未验证 提交 ce1ec332 编写于 作者: Y Yang Zhang 提交者: GitHub

Add cuda implementation for `prelu` backward pass (#18633)

* Add GPU implementation for `prelu` backward pass

test=develop

* Fix logic error in `prelu` GPU backward and simplify a bit

test=develop

* Fix `prelu` backward CUDA implementation

test=develop

CPU version was not used actually, so test passed
上级 25d80791
...@@ -79,10 +79,10 @@ x, \qquad \text{if} \ x >= 0 ...@@ -79,10 +79,10 @@ x, \qquad \text{if} \ x >= 0
$$ $$
The input `X` can carry the LoD (Level of Details) information, The input `X` can carry the LoD (Level of Details) information,
or not. And the output shares the LoD information with input `X`. or not. And the output shares the LoD information with input `X`.
There are modes: There are modes:
all: all elements share same weight all: all elements share same weight
channel: elements in a channel share same weight channel: elements in a channel share same weight
element: each element has a weight element: each element has a weight
)DOC"); )DOC");
AddAttr<std::string>("mode", "The mode for inputs to share weights.") AddAttr<std::string>("mode", "The mode for inputs to share weights.")
.SetDefault("all"); .SetDefault("all");
...@@ -113,7 +113,7 @@ class PReluGradOp : public framework::OperatorWithKernel { ...@@ -113,7 +113,7 @@ class PReluGradOp : public framework::OperatorWithKernel {
framework::OpKernelType GetExpectedKernelType( framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override { const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(ctx.Input<Tensor>("X")->type(), return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
platform::CPUPlace()); ctx.device_context());
} }
}; };
......
...@@ -14,11 +14,15 @@ limitations under the License. */ ...@@ -14,11 +14,15 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/prelu.h" #include "paddle/fluid/operators/math/prelu.h"
#include "paddle/fluid/operators/prelu_op.h" #include "paddle/fluid/operators/prelu_op.h"
#include "paddle/fluid/operators/reduce_ops/cub_reduce.h"
#include "paddle/fluid/platform/cuda_primitives.h" #include "paddle/fluid/platform/cuda_primitives.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
static const int CUDA_NUM_THREADS = 1024;
static const int CUDA_MAX_NUM_BLOCKS = 65535;
using Tensor = framework::Tensor; using Tensor = framework::Tensor;
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
...@@ -55,6 +59,145 @@ class CUDAPReluKernel : public framework::OpKernel<T> { ...@@ -55,6 +59,145 @@ class CUDAPReluKernel : public framework::OpKernel<T> {
} }
}; };
namespace prelu {
struct ElementWiseMode {};
struct ChannelMode {};
struct ScalarMode {};
} /* namespace prelu */
template <typename T, typename M>
struct AlphaFunctor {
HOSTDEVICE inline T operator()(const T* alpha, size_t channel,
size_t spatial_size, size_t idx) const {}
};
template <typename T>
struct AlphaFunctor<T, prelu::ElementWiseMode> {
HOSTDEVICE inline T operator()(const T* alpha, size_t channel,
size_t spatial_size, size_t idx) const {
return alpha[blockIdx.x * spatial_size + idx];
}
};
template <typename T>
struct AlphaFunctor<T, prelu::ChannelMode> {
HOSTDEVICE inline T operator()(const T* alpha, size_t channel,
size_t spatial_size, size_t idx) const {
return alpha[blockIdx.x % channel];
}
};
template <typename T>
struct AlphaFunctor<T, prelu::ScalarMode> {
HOSTDEVICE inline T operator()(const T* alpha, size_t channel,
size_t spatial_size, size_t idx) const {
return alpha[0];
}
};
template <typename T, typename M>
__global__ void PReluGradElementWiseKernel(const T* x_ptr, const T* y_ptr,
const T* alpha_ptr, const T* dy_ptr,
T* dx_ptr, T* dalpha_ptr,
size_t channel,
size_t spatial_size) {
size_t offset = blockIdx.x * spatial_size;
AlphaFunctor<T, M> alpha_func;
for (size_t i = threadIdx.x; i < spatial_size; i += blockDim.x) {
T y = y_ptr[offset + i];
T x = x_ptr[offset + i];
T dy = dy_ptr[offset + i];
T alpha = alpha_func(alpha_ptr, channel, spatial_size, i);
if (dx_ptr != nullptr) dx_ptr[offset + i] = (y > 0) ? dy : alpha * dy;
if (dalpha_ptr != nullptr) dalpha_ptr[offset + i] = (x > 0) ? 0 : x * dy;
}
}
template <typename T, typename M>
class PreluGradElementwiseFunctor {
public:
void operator()(cudaStream_t stream, const T* x, const T* y, const T* alpha,
const T* dy, T* dx, T* dalpha, std::vector<int> input_shape) {
size_t unroll = input_shape[0] * input_shape[1];
size_t spatial_size = input_shape[2] * input_shape[3];
CHECK_LT(unroll, CUDA_MAX_NUM_BLOCKS);
PReluGradElementWiseKernel<T, M><<<unroll, CUDA_NUM_THREADS, 0, stream>>>(
x, y, alpha, dy, dx, dalpha, input_shape[1], spatial_size);
}
};
template <typename T>
struct IdentityFunctor {
HOSTDEVICE inline T operator()(const T& x) const { return x; }
};
template <typename DeviceContext, typename T>
class CUDAPReluGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* x = context.Input<Tensor>("X");
auto* y = context.Input<Tensor>("Out");
auto* alpha = context.Input<Tensor>("Alpha");
auto* dx = context.Output<Tensor>(framework::GradVarName("X"));
auto* dy = context.Input<Tensor>(framework::GradVarName("Out"));
auto* dalpha = context.Output<Tensor>(framework::GradVarName("Alpha"));
const T* x_ptr = x->data<T>();
const T* y_ptr = y->data<T>();
const T* alpha_ptr = alpha->data<T>();
const T* dy_ptr = dy->data<T>();
T* dx_ptr = dx ? dx->mutable_data<T>(context.GetPlace()) : nullptr;
T* dalpha_ptr =
dalpha ? dalpha->mutable_data<T>(context.GetPlace()) : nullptr;
if (!dx && !dalpha) return;
auto& mode = context.Attr<std::string>("mode");
int numel = x->numel();
auto dim = x->dims();
std::vector<int> input_shape = framework::vectorize2int(dim);
auto stream = context.cuda_device_context().stream();
T* dalpha_tmp_ptr;
Tensor dalpha_tmp;
if (mode == "element" || dalpha_ptr == nullptr) {
dalpha_tmp_ptr = dalpha_ptr;
} else {
auto& dev_ctx = context.template device_context<DeviceContext>();
dalpha_tmp = context.AllocateTmpTensor<T, DeviceContext>(dim, dev_ctx);
dalpha_tmp_ptr = dalpha_tmp.mutable_data<T>(context.GetPlace());
}
if (mode == "element") {
PreluGradElementwiseFunctor<T, prelu::ElementWiseMode> prelu_grad;
prelu_grad(stream, x_ptr, y_ptr, alpha_ptr, dy_ptr, dx_ptr,
dalpha_tmp_ptr, input_shape);
} else if (mode == "channel") {
PreluGradElementwiseFunctor<T, prelu::ChannelMode> prelu_grad;
prelu_grad(stream, x_ptr, y_ptr, alpha_ptr, dy_ptr, dx_ptr,
dalpha_tmp_ptr, input_shape);
} else {
PreluGradElementwiseFunctor<T, prelu::ScalarMode> prelu_grad;
prelu_grad(stream, x_ptr, y_ptr, alpha_ptr, dy_ptr, dx_ptr,
dalpha_tmp_ptr, input_shape);
}
if (mode == "element" || dalpha_tmp_ptr == nullptr) return;
std::vector<int> reduce_dims;
for (size_t i = 0; i < input_shape.size(); i++) {
if (mode == "channel" && i == 1) continue;
reduce_dims.push_back(i);
}
TensorReduce<T, T, cub::Sum, IdentityFunctor<T>>(
dalpha_tmp, dalpha, reduce_dims, static_cast<T>(0), cub::Sum(),
IdentityFunctor<T>(), stream);
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -62,3 +205,7 @@ namespace ops = paddle::operators; ...@@ -62,3 +205,7 @@ namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL( REGISTER_OP_CUDA_KERNEL(
prelu, ops::CUDAPReluKernel<paddle::platform::CUDADeviceContext, float>, prelu, ops::CUDAPReluKernel<paddle::platform::CUDADeviceContext, float>,
ops::CUDAPReluKernel<paddle::platform::CUDADeviceContext, double>); ops::CUDAPReluKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
prelu_grad,
ops::CUDAPReluGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::CUDAPReluGradKernel<paddle::platform::CUDADeviceContext, double>);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册