"comment":"\nTranspose Operator.\n\nThe input tensor will be permuted according to the axis values given.\nThe op functions similar to how numpy.transpose works in python.\nFor example:\n >> input = numpy.arange(6).reshape((2,3))\n >> input\n array([[0, 1, 2],\n [3, 4, 5]])\n >> axis = [1, 0]\n >> output = input.transpose(axis)\n >> output\n array([[0, 3],\n [1, 4],\n\t\t[2, 5]])\nSo, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},\nthe output tensor shape will be (N, H, W, C)\n\n",
"comment":"\nTranspose Operator.\n\nThe input tensor will be permuted according to the axis values given.\nThe op functions is similar to how numpy.transpose works in python.\n\nFor example: input = numpy.arange(6).reshape((2,3))\nthe input is:\narray([[0, 1, 2],\n [3, 4, 5]])\ngiven axis is: [1, 0]\n\noutput = input.transpose(axis)\nthen the output is:\narray([[0, 3],\n [1, 4],\n[2, 5]])\nSo, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},\nthe output tensor shape will be (N, H, W, C)\n\n",