提交 cc4a4639 编写于 作者: H HexToString 提交者: jzhang533

update code example test=document_fix

上级 56a65abd
......@@ -9048,7 +9048,7 @@ def crop_tensor(x, shape=None, offsets=None, name=None):
be changed each iteration.
offsets (list|tuple|Variable, optional): Specifies the cropping
offsets at each dimension. Its data type is int32. If a list/tuple, it's length
must be the same as the dimension size of `x`. If a Variable, it should be a 1-D
must be the same as the dimension size of `x`. If a Tensor, it should be a 1-D
Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
If Variable contained, it is suitable for the case that the offsets may be changed
each iteration. Default: None, the offsets are 0 at each dimension.
......@@ -9058,51 +9058,33 @@ def crop_tensor(x, shape=None, offsets=None, name=None):
Returns:
Tensor: The cropped Tensor has same data type with `x`.
Raises:
TypeError: If the data type of `x` is not in: float32, float64, int32, int64.
TypeError: If `shape` is not a list, tuple or Tensor.
TypeError: If the data type of `shape` is not int32.
TypeError: If `offsets` is not None and not a list, tuple or Tensor.
TypeError: If the data type of `offsets` is not int32.
ValueError: If the element in `offsets` is less than zero.
Examples:
.. code-block:: python
:name: code-example1
import paddle
import numpy as np
np_data_x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype('int32')
x = paddle.to_tensor(np_data_x)
x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
# x.shape = [3, 3]
# x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
# shape can be a 1-D Tensor or list or tuple.
np_data_shape = np.array([2, 2]).astype('int32')
shape_tensor = paddle.to_tensor(np_data_shape)
# shape_list = [2, 2]
# shape_tuple = (2, 2)
out = paddle.crop(x, shape_tensor)
# out = paddle.crop(x, shape_list)
# out = paddle.crop(x, shape_tuple)
np_out = out.numpy()
print('out = ', np_out)
shape = paddle.to_tensor([2, 2], dtype='int32')
# shape = [2, 2]
# shape = (2, 2)
out = paddle.crop(x, shape)
# out.shape = [2, 2]
# out = [[1,2], [4,5]]
# offsets can be a 1-D Tensor or list or tuple.
np_data_offsets = np.array([0, 1]).astype('int32')
offsets_tensor = paddle.to_tensor(np_data_offsets)
# offsets_list = [1, 1]
# offsets_tuple = (0, 1)
out = paddle.crop(x, shape_tensor, offsets_tensor)
# out = paddle.crop(x, shape_tensor, offsets_list)
# out = paddle.crop(x, shape_tensor, offsets_tuple)
np_out = out.numpy()
print('out = ', np_out)
offsets = paddle.to_tensor([0, 1], dtype='int32')
# offsets = [1, 0]
# offsets = (1, 1)
out = paddle.crop(x, shape, offsets)
# out.shape = [2, 2]
# if offsets = [0, 0], out = [[1,2], [4,5]]
# if offsets = [0, 1], out = [[2,3], [5,6]]
# if offsets = [1, 0], out = [[4,5], [7,8]]
# if offsets = [1, 1], out = [[5,6], [8,9]]
"""
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册