提交 cab0605c 编写于 作者: T Travis CI

Deploy to GitHub Pages: b8de1401

上级 bf6d3391
......@@ -717,25 +717,19 @@ Duplicable: False Optional: False</li>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">transpose</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Transpose Operator.</p>
<p>The input tensor will be permuted according to the axis values given.
The op functions similar to how numpy.transpose works in python.
For example:</p>
<blockquote>
<div><p>&gt;&gt; input = numpy.arange(6).reshape((2,3))
&gt;&gt; input
The op functions is similar to how numpy.transpose works in python.</p>
<p>For example: input = numpy.arange(6).reshape((2,3))
the input is:
array([[0, 1, 2],</p>
<blockquote>
<div>[3, 4, 5]])</div></blockquote>
<p>&gt;&gt; axis = [1, 0]
&gt;&gt; output = input.transpose(axis)
&gt;&gt; output
<p>given axis is: [1, 0]</p>
<p>output = input.transpose(axis)
then the output is:
array([[0, 3],</p>
<blockquote>
<div><dl class="docutils">
<dt>[1, 4],</dt>
<dd>[2, 5]])</dd>
</dl>
</div></blockquote>
</div></blockquote>
<div>[1, 4],
[2, 5]])</div></blockquote>
<p>So, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},
the output tensor shape will be (N, H, W, C)</p>
<table class="docutils field-list" frame="void" rules="none">
......
......@@ -2170,7 +2170,7 @@
} ]
},{
"type" : "unpool",
"comment" : "\n\"Input shape: $(N, C_{in}, H_{in}, W_{in})$, \nOutput shape: $(N, C_{out}, H_{out}, W_{out})$\nWhere\n$$\nH_{out} = (H_{in}−1) * strides[0] − 2 * paddings[0] + ksize[0] \\\\\nW_{out} = (W_{in}−1) * strides[1] − 2 * paddings[1] + ksize[1]\n$$\nPaper: http://www.matthewzeiler.com/wp-content/uploads/2017/07/iccv2011.pdf\n",
"comment" : "\nInput shape is: $(N, C_{in}, H_{in}, W_{in})$, Output shape is:\n$(N, C_{out}, H_{out}, W_{out})$, where\n$$\nH_{out} = (H_{in}−1) * strides[0] − 2 * paddings[0] + ksize[0] \\\\\nW_{out} = (W_{in}−1) * strides[1] − 2 * paddings[1] + ksize[1]\n$$\nPaper: http://www.matthewzeiler.com/wp-content/uploads/2017/07/iccv2011.pdf\n",
"inputs" : [
{
"name" : "X",
......@@ -2214,7 +2214,7 @@
} ]
},{
"type" : "transpose",
"comment" : "\nTranspose Operator.\n\nThe input tensor will be permuted according to the axis values given.\nThe op functions similar to how numpy.transpose works in python.\nFor example:\n >> input = numpy.arange(6).reshape((2,3))\n >> input\n array([[0, 1, 2],\n [3, 4, 5]])\n >> axis = [1, 0]\n >> output = input.transpose(axis)\n >> output\n array([[0, 3],\n [1, 4],\n\t\t[2, 5]])\nSo, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},\nthe output tensor shape will be (N, H, W, C)\n\n",
"comment" : "\nTranspose Operator.\n\nThe input tensor will be permuted according to the axis values given.\nThe op functions is similar to how numpy.transpose works in python.\n\nFor example: input = numpy.arange(6).reshape((2,3))\nthe input is:\narray([[0, 1, 2],\n [3, 4, 5]])\ngiven axis is: [1, 0]\n\noutput = input.transpose(axis)\nthen the output is:\narray([[0, 3],\n [1, 4],\n [2, 5]])\nSo, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},\nthe output tensor shape will be (N, H, W, C)\n\n",
"inputs" : [
{
"name" : "X",
......
......@@ -730,25 +730,19 @@ Duplicable: False Optional: False</li>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">transpose</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Transpose Operator.</p>
<p>The input tensor will be permuted according to the axis values given.
The op functions similar to how numpy.transpose works in python.
For example:</p>
<blockquote>
<div><p>&gt;&gt; input = numpy.arange(6).reshape((2,3))
&gt;&gt; input
The op functions is similar to how numpy.transpose works in python.</p>
<p>For example: input = numpy.arange(6).reshape((2,3))
the input is:
array([[0, 1, 2],</p>
<blockquote>
<div>[3, 4, 5]])</div></blockquote>
<p>&gt;&gt; axis = [1, 0]
&gt;&gt; output = input.transpose(axis)
&gt;&gt; output
<p>given axis is: [1, 0]</p>
<p>output = input.transpose(axis)
then the output is:
array([[0, 3],</p>
<blockquote>
<div><dl class="docutils">
<dt>[1, 4],</dt>
<dd>[2, 5]])</dd>
</dl>
</div></blockquote>
</div></blockquote>
<div>[1, 4],
[2, 5]])</div></blockquote>
<p>So, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},
the output tensor shape will be (N, H, W, C)</p>
<table class="docutils field-list" frame="void" rules="none">
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册