed
,
remove_accidental_hits
,
use_customized_samples
)
# python and c++ use different random generator
# use fetched samples from c++ for python code
self
.
fetched_samples
=
np
.
array
(
[[
6
,
12
,
15
,
5
,
1
,
5
,
15
,
1
,
0
,
8
,
3
,
14
,
2
,
13
,
4
],
[
0
,
9
,
4
,
1
,
10
,
5
,
15
,
1
,
0
,
8
,
3
,
14
,
2
,
13
,
4
],
[
0
,
2
,
10
,
16
,
13
,
5
,
15
,
1
,
0
,
8
,
3
,
14
,
2
,
13
,
4
],
[
14
,
4
,
7
,
2
,
1
,
5
,
15
,
1
,
0
,
8
,
3
,
14
,
2
,
13
,
4
],
[
3
,
18
,
11
,
8
,
14
,
5
,
15
,
1
,
0
,
8
,
3
,
14
,
2
,
13
,
4
]])
fectched_num_tries
=
21
probabilities
=
np
.
zeros
(
(
batch_size
,
num_sampled_classes
),
dtype
=
np
.
float64
)
sampler
=
LogUniformSampler
(
num_classes
,
seed
)
for
j
in
range
(
num_sampled_classes
):
for
i
in
range
(
batch_size
):
probabilities
[
i
,
j
]
=
sampler
.
probability
(
self
.
fetched_samples
[
i
,
j
])
probabilities
[
i
,
j
]
=
adjust_prob
(
probabilities
[
i
,
j
],
num_samples
,
fectched_num_tries
)
self
.
probabilities
=
probabilities
def
compute
(
self
):
out
=
sample_logits
(
self
.
inputs
[
"Logits"
],
self
.
inputs
[
"Labels"
],
self
.
attrs
[
"num_samples"
],
self
.
attrs
[
"seed"
],
self
.
attrs
[
"remove_accidental_hits"
],
True
,
self
.
fetched_samples
.
astype
(
np
.
int64
),
self
.
probabilities
)
self
.
outputs
=
{
'SampledLogits'
:
out
[
0
],
'Samples'
:
out
[
1
],
'SampledLabels'
:
out
[
2
],
'Probabilities'
:
out
[
3
]
}
def
setUp
(
self
):
self
.
op_type
=
'sample_logits'
num_samples
=
10
num_classes
=
20
seed
=
10
remove_accidental_hits
=
True
self
.
set_data
(
num_classes
,
num_samples
,
seed
,
remove_accidental_hits
)
self
.
compute
()
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
pass
self
.
check_grad
(
[
"Logits"
],
[
"SampledLogits"
,
"Samples"
],
max_relative_error
=
0.02
)
class
TestSampleLogitsOpV3
(
OpTest
):
'''
Test SampleLogitsOp, but with random results precomputed
in C++ and copied to python and just test the non-random part.
'''
def
generate_data
(
self
,
logits
,
labels
,
num_samples
,
seed
,
remove_accidental_hits
,
use_customized_samples
):
self
.
attrs
=
{
'num_samples'
:
num_samples
,
'use_customized_samples'
:
use_customized_samples
,
'remove_accidental_hits'
:
remove_accidental_hits
,
'seed'
:
seed
}
self
.
inputs
=
{
'Logits'
:
logits
,
'Labels'
:
labels
.
astype
(
np
.
int64
)}
def
set_data
(
self
,
num_classes
,
num_samples
,
seed
,
remove_accidental_hits
):
labels
=
[
52
,
2
,
2
,
17
,
96
,
2
,
17
,
96
,
37
,
2
]
samples
=
[
3
,
12
,
74
,
28
,
1
,
79
,
2
,
42
,
8
,
13
,
0
,
18
,
88
,
49
,
14
,
46
,
39
,
57
,
26
,
75
,
9
,
50
,
16
,
66
,
6
,
23
,
5
,
11
,
17
,
54
,
35
,
20
,
53
,
10
,
47
,
80
,
38
,
7
,
4
,
31
,
15
,
19
,
58
,
22
,
34
,
41
,
73
,
62
,
95
,
25
,
70
,
37
,
30
,
65
,
27
,
51
,
43
,
32
,
99
,
21
,
56
,
29
,
40
,
69
,
55
,
98
,
77
,
67
,
33
,
89
,
63
,
81
,
59
,
48
,
91
,
68
,
72
,
61
,
52
,
86
]
self
.
fetched_samples
=
np
.
array
([[
x
]
+
samples
for
x
in
labels
])
fectched_num_tries
=
323
labels
=
self
.
fetched_samples
[:,
0
:
1
]
batch_size
,
num_true
=
labels
.
shape
use_customized_samples
=
False
num_sampled_classes
=
num_samples
+
num_true
logits
=
np
.
random
.
randn
(
batch_size
,
num_classes
)
remove_accidental_hits
=
remove_accidental_hits
self
.
generate_data
(
logits
,
labels
,
num_samples
,
seed
,
remove_accidental_hits
,
use_customized_samples
)
# python and c++ use different random generator
# use fetched samples from c++ for python code
probabilities
=
np
.
zeros
(
(
batch_size
,
num_sampled_classes
),
dtype
=
np
.
float64
)
sampler
=
LogUniformSampler
(
num_classes
,
seed
)
for
j
in
range
(
num_sampled_classes
):
for
i
in
range
(
batch_size
):
probabilities
[
i
,
j
]
=
sampler
.
probability
(
self
.
fetched_samples
[
i
,
j
])
probabilities
[
i
,
j
]
=
adjust_prob
(
probabilities
[
i
,
j
],
num_samples
,
fectched_num_tries
)
self
.
probabilities
=
probabilities
def
compute
(
self
):
out
=
sample_logits
(
self
.
inputs
[
"Logits"
],
self
.
inputs
[
"Labels"
],
self
.
attrs
[
"num_samples"
],
self
.
attrs
[
"seed"
],
self
.
attrs
[
"remove_accidental_hits"
],
True
,
self
.
fetched_samples
.
astype
(
np
.
int64
),
self
.
probabilities
)
self
.
outputs
=
{
'SampledLogits'
:
out
[
0
],
'Samples'
:
out
[
1
],
'SampledLabels'
:
out
[
2
],
'Probabilities'
:
out
[
3
]
}
def
setUp
(
self
):
self
.
op_type
=
'sample_logits'
num_samples
=
80
num_classes
=
100
seed
=
123
remove_accidental_hits
=
True
self
.
set_data
(
num_classes
,
num_samples
,
seed
,
remove_accidental_hits
)
self
.
compute
()
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
pass
self
.
check_grad
(
[
"Logits"
],
[
"SampledLogits"
,
"Samples"
],
max_relative_error
=
0.02
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/testsuite.py
浏览文件 @
d266bac9
...
@@ -156,26 +156,8 @@ def append_input_output(block, op_proto, np_list, is_input, dtype):
...
@@ -156,26 +156,8 @@ def append_input_output(block, op_proto, np_list, is_input, dtype):
return
var_dict
return
var_dict
def
var_cast
(
block
,
input
):
if
input
.
dtype
==
core
.
VarDesc
.
VarType
.
FP32
or
input
.
dtype
==
core
.
VarDesc
.
VarType
.
FP32
:
return
input
out
=
block
.
create_var
(
dtype
=
"float32"
,
shape
=
[
1
])
op
=
block
.
append_op
(
inputs
=
{
"X"
:
input
},
outputs
=
{
"Out"
:
out
},
type
=
'cast'
,
attrs
=
{
'out_dtype'
:
core
.
VarDesc
.
VarType
.
FP32
,
'in_dtype'
:
input
.
dtype
})
op
.
desc
.
infer_var_type
(
block
.
desc
)
op
.
desc
.
infer_shape
(
block
.
desc
)
return
out
def
append_loss_ops
(
block
,
output_names
):
def
append_loss_ops
(
block
,
output_names
):
mean_inputs
=
list
(
map
(
block
.
var
,
output_names
))
mean_inputs
=
list
(
map
(
block
.
var
,
output_names
))
mean_inputs
=
[
var_cast
(
block
,
x
)
for
x
in
mean_inputs
]
if
len
(
mean_inputs
)
==
1
:
if
len
(
mean_inputs
)
==
1
:
loss
=
block
.
create_var
(
dtype
=
mean_inputs
[
0
].
dtype
,
shape
=
[
1
])
loss
=
block
.
create_var
(
dtype
=
mean_inputs
[
0
].
dtype
,
shape
=
[
1
])
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录