Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
ce08645d
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ce08645d
编写于
11月 08, 2017
作者:
T
Tao Luo
提交者:
GitHub
11月 08, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #5422 from tensor-tang/resnet
enable benchmark resnet with MKLDNN
上级
91b72482
2dff98ca
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
234 addition
and
29 deletion
+234
-29
benchmark/paddle/image/resnet.py
benchmark/paddle/image/resnet.py
+213
-0
benchmark/paddle/image/run_mkldnn.sh
benchmark/paddle/image/run_mkldnn.sh
+14
-16
paddle/gserver/layers/MKLDNNFcLayer.cpp
paddle/gserver/layers/MKLDNNFcLayer.cpp
+2
-4
paddle/gserver/layers/MKLDNNLayer.cpp
paddle/gserver/layers/MKLDNNLayer.cpp
+5
-9
未找到文件。
benchmark/paddle/image/resnet.py
0 → 100644
浏览文件 @
ce08645d
#!/usr/bin/env python
from
paddle.trainer_config_helpers
import
*
height
=
224
width
=
224
num_class
=
1000
batch_size
=
get_config_arg
(
'batch_size'
,
int
,
64
)
layer_num
=
get_config_arg
(
"layer_num"
,
int
,
50
)
is_test
=
get_config_arg
(
"is_test"
,
bool
,
False
)
args
=
{
'height'
:
height
,
'width'
:
width
,
'color'
:
True
,
'num_class'
:
num_class
}
define_py_data_sources2
(
"train.list"
,
None
,
module
=
"provider"
,
obj
=
"process"
,
args
=
args
)
settings
(
batch_size
=
batch_size
,
learning_rate
=
0.01
/
batch_size
,
learning_method
=
MomentumOptimizer
(
0.9
),
regularization
=
L2Regularization
(
0.0005
*
batch_size
))
#######################Network Configuration #############
def
conv_bn_layer
(
name
,
input
,
filter_size
,
num_filters
,
stride
,
padding
,
channels
=
None
,
active_type
=
ReluActivation
()):
"""
A wrapper for conv layer with batch normalization layers.
Note:
conv layer has no activation.
"""
tmp
=
img_conv_layer
(
name
=
name
+
"_conv"
,
input
=
input
,
filter_size
=
filter_size
,
num_channels
=
channels
,
num_filters
=
num_filters
,
stride
=
stride
,
padding
=
padding
,
act
=
LinearActivation
(),
bias_attr
=
False
)
return
batch_norm_layer
(
name
=
name
+
"_bn"
,
input
=
tmp
,
act
=
active_type
,
use_global_stats
=
is_test
)
def
bottleneck_block
(
name
,
input
,
num_filters1
,
num_filters2
):
"""
A wrapper for bottlenect building block in ResNet.
Last conv_bn_layer has no activation.
Addto layer has activation of relu.
"""
last_name
=
conv_bn_layer
(
name
=
name
+
'_branch2a'
,
input
=
input
,
filter_size
=
1
,
num_filters
=
num_filters1
,
stride
=
1
,
padding
=
0
)
last_name
=
conv_bn_layer
(
name
=
name
+
'_branch2b'
,
input
=
last_name
,
filter_size
=
3
,
num_filters
=
num_filters1
,
stride
=
1
,
padding
=
1
)
last_name
=
conv_bn_layer
(
name
=
name
+
'_branch2c'
,
input
=
last_name
,
filter_size
=
1
,
num_filters
=
num_filters2
,
stride
=
1
,
padding
=
0
,
active_type
=
LinearActivation
())
return
addto_layer
(
name
=
name
+
"_addto"
,
input
=
[
input
,
last_name
],
act
=
ReluActivation
())
def
mid_projection
(
name
,
input
,
num_filters1
,
num_filters2
,
stride
=
2
):
"""
A wrapper for middile projection in ResNet.
projection shortcuts are used for increasing dimensions,
and other shortcuts are identity
branch1: projection shortcuts are used for increasing
dimensions, has no activation.
branch2x: bottleneck building block, shortcuts are identity.
"""
# stride = 2
branch1
=
conv_bn_layer
(
name
=
name
+
'_branch1'
,
input
=
input
,
filter_size
=
1
,
num_filters
=
num_filters2
,
stride
=
stride
,
padding
=
0
,
active_type
=
LinearActivation
())
last_name
=
conv_bn_layer
(
name
=
name
+
'_branch2a'
,
input
=
input
,
filter_size
=
1
,
num_filters
=
num_filters1
,
stride
=
stride
,
padding
=
0
)
last_name
=
conv_bn_layer
(
name
=
name
+
'_branch2b'
,
input
=
last_name
,
filter_size
=
3
,
num_filters
=
num_filters1
,
stride
=
1
,
padding
=
1
)
last_name
=
conv_bn_layer
(
name
=
name
+
'_branch2c'
,
input
=
last_name
,
filter_size
=
1
,
num_filters
=
num_filters2
,
stride
=
1
,
padding
=
0
,
active_type
=
LinearActivation
())
return
addto_layer
(
name
=
name
+
"_addto"
,
input
=
[
branch1
,
last_name
],
act
=
ReluActivation
())
img
=
data_layer
(
name
=
'image'
,
size
=
height
*
width
*
3
)
def
deep_res_net
(
res2_num
=
3
,
res3_num
=
4
,
res4_num
=
6
,
res5_num
=
3
):
"""
A wrapper for 50,101,152 layers of ResNet.
res2_num: number of blocks stacked in conv2_x
res3_num: number of blocks stacked in conv3_x
res4_num: number of blocks stacked in conv4_x
res5_num: number of blocks stacked in conv5_x
"""
# For ImageNet
# conv1: 112x112
tmp
=
conv_bn_layer
(
"conv1"
,
input
=
img
,
filter_size
=
7
,
channels
=
3
,
num_filters
=
64
,
stride
=
2
,
padding
=
3
)
tmp
=
img_pool_layer
(
name
=
"pool1"
,
input
=
tmp
,
pool_size
=
3
,
stride
=
2
)
# conv2_x: 56x56
tmp
=
mid_projection
(
name
=
"res2_1"
,
input
=
tmp
,
num_filters1
=
64
,
num_filters2
=
256
,
stride
=
1
)
for
i
in
xrange
(
2
,
res2_num
+
1
,
1
):
tmp
=
bottleneck_block
(
name
=
"res2_"
+
str
(
i
),
input
=
tmp
,
num_filters1
=
64
,
num_filters2
=
256
)
# conv3_x: 28x28
tmp
=
mid_projection
(
name
=
"res3_1"
,
input
=
tmp
,
num_filters1
=
128
,
num_filters2
=
512
)
for
i
in
xrange
(
2
,
res3_num
+
1
,
1
):
tmp
=
bottleneck_block
(
name
=
"res3_"
+
str
(
i
),
input
=
tmp
,
num_filters1
=
128
,
num_filters2
=
512
)
# conv4_x: 14x14
tmp
=
mid_projection
(
name
=
"res4_1"
,
input
=
tmp
,
num_filters1
=
256
,
num_filters2
=
1024
)
for
i
in
xrange
(
2
,
res4_num
+
1
,
1
):
tmp
=
bottleneck_block
(
name
=
"res4_"
+
str
(
i
),
input
=
tmp
,
num_filters1
=
256
,
num_filters2
=
1024
)
# conv5_x: 7x7
tmp
=
mid_projection
(
name
=
"res5_1"
,
input
=
tmp
,
num_filters1
=
512
,
num_filters2
=
2048
)
for
i
in
xrange
(
2
,
res5_num
+
1
,
1
):
tmp
=
bottleneck_block
(
name
=
"res5_"
+
str
(
i
),
input
=
tmp
,
num_filters1
=
512
,
num_filters2
=
2048
)
tmp
=
img_pool_layer
(
name
=
'avgpool'
,
input
=
tmp
,
pool_size
=
7
,
stride
=
1
,
pool_type
=
AvgPooling
())
return
fc_layer
(
input
=
tmp
,
size
=
num_class
,
act
=
SoftmaxActivation
())
if
layer_num
==
50
:
resnet
=
deep_res_net
(
3
,
4
,
6
,
3
)
elif
layer_num
==
101
:
resnet
=
deep_res_net
(
3
,
4
,
23
,
3
)
elif
layer_num
==
152
:
resnet
=
deep_res_net
(
3
,
8
,
36
,
3
)
else
:
print
(
"Wrong layer number."
)
lbl
=
data_layer
(
name
=
"label"
,
size
=
num_class
)
loss
=
cross_entropy
(
name
=
'loss'
,
input
=
resnet
,
label
=
lbl
)
inputs
(
img
,
lbl
)
outputs
(
loss
)
benchmark/paddle/image/run_mkldnn.sh
浏览文件 @
ce08645d
...
...
@@ -5,22 +5,23 @@ function train() {
export
OMP_DYNAMIC
=
"FALSE"
export
KMP_AFFINITY
=
"granularity=fine,compact,0,0"
topology
=
$1
bs
=
$2
use_mkldnn
=
$3
if
[
$3
==
"True"
]
;
then
layer_num
=
$2
bs
=
$3
use_mkldnn
=
$4
if
[
$4
==
"True"
]
;
then
thread
=
1
log
=
"logs/
${
topology
}
-mkldnn-
${
bs
}
.log"
elif
[
$
3
==
"False"
]
;
then
log
=
"logs/
${
topology
}
-
${
layer_num
}
-
mkldnn-
${
bs
}
.log"
elif
[
$
4
==
"False"
]
;
then
thread
=
`
nproc
`
# each trainer_count use only 1 core to avoid conflict
export
OMP_NUM_THREADS
=
1
export
MKL_NUM_THREADS
=
1
log
=
"logs/
${
topology
}
-
${
thread
}
mklml-
${
bs
}
.log"
log
=
"logs/
${
topology
}
-
${
layer_num
}
-
${
thread
}
mklml-
${
bs
}
.log"
else
echo
"Wrong input
$3
, use True or False."
exit
0
fi
args
=
"batch_size=
${
bs
}
"
args
=
"batch_size=
${
bs
}
,layer_num=
${
layer_num
}
"
config
=
"
${
topology
}
.py"
paddle train
--job
=
time
\
--config
=
$config
\
...
...
@@ -40,12 +41,9 @@ if [ ! -d "logs" ]; then
mkdir
logs
fi
#========== mkldnn ==========#
train vgg 64 True
train vgg 128 True
train vgg 256 True
#========== mklml ===========#
train vgg 64 False
train vgg 128 False
train vgg 256 False
for
use_mkldnn
in
True False
;
do
for
batchsize
in
64 128 256
;
do
train vgg 19
$batchsize
$use_mkldnn
train resnet 50
$batchsize
$use_mkldnn
done
done
paddle/gserver/layers/MKLDNNFcLayer.cpp
浏览文件 @
ce08645d
...
...
@@ -60,18 +60,16 @@ void MKLDNNFcLayer::convertWeightsFromPaddle() {
}
CHECK
(
wgtVal_
)
<<
"should have been initialized"
;
bool
hasNoSpatial_
=
ih_
==
1
&&
iw_
==
1
;
auto
targetDim
=
wgtVal_
->
getDims
();
auto
srcFmt
=
hasNoSpatial_
?
format
::
io
:
format
::
ihwo
;
auto
srcFmt
=
targetDim
.
size
()
==
2
?
format
::
io
:
format
::
ihwo
;
wgtVal_
->
reorderDataFrom
(
wgtVal_
,
srcFmt
,
targetDim
);
hasInitedWgt_
=
true
;
}
void
MKLDNNFcLayer
::
convertWeightsToPaddle
()
{
CHECK
(
wgtVal_
)
<<
"should have been initialized"
;
bool
hasNoSpatial_
=
ih_
==
1
&&
iw_
==
1
;
auto
targetDim
=
wgtVal_
->
getDims
();
auto
dstFmt
=
hasNoSpatial_
?
format
::
io
:
format
::
ihwo
;
auto
dstFmt
=
targetDim
.
size
()
==
2
?
format
::
io
:
format
::
ihwo
;
wgtVal_
->
reorderDataTo
(
wgtVal_
,
dstFmt
,
targetDim
);
}
...
...
paddle/gserver/layers/MKLDNNLayer.cpp
浏览文件 @
ce08645d
...
...
@@ -181,21 +181,17 @@ void MKLDNNLayer::resetInValue(
auto
extPD
=
MKLDNNMatrix
::
createPrimitiveDesc
(
{
bs_
,
ic_
,
ih_
,
iw_
},
format
::
nchw
,
engine_
);
const
MatrixPtr
&
inMat
=
inputLayers_
[
inputIdx
]
->
getOutputValue
();
in
=
std
::
dynamic_pointer_cast
<
MKLDNNMatrix
>
(
inMat
);
CHECK_EQ
(
inputIsOnlyMKLDNN
(),
in
!=
nullptr
);
if
(
in
==
nullptr
||
in
->
getFormat
()
==
format
::
nc
)
{
in
=
MKLDNNMatrix
::
create
(
extPD
,
inMat
);
}
extInVal_
=
isPaddleFormat
(
in
->
getFormat
())
?
in
:
nullptr
;
if
(
in
->
getFormat
()
==
format
::
nc
)
{
CHECK
(
ih_
==
1
&&
iw_
==
1
);
extInVal_
=
std
::
dynamic_pointer_cast
<
MKLDNNMatrix
>
(
inMat
);
CHECK_EQ
(
inputIsOnlyMKLDNN
(),
extInVal_
!=
nullptr
);
if
(
extInVal_
==
nullptr
||
extInVal_
->
getFormat
()
==
format
::
nc
)
{
extInVal_
=
MKLDNNMatrix
::
create
(
extPD
,
inMat
);
}
in
=
extInVal_
;
if
(
nullptr
==
intPD
||
in
->
getPrimitiveDesc
()
==
*
intPD
)
{
return
;
}
// need create reorder
in
=
MKLDNNMatrix
::
create
(
*
intPD
);
extInVal_
=
extInVal_
?
extInVal_
:
MKLDNNMatrix
::
create
(
extPD
,
inMat
);
cvtInVal_
=
MKLDNNMatrix
::
createReorder
(
extInVal_
,
in
);
CHECK
(
cvtInVal_
)
<<
"should not be emptry"
;
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录