Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
cdd8c8ab
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
cdd8c8ab
编写于
11月 10, 2022
作者:
S
Sylwester Fraczek
提交者:
GitHub
11月 10, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[phi] migrate prelu (#47422)
* migrate prelu * remove cache * review fixes
上级
5900129c
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
189 addition
and
208 deletion
+189
-208
paddle/fluid/operators/mkldnn/prelu_mkldnn_op.cc
paddle/fluid/operators/mkldnn/prelu_mkldnn_op.cc
+0
-208
paddle/phi/backends/onednn/onednn_reuse.h
paddle/phi/backends/onednn/onednn_reuse.h
+61
-0
paddle/phi/kernels/onednn/prelu_grad_kernel.cc
paddle/phi/kernels/onednn/prelu_grad_kernel.cc
+69
-0
paddle/phi/kernels/onednn/prelu_kernel.cc
paddle/phi/kernels/onednn/prelu_kernel.cc
+59
-0
未找到文件。
paddle/fluid/operators/mkldnn/prelu_mkldnn_op.cc
已删除
100644 → 0
浏览文件 @
5900129c
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/mkldnn_reuse.h"
#include "paddle/phi/core/expect.h"
namespace
paddle
{
namespace
operators
{
using
dnnl
::
memory
;
using
platform
::
MKLDNNDeviceContext
;
using
platform
::
MKLDNNGetDataType
;
using
platform
::
to_void_cast
;
namespace
{
template
<
typename
T
>
class
PReluMKLDNNHandler
:
public
platform
::
MKLDNNHandlerT
<
T
,
dnnl
::
prelu_forward
,
dnnl
::
prelu_backward
>
{
public:
PReluMKLDNNHandler
(
const
MKLDNNDeviceContext
&
dev_ctx
,
const
dnnl
::
engine
engine
,
platform
::
Place
cpu_place
,
const
phi
::
DenseTensor
*
x
,
const
phi
::
DenseTensor
*
weights
,
const
std
::
string
&
uniq_name
,
const
std
::
string
&
mode
,
const
std
::
string
&
data_format
,
bool
is_test
=
false
)
:
platform
::
MKLDNNHandlerT
<
T
,
dnnl
::
prelu_forward
,
dnnl
::
prelu_backward
>
(
dev_ctx
,
engine
,
cpu_place
,
platform
::
CreateKey
(
dev_ctx
,
phi
::
vectorize
(
x
->
dims
()),
uniq_name
))
{
if
(
unlikely
(
!
this
->
isCached
()))
{
auto
weights_dims
=
phi
::
vectorize
(
weights
->
dims
());
// weights must have same size as X only for "element" case
if
(
weights
->
dims
().
size
()
!=
x
->
dims
().
size
())
{
auto
new_weights_dims
=
std
::
vector
<
int64_t
>
(
x
->
dims
().
size
(),
1
);
if
(
mode
==
"channel"
)
{
new_weights_dims
[
1
]
=
*
std
::
max_element
(
weights_dims
.
begin
(),
weights_dims
.
end
());
}
weights_dims
=
std
::
move
(
new_weights_dims
);
}
auto
weights_md
=
memory
::
desc
(
weights_dims
,
MKLDNNGetDataType
<
T
>
(),
memory
::
format_tag
::
any
);
this
->
AcquireForwardPrimitiveDescriptor
(
dnnl
::
prop_kind
::
forward_training
,
x
->
mem_desc
(),
weights_md
);
if
(
!
is_test
)
this
->
AcquireBackwardPrimitiveDescriptor
(
x
->
mem_desc
(),
weights_md
,
x
->
mem_desc
(),
weights_md
);
}
}
std
::
shared_ptr
<
memory
>
AcquireWeightsMemoryPossiblyWithReorder
(
const
phi
::
DenseTensor
*
weights
,
const
bool
is_test
)
{
const
T
*
weights_data
=
weights
->
data
<
T
>
();
// if weights are 1D, every format tag is correct, so we accept
// format_tag::any's output and no reorder is needed
if
(
weights
->
dims
().
size
()
==
1
)
{
return
this
->
AcquireMemoryFromPrimitive
(
this
->
fwd_pd_
->
weights_desc
(),
to_void_cast
<
T
>
(
weights_data
),
"@alpha_mem_p"
);
}
return
this
->
AcquireMemoryWithReorder
(
weights
->
mem_desc
(),
this
->
fwd_pd_
->
weights_desc
(),
to_void_cast
<
T
>
(
weights_data
),
"@alpha_mem_p"
,
is_test
);
}
std
::
shared_ptr
<
memory
>
AcquireDiffWeightsMemory
(
phi
::
DenseTensor
*
output
)
{
T
*
output_data
=
output
->
mutable_data
<
T
>
(
this
->
place_
,
this
->
bwd_pd_
->
diff_weights_desc
().
get_size
());
return
this
->
AcquireMemoryFromPrimitive
(
this
->
bwd_pd_
->
diff_weights_desc
(),
output_data
,
"@diff_weights_mem_p"
);
}
};
}
// anonymous namespace
template
<
typename
T
>
class
PReluMKLDNNKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
this
->
RunKernel
(
ctx
);
}
void
RunKernel
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
const
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
const
auto
&
onednn_engine
=
dev_ctx
.
GetEngine
();
const
auto
*
x
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"X"
);
const
auto
*
alpha
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"Alpha"
);
auto
*
out
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"Out"
);
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
const
auto
mode
=
ctx
.
Attr
<
std
::
string
>
(
"mode"
);
const
auto
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
PReluMKLDNNHandler
<
T
>
handler
(
dev_ctx
,
onednn_engine
,
ctx
.
GetPlace
(),
x
,
alpha
,
ctx
.
InputName
(
"X"
),
mode
,
data_format
,
is_test
);
auto
src_memory_p
=
handler
.
AcquireSrcMemory
(
x
);
auto
weights_memory_p
=
handler
.
AcquireWeightsMemoryPossiblyWithReorder
(
alpha
,
is_test
);
auto
dst_memory_p
=
handler
.
AcquireDstMemory
(
out
);
auto
prelu_p
=
handler
.
AcquireForwardPrimitive
();
auto
&
astream
=
MKLDNNDeviceContext
::
tls
().
get_stream
();
prelu_p
->
execute
(
astream
,
{{
DNNL_ARG_SRC
,
*
src_memory_p
},
{
DNNL_ARG_WEIGHTS
,
*
weights_memory_p
},
{
DNNL_ARG_DST
,
*
dst_memory_p
}});
astream
.
wait
();
out
->
set_mem_desc
(
dst_memory_p
->
get_desc
());
}
};
template
<
typename
T
>
class
PReluGradMKLDNNKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
this
->
RunKernel
(
ctx
);
}
void
RunKernel
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
const
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
const
auto
&
onednn_engine
=
dev_ctx
.
GetEngine
();
auto
*
x
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"X"
);
auto
*
dx
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dout
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dalpha
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
framework
::
GradVarName
(
"Alpha"
));
auto
*
alpha
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"Alpha"
);
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
const
auto
mode
=
ctx
.
Attr
<
std
::
string
>
(
"mode"
);
const
auto
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
PReluMKLDNNHandler
<
T
>
handler
(
dev_ctx
,
onednn_engine
,
ctx
.
GetPlace
(),
x
,
alpha
,
framework
::
GradVarName
(
"X"
),
mode
,
data_format
);
auto
src_memory_p
=
handler
.
AcquireSrcMemory
(
x
);
auto
weights_memory_p
=
handler
.
AcquireWeightsMemoryPossiblyWithReorder
(
alpha
,
is_test
);
auto
diff_src_memory_p
=
handler
.
AcquireDiffSrcMemory
(
dx
);
auto
diff_weights_memory_p
=
handler
.
AcquireDiffWeightsMemory
(
dalpha
);
auto
diff_dst_memory_p
=
handler
.
AcquireDiffDstMemory
(
dout
);
auto
prelu_p
=
handler
.
AcquireBackwardPrimitive
();
auto
&
astream
=
MKLDNNDeviceContext
::
tls
().
get_stream
();
prelu_p
->
execute
(
astream
,
{{
DNNL_ARG_SRC
,
*
src_memory_p
},
{
DNNL_ARG_WEIGHTS
,
*
weights_memory_p
},
{
DNNL_ARG_DIFF_DST
,
*
diff_dst_memory_p
},
{
DNNL_ARG_DIFF_SRC
,
*
diff_src_memory_p
},
{
DNNL_ARG_DIFF_WEIGHTS
,
*
diff_weights_memory_p
}});
astream
.
wait
();
dx
->
set_mem_desc
(
diff_src_memory_p
->
get_desc
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_KERNEL
(
prelu
,
MKLDNN
,
paddle
::
platform
::
CPUPlace
,
ops
::
PReluMKLDNNKernel
<
float
>
,
ops
::
PReluMKLDNNKernel
<
paddle
::
platform
::
bfloat16
>
);
REGISTER_OP_KERNEL
(
prelu_grad
,
MKLDNN
,
paddle
::
platform
::
CPUPlace
,
ops
::
PReluGradMKLDNNKernel
<
float
>
,
ops
::
PReluGradMKLDNNKernel
<
paddle
::
platform
::
bfloat16
>
);
paddle/phi/backends/onednn/onednn_reuse.h
浏览文件 @
cdd8c8ab
...
...
@@ -1084,6 +1084,67 @@ class BroadcastDataOneDNNHandler
}
};
template
<
typename
T
>
class
PReluOneDNNHandler
:
public
OneDNNHandlerNoCachingT
<
T
,
dnnl
::
prelu_forward
,
dnnl
::
prelu_backward
>
{
public:
PReluOneDNNHandler
(
const
dnnl
::
engine
engine
,
Place
cpu_place
,
const
DenseTensor
&
x
,
const
DenseTensor
&
weights
,
const
std
::
string
&
mode
,
const
std
::
string
&
data_format
,
const
bool
is_test
)
:
OneDNNHandlerNoCachingT
<
T
,
dnnl
::
prelu_forward
,
dnnl
::
prelu_backward
>
(
engine
,
cpu_place
)
{
auto
weights_dims
=
phi
::
vectorize
(
weights
.
dims
());
// weights must have same size as X only for "element" case
if
(
weights
.
dims
().
size
()
!=
x
.
dims
().
size
())
{
auto
new_weights_dims
=
std
::
vector
<
int64_t
>
(
x
.
dims
().
size
(),
1
);
if
(
mode
==
"channel"
)
{
new_weights_dims
[
1
]
=
*
std
::
max_element
(
weights_dims
.
begin
(),
weights_dims
.
end
());
}
weights_dims
=
std
::
move
(
new_weights_dims
);
}
auto
weights_md
=
memory
::
desc
(
weights_dims
,
OneDNNGetDataType
<
T
>
(),
memory
::
format_tag
::
any
);
this
->
AcquireForwardPrimitiveDescriptor
(
dnnl
::
prop_kind
::
forward_training
,
x
.
mem_desc
(),
weights_md
);
if
(
!
is_test
)
{
this
->
AcquireBackwardPrimitiveDescriptor
(
x
.
mem_desc
(),
weights_md
,
x
.
mem_desc
(),
weights_md
);
}
}
std
::
shared_ptr
<
memory
>
AcquireWeightsMemoryPossiblyWithReorder
(
const
DenseTensor
*
weights
,
const
bool
is_test
)
{
const
T
*
weights_data
=
weights
->
data
<
T
>
();
// if weights are 1D, every format tag is correct, so we accept
// format_tag::any's output and no reorder is needed
if
(
weights
->
dims
().
size
()
==
1
)
{
return
this
->
AcquireMemoryFromPrimitive
(
this
->
fwd_pd_
->
weights_desc
(),
to_void_cast
<
T
>
(
weights_data
));
}
return
this
->
AcquireMemoryWithReorder
(
weights
->
mem_desc
(),
this
->
fwd_pd_
->
weights_desc
(),
to_void_cast
<
T
>
(
weights_data
),
is_test
);
}
std
::
shared_ptr
<
memory
>
AcquireDiffWeightsMemory
(
DenseTensor
*
output
)
{
T
*
output_data
=
output
->
mutable_data
<
T
>
(
this
->
place_
,
this
->
bwd_pd_
->
diff_weights_desc
().
get_size
());
return
this
->
AcquireMemoryFromPrimitive
(
this
->
bwd_pd_
->
diff_weights_desc
(),
output_data
);
}
};
template
<
typename
T
>
class
ReductionOneDNNHandler
:
public
OneDNNHandlerNoCachingT
<
T
,
dnnl
::
reduction
>
{
...
...
paddle/phi/kernels/onednn/prelu_grad_kernel.cc
0 → 100644
浏览文件 @
cdd8c8ab
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/prelu_grad_kernel.h"
#include "paddle/phi/backends/onednn/onednn_reuse.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
PReluGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
alpha
,
const
DenseTensor
&
out_grad
,
const
std
::
string
&
data_format
,
const
std
::
string
&
mode
,
DenseTensor
*
x_grad
,
DenseTensor
*
alpha_grad
)
{
bool
is_test
=
dev_ctx
.
HasDnnAttr
(
"is_test"
)
?
PADDLE_GET_CONST
(
bool
,
dev_ctx
.
GetDnnAttr
(
"is_test"
))
:
false
;
funcs
::
PReluOneDNNHandler
<
T
>
handler
(
dev_ctx
.
GetEngine
(),
dev_ctx
.
GetPlace
(),
x
,
alpha
,
mode
,
data_format
,
is_test
);
auto
src_memory_p
=
handler
.
AcquireSrcMemory
(
&
x
);
auto
weights_memory_p
=
handler
.
AcquireWeightsMemoryPossiblyWithReorder
(
&
alpha
,
is_test
);
auto
diff_src_memory_p
=
handler
.
AcquireDiffSrcMemory
(
x_grad
);
auto
diff_weights_memory_p
=
handler
.
AcquireDiffWeightsMemory
(
alpha_grad
);
auto
diff_dst_memory_p
=
handler
.
AcquireDiffDstMemory
(
&
out_grad
);
auto
prelu_p
=
handler
.
AcquireBackwardPrimitive
();
auto
&
astream
=
OneDNNContext
::
tls
().
get_stream
();
prelu_p
->
execute
(
astream
,
{{
DNNL_ARG_SRC
,
*
src_memory_p
},
{
DNNL_ARG_WEIGHTS
,
*
weights_memory_p
},
{
DNNL_ARG_DIFF_DST
,
*
diff_dst_memory_p
},
{
DNNL_ARG_DIFF_SRC
,
*
diff_src_memory_p
},
{
DNNL_ARG_DIFF_WEIGHTS
,
*
diff_weights_memory_p
}});
astream
.
wait
();
x_grad
->
set_mem_desc
(
diff_src_memory_p
->
get_desc
());
}
}
// namespace phi
PD_REGISTER_KERNEL
(
prelu_grad
,
OneDNN
,
ONEDNN
,
phi
::
PReluGradKernel
,
float
,
phi
::
dtype
::
bfloat16
)
{}
paddle/phi/kernels/onednn/prelu_kernel.cc
0 → 100644
浏览文件 @
cdd8c8ab
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/prelu_kernel.h"
#include "paddle/phi/backends/onednn/onednn_reuse.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
PReluKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
alpha
,
const
std
::
string
&
data_format
,
const
std
::
string
&
mode
,
DenseTensor
*
out
)
{
PADDLE_ENFORCE_EQ
(
dev_ctx
.
GetPlace
().
GetType
(),
AllocationType
::
CPU
,
phi
::
errors
::
PreconditionNotMet
(
"Operator oneDNN PReLU must use CPUPlace"
));
bool
is_test
=
dev_ctx
.
HasDnnAttr
(
"is_test"
)
?
PADDLE_GET_CONST
(
bool
,
dev_ctx
.
GetDnnAttr
(
"is_test"
))
:
false
;
funcs
::
PReluOneDNNHandler
<
T
>
handler
(
dev_ctx
.
GetEngine
(),
dev_ctx
.
GetPlace
(),
x
,
alpha
,
mode
,
data_format
,
is_test
);
auto
src_memory_p
=
handler
.
AcquireSrcMemory
(
&
x
);
auto
weights_memory_p
=
handler
.
AcquireWeightsMemoryPossiblyWithReorder
(
&
alpha
,
is_test
);
auto
dst_memory_p
=
handler
.
AcquireDstMemory
(
out
);
auto
prelu_p
=
handler
.
AcquireForwardPrimitive
();
auto
&
astream
=
OneDNNContext
::
tls
().
get_stream
();
prelu_p
->
execute
(
astream
,
{{
DNNL_ARG_SRC
,
*
src_memory_p
},
{
DNNL_ARG_WEIGHTS
,
*
weights_memory_p
},
{
DNNL_ARG_DST
,
*
dst_memory_p
}});
astream
.
wait
();
out
->
set_mem_desc
(
dst_memory_p
->
get_desc
());
}
}
// namespace phi
PD_REGISTER_KERNEL
(
prelu
,
OneDNN
,
ONEDNN
,
phi
::
PReluKernel
,
float
,
phi
::
dtype
::
bfloat16
)
{}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录