未验证 提交 cffa15c5 编写于 作者: W wenbin 提交者: GitHub

Tile supported (#34388)

* tile op

* more uts

* disable tile if trt6.0

* typo

* fix timeout issue

* opteller

* opteller remove duplicate code

* comments.	test=document_fix

* modify PADDLE_ENFORCE.

* fix reduce_mean issue
上级 e9583166
...@@ -1256,6 +1256,7 @@ USE_TRT_CONVERTER(reshape); ...@@ -1256,6 +1256,7 @@ USE_TRT_CONVERTER(reshape);
USE_TRT_CONVERTER(reduce_sum); USE_TRT_CONVERTER(reduce_sum);
USE_TRT_CONVERTER(gather_nd); USE_TRT_CONVERTER(gather_nd);
USE_TRT_CONVERTER(reduce_mean); USE_TRT_CONVERTER(reduce_mean);
USE_TRT_CONVERTER(tile);
#endif #endif
namespace paddle_infer { namespace paddle_infer {
......
...@@ -15,6 +15,7 @@ nv_library(tensorrt_converter ...@@ -15,6 +15,7 @@ nv_library(tensorrt_converter
reshape_op.cc reshape_op.cc
reduce_op.cc reduce_op.cc
gather_nd_op.cc gather_nd_op.cc
tile_op.cc
DEPS tensorrt_engine tensorrt_plugin operator scope framework_proto op_registry) DEPS tensorrt_engine tensorrt_plugin operator scope framework_proto op_registry)
nv_test(test_op_converter SRCS test_op_converter.cc DEPS nv_test(test_op_converter SRCS test_op_converter.cc DEPS
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
namespace framework {
class Scope;
namespace proto {
class OpDesc;
} // namespace proto
} // namespace framework
} // namespace paddle
namespace paddle {
namespace inference {
namespace tensorrt {
/*
* ReshapeOp
*/
class TileOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope, bool test_mode) override {
#if IS_TRT_VERSION_GE(7000)
VLOG(4) << "convert a fluid tile op to tensorrt tile layer";
framework::OpDesc op_desc(op, nullptr);
// Declare inputs
auto* input = engine_->GetITensor(op_desc.Input("X")[0]);
nvinfer1::Dims input_shape = input->getDimensions();
std::vector<int> repeat_times =
BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("repeat_times"));
nvinfer1::Dims output_dim = input_shape;
nvinfer1::Dims output_stride;
// If input_dims.nbDims + 1 < repeat_times.size() means we
// should expand 1 on batchsize. trt doesn't support this behavior.
PADDLE_ENFORCE_GE(input_shape.nbDims + 1, repeat_times.size(),
platform::errors::InvalidArgument(
"Can't change batchsize, please check repeat_times"));
int diff = input_shape.nbDims + 1 - repeat_times.size();
if (diff > 0) repeat_times.insert(repeat_times.begin(), diff, 1);
// Can't expand on batchsize
PADDLE_ENFORCE_EQ(
repeat_times[0], 1,
platform::errors::InvalidArgument(
"Can't expand on batchsize, please check repeat_times"));
output_stride.nbDims = input_shape.nbDims;
for (int i = 0; i < input_shape.nbDims; i++) {
output_dim.d[i] = output_dim.d[i] * repeat_times[i + 1];
output_stride.d[i] = 1;
}
auto* layer = TRT_ENGINE_ADD_LAYER(engine_, Slice, *input, input_shape,
output_dim, output_stride);
layer->setMode(nvinfer1::SliceMode::kWRAP);
auto output_name = op_desc.Output("Out")[0];
RreplenishLayerAndOutput(layer, "tile", {output_name}, test_mode);
#endif
}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(tile, TileOpConverter);
...@@ -51,6 +51,9 @@ struct SimpleOpTypeSetTeller : public Teller { ...@@ -51,6 +51,9 @@ struct SimpleOpTypeSetTeller : public Teller {
#if IS_TRT_VERSION_GE(7130) #if IS_TRT_VERSION_GE(7130)
teller_set.insert("group_norm"); teller_set.insert("group_norm");
#endif #endif
#if IS_TRT_VERSION_GE(7000)
teller_set.insert("tile");
#endif
#if CUDA_VERSION >= 10020 #if CUDA_VERSION >= 10020
teller_set.insert("reshape"); teller_set.insert("reshape");
teller_set.insert("reshape2"); teller_set.insert("reshape2");
...@@ -716,12 +719,14 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8, ...@@ -716,12 +719,14 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
VLOG(3) << "the " << op_type VLOG(3) << "the " << op_type
<< " does not have attr (keep_dim or dim or " << " does not have attr (keep_dim or dim or "
"reduce_all)"; "reduce_all)";
std::cout << "attr " << desc.HasAttr("keep_dim") << " "
<< desc.HasAttr("dim") << " " << desc.HasAttr("reduce_all");
return false; return false;
} }
// The batch size dimension cannot be reduced if it's not dynamic shape. // The batch size dimension cannot be reduced if it's not dynamic shape.
if (!with_dynamic_shape) { if (!with_dynamic_shape) {
if (desc.HasAttr("reduce_all")) return false; if (BOOST_GET_CONST(bool, desc.GetAttr("reduce_all"))) return false;
std::vector<int32_t> dim = std::vector<int32_t> dim =
BOOST_GET_CONST(std::vector<int32_t>, desc.GetAttr("dim")); BOOST_GET_CONST(std::vector<int32_t>, desc.GetAttr("dim"));
for (auto x : dim) { for (auto x : dim) {
...@@ -729,6 +734,21 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8, ...@@ -729,6 +734,21 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
} }
} }
} }
#if IS_TRT_VERSION_GE(7000)
if (op_type == "tile") {
// Paddle-TRT does not support the input tensors.
auto inputs = desc.InputArgumentNames();
for (auto& input : inputs) {
if (input == "repeat_times_tensor" &&
desc.Input("repeat_times_tensor").size() > 0)
return false;
if (input == "RepeatTimes" && desc.Input("RepeatTimes").size() > 0)
return false;
}
if (with_dynamic_shape) return false;
if (!with_dynamic_shape && !desc.HasAttr("repeat_times")) return false;
}
#endif
if ((*teller)(op_type, desc, use_no_calib_int8)) return true; if ((*teller)(op_type, desc, use_no_calib_int8)) return true;
} }
......
...@@ -37,4 +37,5 @@ set_tests_properties(test_trt_conv_pass PROPERTIES TIMEOUT 120) ...@@ -37,4 +37,5 @@ set_tests_properties(test_trt_conv_pass PROPERTIES TIMEOUT 120)
set_tests_properties(test_trt_dynamic_shape PROPERTIES TIMEOUT 120) set_tests_properties(test_trt_dynamic_shape PROPERTIES TIMEOUT 120)
set_tests_properties(test_trt_pool_op PROPERTIES ENVIRONMENT FLAGS_fraction_of_gpu_memory_to_use=0.1 TIMEOUT 45) set_tests_properties(test_trt_pool_op PROPERTIES ENVIRONMENT FLAGS_fraction_of_gpu_memory_to_use=0.1 TIMEOUT 45)
set_tests_properties(test_trt_reduce_mean_op PROPERTIES TIMEOUT 60) set_tests_properties(test_trt_reduce_mean_op PROPERTIES TIMEOUT 60)
set_tests_properties(test_trt_tile_op PROPERTIES TIMEOUT 60)
endif() endif()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from inference_pass_test import InferencePassTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.core import PassVersionChecker
from paddle.fluid.core import AnalysisConfig
class TRTTileTest(InferencePassTest):
def setUp(self):
with fluid.program_guard(self.main_program, self.startup_program):
data = fluid.data(
name="data", shape=[4, 3, 224, 256], dtype="float32")
tile_out = paddle.tile(x=data, repeat_times=[1, 1, 1, 1])
out = fluid.layers.batch_norm(tile_out, is_test=True)
self.feeds = {
"data": np.random.random([4, 3, 224, 256]).astype("float32"),
}
self.enable_trt = True
self.trt_parameters = TRTTileTest.TensorRTParam(
1 << 30, 16, 1, AnalysisConfig.Precision.Float32, False, False)
self.fetch_list = [out]
def test_check_output(self):
if core.is_compiled_with_cuda():
use_gpu = True
self.check_output_with_option(use_gpu, flatten=True)
self.assertTrue(
PassVersionChecker.IsCompatible('tensorrt_subgraph_pass'))
class TRTTileExpandTest(InferencePassTest):
def setUp(self):
with fluid.program_guard(self.main_program, self.startup_program):
data = fluid.data(name="data", shape=[1, 1, 1, 1], dtype="float32")
tile_out = paddle.tile(x=data, repeat_times=[1, 4, 1080, 1920])
out = fluid.layers.batch_norm(tile_out, is_test=True)
self.feeds = {
"data": np.random.random([1, 1, 1, 1]).astype("float32"),
}
self.enable_trt = True
self.trt_parameters = TRTTileExpandTest.TensorRTParam(
1 << 30, 1, 1, AnalysisConfig.Precision.Float32, False, False)
self.fetch_list = [out]
def test_check_output(self):
if core.is_compiled_with_cuda():
use_gpu = True
self.check_output_with_option(use_gpu, flatten=True)
self.assertTrue(
PassVersionChecker.IsCompatible('tensorrt_subgraph_pass'))
class TRTTileExpandStaticTest(InferencePassTest):
def setUp(self):
with fluid.program_guard(self.main_program, self.startup_program):
data = fluid.data(name="data", shape=[1, 1, 1, 1], dtype="float32")
tile_out = paddle.tile(x=data, repeat_times=[1, 4, 1080, 1920])
out = fluid.layers.batch_norm(tile_out, is_test=True)
self.feeds = {
"data": np.random.random([1, 1, 1, 1]).astype("float32"),
}
self.enable_trt = True
self.trt_parameters = TRTTileExpandStaticTest.TensorRTParam(
1 << 30, 1, 1, AnalysisConfig.Precision.Float32, True, False)
self.fetch_list = [out]
def test_check_output(self):
if core.is_compiled_with_cuda():
use_gpu = True
self.check_output_with_option(use_gpu, flatten=True)
self.assertTrue(
PassVersionChecker.IsCompatible('tensorrt_subgraph_pass'))
class TRTTileExpandHalfTest(InferencePassTest):
def setUp(self):
with fluid.program_guard(self.main_program, self.startup_program):
data = fluid.data(name="data", shape=[1, 1, 1, 1], dtype="float32")
tile_out = paddle.tile(x=data, repeat_times=[1, 4, 1080, 1920])
out = fluid.layers.batch_norm(tile_out, is_test=True)
self.feeds = {
"data": np.random.random([1, 1, 1, 1]).astype("float32"),
}
self.enable_trt = True
self.trt_parameters = TRTTileExpandHalfTest.TensorRTParam(
1 << 30, 1, 1, AnalysisConfig.Precision.Half, False, False)
self.fetch_list = [out]
def test_check_output(self):
if core.is_compiled_with_cuda():
use_gpu = True
self.check_output_with_option(use_gpu, flatten=True)
self.assertTrue(
PassVersionChecker.IsCompatible('tensorrt_subgraph_pass'))
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册