未验证 提交 d00c2ca6 编写于 作者: N Nyakku Shigure 提交者: GitHub

[CodeStyle][UP005] replace deprecated unittest aliases (#49522)

上级 419c2d14
......@@ -142,7 +142,7 @@ class TestCheckCompiler(TestABIBase):
class TestRunCMDException(unittest.TestCase):
def test_exception(self):
for verbose in [True, False]:
with self.assertRaisesRegexp(RuntimeError, "Failed to run command"):
with self.assertRaisesRegex(RuntimeError, "Failed to run command"):
cmd = "fake cmd"
utils.run_cmd(cmd, verbose)
......
......@@ -396,17 +396,17 @@ class TestErrorWithInitFromStaticMode(unittest.TestCase):
paddle.enable_static()
net = SimpleNet()
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
RuntimeError, "only available in dynamic mode"
):
net.forward.concrete_program
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
RuntimeError, "only available in dynamic mode"
):
net.forward.inputs
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
RuntimeError, "only available in dynamic mode"
):
net.forward.outputs
......
......@@ -357,12 +357,12 @@ class TestErrorWithInitFromStaticMode(unittest.TestCase):
net = Net()
self.program_translator.enable(True)
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
RuntimeError, "only available in dynamic mode"
):
self.program_translator.get_output(net.forward, self.x)
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
RuntimeError, "only available in dynamic mode"
):
self.program_translator.get_program(net.forward, self.x)
......
......@@ -97,7 +97,7 @@ class TestArgsSpecName(unittest.TestCase):
return name_ids[name]
mode = [to_idx(name) for name in in_names]
self.assertEquals(mode, expect_mode)
self.assertEqual(mode, expect_mode)
if __name__ == '__main__':
......
......@@ -140,12 +140,12 @@ class TestIrMemOptBase(BuildIrMemOptBase):
self.network
)
self.assertAlmostEquals(
self.assertAlmostEqual(
np.mean(baseline_last_loss),
np.mean(cur_last_loss),
delta=1e-6,
)
self.assertAlmostEquals(
self.assertAlmostEqual(
np.mean(baseline_first_loss),
np.mean(cur_first_loss),
delta=1e-6,
......
......@@ -82,7 +82,7 @@ def case_generator(op_type, Xshape, diagonal, expected):
paddle.enable_static()
data = fluid.data(shape=Xshape, dtype='float64', name=cls_name)
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
eval(expected.split(':')[-1]), errmsg[expected]
):
getattr(tensor, op_type)(x=data, diagonal=diagonal)
......
......@@ -83,7 +83,7 @@ def case_generator(op_type, Xshape, diagonal, expected):
paddle.enable_static()
data = fluid.data(shape=Xshape, dtype='float32', name=cls_name)
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
eval(expected.split(':')[-1]), errmsg[expected]
):
getattr(tensor, op_type)(x=data, diagonal=diagonal)
......
......@@ -50,16 +50,16 @@ class TestResnetBase(TestParallelExecutorBase):
if compare_separately:
for loss in zip(func_1_first_loss, func_2_first_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-5)
self.assertAlmostEqual(loss[0], loss[1], delta=1e-5)
for loss in zip(func_1_last_loss, func_2_last_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=delta2)
self.assertAlmostEqual(loss[0], loss[1], delta=delta2)
else:
np.testing.assert_allclose(
func_1_loss_area, func_2_loss_area, rtol=delta2
)
self.assertAlmostEquals(
self.assertAlmostEqual(
np.mean(func_1_first_loss), func_2_first_loss[0], delta=1e-5
)
self.assertAlmostEquals(
self.assertAlmostEqual(
np.mean(func_1_last_loss), func_2_last_loss[0], delta=delta2
)
......@@ -177,12 +177,12 @@ class TestBuffer(unittest.TestCase):
net = fluid.Layer()
var = to_variable(np.zeros([1]))
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
TypeError, "name of buffer should be a string"
):
net.register_buffer(12, var)
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
TypeError, "buffer should be a Paddle.Tensor"
):
if in_dygraph_mode():
......@@ -194,18 +194,18 @@ class TestBuffer(unittest.TestCase):
"buffer_name", ParamBase([2, 2], 'float32')
)
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
KeyError, "name of buffer can not contain"
):
net.register_buffer("buffer.name", var)
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
KeyError, "name of buffer can not be empty"
):
net.register_buffer("", var)
net.attr_name = 10
with self.assertRaisesRegexp(KeyError, "already exists"):
with self.assertRaisesRegex(KeyError, "already exists"):
net.register_buffer("attr_name", var)
del net.attr_name
......@@ -213,7 +213,7 @@ class TestBuffer(unittest.TestCase):
net.attr_name = EagerParamBase([2, 2], 'float32')
else:
net.attr_name = ParamBase([2, 2], 'float32')
with self.assertRaisesRegexp(KeyError, "already exists"):
with self.assertRaisesRegex(KeyError, "already exists"):
net.register_buffer("attr_name", var)
def test_register_buffer_same_name(self):
......
......@@ -21,7 +21,7 @@ class CipherUtilsTestCase(unittest.TestCase):
def test_gen_key(self):
key1 = CipherUtils.gen_key(256)
key2 = CipherUtils.gen_key_to_file(256, "paddle_aes_test.keyfile")
self.assertNotEquals(key1, key2)
self.assertNotEqual(key1, key2)
key3 = CipherUtils.read_key_from_file("paddle_aes_test.keyfile")
self.assertEqual(key2, key3)
self.assertEqual(len(key1), 32)
......
......@@ -28,11 +28,11 @@ class TestCifar10(unittest.TestCase):
read_num = 0
for data in cyclic_reader():
read_num += 1
self.assertEquals(len(data), 2)
self.assertEqual(len(data), 2)
if read_num == sample_num * 2:
break
self.assertEquals(read_num, sample_num * 2)
self.assertEqual(read_num, sample_num * 2)
if __name__ == '__main__':
......
......@@ -153,7 +153,7 @@ class DatasetLoaderTestBase(unittest.TestCase):
for _ in range(EPOCH_NUM):
has_complete_batch = False
for batch_id, data in enumerate(dataloader):
self.assertEquals(len(places), len(data))
self.assertEqual(len(places), len(data))
for idx, data_on_each_device in enumerate(data):
image = data_on_each_device["image"]
label = data_on_each_device["label"]
......@@ -166,7 +166,7 @@ class DatasetLoaderTestBase(unittest.TestCase):
else:
batch_size = BATCH_SIZE
self.assertEquals(image.shape()[1:], IMAGE_SHAPE)
self.assertEqual(image.shape()[1:], IMAGE_SHAPE)
self.assertTrue(
image._place()._equals(places[idx]),
msg=get_place_string(image._place())
......@@ -174,24 +174,24 @@ class DatasetLoaderTestBase(unittest.TestCase):
+ get_place_string(places[idx]),
)
if self.drop_last:
self.assertEquals(image.shape()[0], BATCH_SIZE)
self.assertEqual(image.shape()[0], BATCH_SIZE)
else:
self.assertTrue(
image.shape()[0] == BATCH_SIZE
or image.shape()[0] == BATCH_SIZE / 2
)
self.assertEquals(label.shape()[1:], LABEL_SHAPE)
self.assertEqual(label.shape()[1:], LABEL_SHAPE)
self.assertTrue(label._place()._equals(places[idx]))
if self.drop_last:
self.assertEquals(label.shape()[0], BATCH_SIZE)
self.assertEqual(label.shape()[0], BATCH_SIZE)
else:
self.assertTrue(
label.shape()[0] == BATCH_SIZE
or label.shape()[0] == BATCH_SIZE / 2
)
self.assertEquals(image.shape()[0], label.shape()[0])
self.assertEqual(image.shape()[0], label.shape()[0])
if image.shape()[0] == BATCH_SIZE:
has_complete_batch = True
......
......@@ -39,21 +39,21 @@ class DeprecatedMemoryOptimizationInterfaceTest(unittest.TestCase):
def assert_program_equal(self, prog1, prog2):
block_num = prog1.num_blocks
self.assertEquals(block_num, prog2.num_blocks)
self.assertEqual(block_num, prog2.num_blocks)
for block_id in range(block_num):
block1 = prog1.block(block_id)
block2 = prog2.block(block_id)
self.assertEquals(len(block1.ops), len(block2.ops))
self.assertEqual(len(block1.ops), len(block2.ops))
for op1, op2 in zip(block1.ops, block2.ops):
self.assertEquals(op1.input_arg_names, op2.input_arg_names)
self.assertEquals(op1.output_arg_names, op2.output_arg_names)
self.assertEqual(op1.input_arg_names, op2.input_arg_names)
self.assertEqual(op1.output_arg_names, op2.output_arg_names)
self.assertEquals(len(block1.vars), len(block2.vars))
self.assertEqual(len(block1.vars), len(block2.vars))
for var1 in block1.vars.values():
self.assertTrue(var1.name in block2.vars)
var2 = block2.vars.get(var1.name)
self.assertEquals(var1.name, var2.name)
self.assertEqual(var1.name, var2.name)
def test_main(self):
prog1 = self.build_network(False)
......
......@@ -210,7 +210,7 @@ class TestInplace(unittest.TestCase):
var_d = var_b**2
loss = paddle.nn.functional.relu(var_c + var_d)
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
RuntimeError,
"received tensor_version:{} != wrapper_version_snapshot:{}".format(
1, 0
......
......@@ -103,8 +103,8 @@ class TestTreeIndex(unittest.TestCase):
node.id() for node in tree.get_nodes(travel_path_codes)
]
self.assertEquals(travel_path_ids + [travel_ids[-1]], travel_ids)
self.assertEquals(travel_path_codes + [travel_codes[-1]], travel_codes)
self.assertEqual(travel_path_ids + [travel_ids[-1]], travel_ids)
self.assertEqual(travel_path_codes + [travel_codes[-1]], travel_codes)
# get_children
children_codes = tree.get_children_codes(travel_codes[1], height - 1)
......
......@@ -75,12 +75,12 @@ class EagerScaleTestCase(unittest.TestCase):
out_eager = core.eager.scale(data_eager, 1.0, 0.9, True, True)
self.assertIsNone(data_eager.grad)
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
AssertionError, "The type of grad_tensor must be paddle.Tensor"
):
out_eager.backward(grad_data, False)
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
AssertionError,
"Tensor shape not match, Tensor of grad_tensor /*",
):
......@@ -265,17 +265,17 @@ class EagerVariablePropertiesAndMethodsTestCase(unittest.TestCase):
zero_dim_param = EagerParamBase(shape=[], dtype="float32")
self.assertEqual(zero_dim_param.shape, [])
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
ValueError, "The shape of Parameter should not be None"
):
eager_param = EagerParamBase(shape=None, dtype="float32")
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
ValueError, "The dtype of Parameter should not be None"
):
eager_param = EagerParamBase(shape=[1, 1], dtype=None)
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
ValueError,
"Each dimension of shape for Parameter must be greater than 0, but received /*",
):
......@@ -285,7 +285,7 @@ class EagerVariablePropertiesAndMethodsTestCase(unittest.TestCase):
self.assertTrue(eager_param.trainable)
eager_param.trainable = False
self.assertFalse(eager_param.trainable)
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
ValueError, "The type of trainable MUST be bool, but the type is /*"
):
eager_param.trainable = "False"
......@@ -296,7 +296,7 @@ class EagerVariablePropertiesAndMethodsTestCase(unittest.TestCase):
self.assertTrue(eager_param_2.trainable)
eager_param_2.trainable = False
self.assertFalse(eager_param_2.trainable)
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
ValueError, "The type of trainable MUST be bool, but the type is /*"
):
eager_param_2.trainable = "False"
......
......@@ -79,9 +79,9 @@ class TestFuseAllReduceOpsBase(TestParallelExecutorBase):
)
for loss in zip(not_fuse_op_first_loss, fuse_op_first_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
self.assertAlmostEqual(loss[0], loss[1], delta=1e-6)
for loss in zip(not_fuse_op_last_loss, fuse_op_last_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
self.assertAlmostEqual(loss[0], loss[1], delta=1e-6)
def optimizer(self, learning_rate=1e-3):
optimizer = fluid.optimizer.SGD(
......
......@@ -75,9 +75,9 @@ class TestMNIST(TestParallelExecutorBase):
)
for loss in zip(not_fuse_op_first_loss, fuse_op_first_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
self.assertAlmostEqual(loss[0], loss[1], delta=1e-6)
for loss in zip(not_fuse_op_last_loss, fuse_op_last_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
self.assertAlmostEqual(loss[0], loss[1], delta=1e-6)
def test_simple_fc_with_fuse_op(self):
self._compare_fuse_elewise_add_act_ops(simple_fc_net, DeviceType.CUDA)
......
......@@ -71,9 +71,9 @@ class TestFuseOptimizationOps(TestParallelExecutorBase):
)
for loss in zip(not_fuse_op_first_loss, fuse_op_first_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
self.assertAlmostEqual(loss[0], loss[1], delta=1e-6)
for loss in zip(not_fuse_op_last_loss, fuse_op_last_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
self.assertAlmostEqual(loss[0], loss[1], delta=1e-6)
def _decorate_compare_fused_optimizer_ops(
self, model, use_device, optimizer
......
......@@ -119,9 +119,9 @@ class TestMNIST(TestParallelExecutorBase):
)
for loss in zip(not_fuse_op_first_loss, fuse_op_first_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
self.assertAlmostEqual(loss[0], loss[1], delta=1e-6)
for loss in zip(not_fuse_op_last_loss, fuse_op_last_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
self.assertAlmostEqual(loss[0], loss[1], delta=1e-6)
def test_simple_depthwise_with_fuse_op(self):
self._compare(simple_depthwise_net, DeviceType.CUDA)
......
......@@ -55,7 +55,7 @@ class TestGlobalVarGetterSetter(unittest.TestCase):
self.assertFalse(name in g)
self.assertFalse(name in g.keys())
self.assertIsNone(g.get(name, None))
self.assertEquals(g.get(name, -1), -1)
self.assertEqual(g.get(name, -1), -1)
if __name__ == '__main__':
......
......@@ -37,7 +37,7 @@ class TestDygraphDataLoaderWithException(unittest.TestCase):
def test_not_capacity(self):
with fluid.dygraph.guard():
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
ValueError, "Please give value to capacity."
):
fluid.io.DataLoader.from_generator()
......
......@@ -53,7 +53,7 @@ class TestInplace(unittest.TestCase):
var_d = var_b**2
loss = paddle.nn.functional.relu(var_c + var_d)
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
RuntimeError,
"received tensor_version:{} != wrapper_version_snapshot:{}".format(
1, 0
......@@ -161,7 +161,7 @@ class TestDygraphInplace(unittest.TestCase):
self.inplace_api_processing(var_b)
loss = paddle.nn.functional.relu(var_c)
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
RuntimeError,
"received tensor_version:{} != wrapper_version_snapshot:{}".format(
1, 0
......
......@@ -76,7 +76,7 @@ class TestSaveInferenceModelAPIError(unittest.TestCase):
exe = fluid.Executor(fluid.CPUPlace())
exe.run(start_prog)
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
ValueError, "not involved in the target_vars calculation"
):
fluid.io.save_inference_model(
......
......@@ -251,7 +251,7 @@ class TestOptimizer(unittest.TestCase):
)
class TestSGDOptimizer(TestOptimizer):
def test_optimizer_multiblock_except(self):
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
ValueError, "var param_y not in this block"
):
self._check_grads(use_bf16=True)
......
......@@ -174,12 +174,12 @@ class TestMNIST(TestParallelExecutorBase):
use_parallel_executor=True,
)
self.assertAlmostEquals(
self.assertAlmostEqual(
np.mean(parallel_first_loss),
single_first_loss,
delta=1e-6,
)
self.assertAlmostEquals(
self.assertAlmostEqual(
np.mean(parallel_last_loss), single_last_loss, delta=1e-6
)
......
......@@ -70,12 +70,12 @@ class TestMNIST(TestParallelExecutorBase):
use_parallel_executor=True,
)
self.assertAlmostEquals(
self.assertAlmostEqual(
np.mean(parallel_first_loss),
single_first_loss,
delta=1e-6,
)
self.assertAlmostEquals(
self.assertAlmostEqual(
np.mean(parallel_last_loss), single_last_loss, delta=1e-6
)
......
......@@ -49,9 +49,9 @@ class TestResnetWithReduceBase(TestParallelExecutorBase):
)
for loss in zip(all_reduce_first_loss, reduce_first_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-5)
self.assertAlmostEqual(loss[0], loss[1], delta=1e-5)
for loss in zip(all_reduce_last_loss, reduce_last_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=loss[0] * delta2)
self.assertAlmostEqual(loss[0], loss[1], delta=loss[0] * delta2)
if not use_device:
return
......@@ -87,19 +87,19 @@ class TestResnetWithReduceBase(TestParallelExecutorBase):
)
for loss in zip(all_reduce_first_loss, all_reduce_first_loss_seq):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-5)
self.assertAlmostEqual(loss[0], loss[1], delta=1e-5)
for loss in zip(all_reduce_last_loss, all_reduce_last_loss_seq):
self.assertAlmostEquals(loss[0], loss[1], delta=loss[0] * delta2)
self.assertAlmostEqual(loss[0], loss[1], delta=loss[0] * delta2)
for loss in zip(reduce_first_loss, reduce_first_loss_seq):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-5)
self.assertAlmostEqual(loss[0], loss[1], delta=1e-5)
for loss in zip(reduce_last_loss, reduce_last_loss_seq):
self.assertAlmostEquals(loss[0], loss[1], delta=loss[0] * delta2)
self.assertAlmostEqual(loss[0], loss[1], delta=loss[0] * delta2)
for loss in zip(all_reduce_first_loss_seq, reduce_first_loss_seq):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-5)
self.assertAlmostEqual(loss[0], loss[1], delta=1e-5)
for loss in zip(all_reduce_last_loss_seq, reduce_last_loss_seq):
self.assertAlmostEquals(loss[0], loss[1], delta=loss[0] * delta2)
self.assertAlmostEqual(loss[0], loss[1], delta=loss[0] * delta2)
class TestResnetWithReduceCPU(TestResnetWithReduceBase):
......
......@@ -440,7 +440,7 @@ class TestPyLayer(unittest.TestCase):
data.stop_gradient = False
layer = Layer()
z = layer(data)
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
RuntimeError,
"received tensor_version:{} != wrapper_version_snapshot:{}".format(
1, 0
......
......@@ -52,7 +52,7 @@ class TestScope(unittest.TestCase):
scope = paddle_c.Scope()
# Delete the scope.
scope._remove_from_pool()
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
Exception, "Deleting a nonexistent scope is not allowed*"
):
# It is not allowed to delete a nonexistent scope.
......
......@@ -899,7 +899,7 @@ class TestSetValueValueShape5(TestSetValueApi):
# 4. Test error
class TestError(TestSetValueBase):
def _value_type_error(self):
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
TypeError,
"Only support to assign an integer, float, numpy.ndarray or paddle.Tensor",
):
......@@ -908,7 +908,7 @@ class TestError(TestSetValueBase):
x[0] = value
def _dtype_error(self):
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
TypeError,
"When assign a numpy.ndarray, integer or float to a paddle.Tensor, ",
):
......@@ -916,17 +916,17 @@ class TestError(TestSetValueBase):
y[0] = 1
def _step_error(self):
with self.assertRaisesRegexp(ValueError, "step can not be 0"):
with self.assertRaisesRegex(ValueError, "step can not be 0"):
x = paddle.ones(shape=self.shape, dtype=self.dtype)
x[0:1:0] = self.value
def _ellipsis_error(self):
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
IndexError, "An index can only have a single ellipsis"
):
x = paddle.ones(shape=self.shape, dtype=self.dtype)
x[..., ...] = self.value
with self.assertRaisesRegexp(ValueError, "the start or end is None"):
with self.assertRaisesRegex(ValueError, "the start or end is None"):
x = paddle.ones(shape=self.shape, dtype=self.dtype)
one = paddle.ones([1])
x[::one] = self.value
......
......@@ -79,7 +79,7 @@ def case_generator(op_type, Xshape, diagonal, expected):
paddle.enable_static()
data = fluid.data(shape=Xshape, dtype='float64', name=cls_name)
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
eval(expected.split(':')[-1]), errmsg[expected]
):
getattr(tensor, op_type)(x=data, diagonal=diagonal)
......
......@@ -78,7 +78,7 @@ class TestDygraphViewReuseAllocation(unittest.TestCase):
view_var_b[0] = 2.0 # var_b is modified inplace
loss = paddle.nn.functional.relu(var_c)
with self.assertRaisesRegexp(
with self.assertRaisesRegex(
RuntimeError,
"received tensor_version:{} != wrapper_version_snapshot:{}".format(
1, 0
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册