未验证 提交 cf5de26f 编写于 作者: W Wilber 提交者: GitHub

ut support block (#37909)

上级 b48545ee
......@@ -14,6 +14,7 @@
from typing import Optional, List, Callable, Dict, Any, Set
import numpy as np
import enum
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
......@@ -57,6 +58,12 @@ class TensorConfig:
return str({'shape': self.shape, 'lod': self.lod, 'dtype': self.dtype})
class VarType(enum.Enum):
LOD_TENSOR = 1
LOD_TENSOR_ARRAY = 2
STEP_SCOPES = 3
class OpConfig:
''' A config builder for generating a Op. '''
......@@ -65,10 +72,14 @@ class OpConfig:
inputs: Dict[str, List[str]],
outputs: Dict[str, List[str]],
attrs: Dict[str, Any]=None,
outputs_var_type: Dict[str, VarType]=None,
outputs_dtype: Dict[str, np.dtype]=None,
**kwargs):
self.type = type
self.inputs = inputs
self.outputs = outputs
self.outputs_dtype = outputs_dtype
self.outputs_var_type = outputs_var_type
self.attrs = attrs
if self.attrs is None:
self.attrs = dict()
......@@ -80,6 +91,88 @@ class OpConfig:
return log_str
_OP_WITHOUT_KERNEL_SET = {
'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
'copy_cross_scope'
}
class BlockConfig:
''' A config builder for generating a Block. '''
def __init__(self,
ops: List[OpConfig],
vars: List[str],
vars_dtype: Dict[str, np.dtype]=None,
vars_var_type: Dict[str, VarType]=None,
vars_lod_level: Dict[str, int]=None):
self.ops = ops
self.vars = vars
self.vars_dtype = vars_dtype
self.vars_var_type = vars_var_type
self.vars_lod_level = vars_lod_level
def fill_block_desc(self, block_desc):
for name in self.vars:
var_desc = block_desc.var(cpt.to_bytes(name))
var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
if self.vars_lod_level is not None and name in self.vars_lod_level.keys(
):
var_desc.set_lod_level(self.vars_lod_level[name])
if self.vars_var_type is not None and name in self.vars_var_type.keys(
):
if self.vars_var_type[name] == VarType.LOD_TENSOR_ARRAY:
var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR_ARRAY)
elif self.vars_var_type[name] == VarType.STEP_SCOPES:
var_desc.set_type(core.VarDesc.VarType.STEP_SCOPES)
continue
var_desc.set_dtype(convert_np_dtype_to_dtype_(np.float32))
if self.vars_dtype is not None and name in self.vars_dtype.keys():
var_desc.set_dtype(
convert_np_dtype_to_dtype_(self.vars_dtype[name]))
for op_config in self.ops:
op_desc = block_desc.append_op()
op_desc.set_type(op_config.type)
for name, values in op_config.inputs.items():
op_desc.set_input(name, values)
for name, values in op_config.attrs.items():
op_desc._set_attr(name, values)
for name, values in op_config.outputs.items():
op_desc.set_output(name, values)
for v in values:
if block_desc.has_var_recursive(cpt.to_bytes(v)):
continue
var_desc = block_desc.var(cpt.to_bytes(v))
var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
if op_config.outputs_var_type is not None and v in op_config.outputs_var_type.keys(
):
if op_config.outputs_var_type[
v] == VarType.LOD_TENSOR_ARRAY:
var_desc.set_type(
core.VarDesc.VarType.LOD_TENSOR_ARRAY)
elif op_config.outputs_var_type[
v] == VarType.STEP_SCOPES:
var_desc.set_type(core.VarDesc.VarType.STEP_SCOPES)
continue
var_desc.set_dtype(convert_np_dtype_to_dtype_(np.float32))
if op_config.outputs_dtype is not None and v in op_config.outputs_dtype.keys(
):
var_desc.set_dtype(
convert_np_dtype_to_dtype_(op_config.outputs_dtype[
v]))
if op_config.type not in _OP_WITHOUT_KERNEL_SET:
op_desc.infer_var_type(block_desc)
op_desc.infer_shape(block_desc)
op_desc.check_attrs()
class ProgramConfig:
''' A config builder for generating a Program. '''
......@@ -137,6 +230,8 @@ def create_fake_model(program_config):
var_desc.set_dtype(convert_np_dtype_to_dtype_(tensor_config.dtype))
var_desc.set_shape(tensor_config.shape)
var_desc.set_need_check_feed(True)
if tensor_config.lod is not None:
var_desc.set_lod_level(len(tensor_config.lod))
op_desc = main_block_desc._prepend_op()
op_desc.set_type("feed")
op_desc.set_input('X', ["feed"])
......@@ -177,16 +272,36 @@ def create_fake_model(program_config):
for name, values in op_config.inputs.items():
op_desc.set_input(name, values)
for name, values in op_config.attrs.items():
op_desc._set_attr(name, values)
if name == 'sub_block':
sub_block_desc = main_program_desc.append_block(main_block_desc)
values.fill_block_desc(sub_block_desc)
op_desc._set_attr(name, sub_block_desc)
else:
op_desc._set_attr(name, values)
for name, values in op_config.outputs.items():
op_desc.set_output(name, values)
for v in values:
if main_block_desc.has_var_recursive(cpt.to_bytes(v)):
continue
var_desc = main_block_desc.var(cpt.to_bytes(v))
var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
var_desc.set_dtype(
convert_np_dtype_to_dtype_(tensor_config.dtype))
op_desc.infer_var_type(main_block_desc)
op_desc.infer_shape(main_block_desc)
if op_config.outputs_var_type is not None and v in op_config.outputs_var_type.keys(
):
if op_config.outputs_var_type[
v] == VarType.LOD_TENSOR_ARRAY:
var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR_ARRAY)
elif op_config.outputs_var_type[v] == VarType.STEP_SCOPES:
var_desc.set_type(core.VarDesc.VarType.STEP_SCOPES)
continue
var_desc.set_dtype(convert_np_dtype_to_dtype_(np.float32))
if op_config.outputs_dtype is not None and v in op_config.outputs_dtype.keys(
):
var_desc.set_dtype(
convert_np_dtype_to_dtype_(op_config.outputs_dtype[v]))
if op_config.type not in _OP_WITHOUT_KERNEL_SET:
op_desc.infer_var_type(main_block_desc)
op_desc.infer_shape(main_block_desc)
op_desc.check_attrs()
for index, name in enumerate(program_config.outputs):
var_desc = main_block_desc.var(cpt.to_bytes("fetch"))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册