Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
ca725c82
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ca725c82
编写于
7月 15, 2020
作者:
Z
Zhang Ting
提交者:
GitHub
7月 15, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
improve fp16 performance of slice_grad, test=develop (#25523)
上级
5d3766ff
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
3 addition
and
136 deletion
+3
-136
paddle/fluid/operators/slice_op.cu
paddle/fluid/operators/slice_op.cu
+1
-134
paddle/fluid/operators/slice_op.h
paddle/fluid/operators/slice_op.h
+2
-2
未找到文件。
paddle/fluid/operators/slice_op.cu
浏览文件 @
ca725c82
...
@@ -12,145 +12,12 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,145 +12,12 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include <thrust/device_vector.h>
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/slice_op.h"
#include "paddle/fluid/operators/slice_op.h"
#include "paddle/fluid/platform/cuda_device_function.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/float16.h"
namespace
paddle
{
namespace
operators
{
using
platform
::
PADDLE_CUDA_NUM_THREADS
;
template
<
size_t
D
>
__global__
void
Padding
(
const
paddle
::
platform
::
float16
*
d_out
,
const
int64_t
*
out_dims
,
const
int64_t
*
in_dims
,
const
int64_t
*
offsets
,
int64_t
n
,
paddle
::
platform
::
float16
*
d_in
)
{
int64_t
out_idx
=
threadIdx
.
x
+
blockDim
.
x
*
blockIdx
.
x
;
if
(
out_idx
<
n
)
{
int64_t
out_idx_tmp
=
out_idx
;
int64_t
coords
[
D
]
=
{
0
};
for
(
int
i
=
D
-
1
;
i
>=
0
;
--
i
)
{
coords
[
i
]
=
out_idx_tmp
%
out_dims
[
i
];
out_idx_tmp
/=
out_dims
[
i
];
coords
[
i
]
+=
offsets
[
i
];
}
int64_t
in_idx
=
0
;
for
(
int
i
=
0
;
i
<
D
;
++
i
)
{
in_idx
=
in_idx
*
in_dims
[
i
]
+
coords
[
i
];
}
d_in
[
in_idx
]
=
d_out
[
out_idx
];
}
}
template
<
>
class
SliceGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
float16
>
:
public
framework
::
OpKernel
<
paddle
::
platform
::
float16
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
d_out
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_in
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
d_in
->
mutable_data
<
paddle
::
platform
::
float16
>
(
ctx
.
GetPlace
());
auto
out_dims
=
d_out
->
dims
();
auto
in_dims
=
d_in
->
dims
();
int
rank
=
out_dims
.
size
();
std
::
vector
<
int64_t
>
offsets
(
rank
,
0
);
auto
axes
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
starts_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"starts"
);
std
::
vector
<
int64_t
>
starts
(
starts_int
.
begin
(),
starts_int
.
end
());
auto
list_new_starts_tensor
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"StartsTensorList"
);
if
(
list_new_starts_tensor
.
size
()
>
0
)
{
starts
=
GetDataFromTensorList
<
int64_t
>
(
list_new_starts_tensor
);
}
else
if
(
ctx
.
HasInput
(
"StartsTensor"
))
{
auto
*
starts_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"StartsTensor"
);
starts
=
GetDataFromTensor
<
int64_t
>
(
starts_tensor
);
}
for
(
size_t
i
=
0
;
i
<
starts
.
size
();
++
i
)
{
if
(
starts
[
i
]
<
0
)
{
starts
[
i
]
+=
in_dims
[
axes
[
i
]];
}
offsets
[
axes
[
i
]]
=
std
::
max
(
starts
[
i
],
static_cast
<
int64_t
>
(
0
));
}
math
::
SetConstant
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
float16
>
set_zero
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
CUDADeviceContext
>();
set_zero
(
dev_ctx
,
d_in
,
static_cast
<
paddle
::
platform
::
float16
>
(
0
));
int64_t
numel
=
d_out
->
numel
();
dim3
blocks
((
numel
-
1
)
/
PADDLE_CUDA_NUM_THREADS
+
1
);
dim3
threads
(
PADDLE_CUDA_NUM_THREADS
);
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
const
std
::
vector
<
int64_t
>
out_shape
=
framework
::
vectorize
<
int64_t
>
(
out_dims
);
const
std
::
vector
<
int64_t
>
in_shape
=
framework
::
vectorize
<
int64_t
>
(
in_dims
);
framework
::
Tensor
out_dims_tensor
;
framework
::
Tensor
in_dims_tensor
;
framework
::
Tensor
offsets_tensor
;
framework
::
TensorFromVector
(
out_shape
,
ctx
.
device_context
(),
&
out_dims_tensor
);
framework
::
TensorFromVector
(
in_shape
,
ctx
.
device_context
(),
&
in_dims_tensor
);
framework
::
TensorFromVector
(
offsets
,
ctx
.
device_context
(),
&
offsets_tensor
);
const
int64_t
*
out_dims_ptr
=
out_dims_tensor
.
data
<
int64_t
>
();
const
int64_t
*
in_dims_ptr
=
in_dims_tensor
.
data
<
int64_t
>
();
const
int64_t
*
offsets_ptr
=
offsets_tensor
.
data
<
int64_t
>
();
switch
(
rank
)
{
case
1
:
Padding
<
1
><<<
blocks
,
threads
,
0
,
stream
>>>
(
d_out
->
data
<
paddle
::
platform
::
float16
>
(),
out_dims_ptr
,
in_dims_ptr
,
offsets_ptr
,
numel
,
d_in
->
data
<
paddle
::
platform
::
float16
>
());
break
;
case
2
:
Padding
<
2
><<<
blocks
,
threads
,
0
,
stream
>>>
(
d_out
->
data
<
paddle
::
platform
::
float16
>
(),
out_dims_ptr
,
in_dims_ptr
,
offsets_ptr
,
numel
,
d_in
->
data
<
paddle
::
platform
::
float16
>
());
break
;
case
3
:
Padding
<
3
><<<
blocks
,
threads
,
0
,
stream
>>>
(
d_out
->
data
<
paddle
::
platform
::
float16
>
(),
out_dims_ptr
,
in_dims_ptr
,
offsets_ptr
,
numel
,
d_in
->
data
<
paddle
::
platform
::
float16
>
());
break
;
case
4
:
Padding
<
4
><<<
blocks
,
threads
,
0
,
stream
>>>
(
d_out
->
data
<
paddle
::
platform
::
float16
>
(),
out_dims_ptr
,
in_dims_ptr
,
offsets_ptr
,
numel
,
d_in
->
data
<
paddle
::
platform
::
float16
>
());
break
;
case
5
:
Padding
<
5
><<<
blocks
,
threads
,
0
,
stream
>>>
(
d_out
->
data
<
paddle
::
platform
::
float16
>
(),
out_dims_ptr
,
in_dims_ptr
,
offsets_ptr
,
numel
,
d_in
->
data
<
paddle
::
platform
::
float16
>
());
break
;
case
6
:
Padding
<
6
><<<
blocks
,
threads
,
0
,
stream
>>>
(
d_out
->
data
<
paddle
::
platform
::
float16
>
(),
out_dims_ptr
,
in_dims_ptr
,
offsets_ptr
,
numel
,
d_in
->
data
<
paddle
::
platform
::
float16
>
());
break
;
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
REGISTER_OP_CUDA_KERNEL
(
slice
,
ops
::
SliceKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
slice
,
ops
::
SliceKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
SliceKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
SliceKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
...
...
paddle/fluid/operators/slice_op.h
浏览文件 @
ca725c82
...
@@ -350,7 +350,7 @@ class SliceGradKernel : public framework::OpKernel<T> {
...
@@ -350,7 +350,7 @@ class SliceGradKernel : public framework::OpKernel<T> {
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
platform
::
DeviceContextPool
::
Instance
();
auto
&
dev_ctx
=
*
pool
.
Get
(
context
.
GetPlace
());
auto
&
dev_ctx
=
*
pool
.
Get
(
context
.
GetPlace
());
T
value
=
0.0
;
T
value
=
T
(
0
)
;
math
::
SetConstant
<
DeviceContext
,
T
>
functor
;
math
::
SetConstant
<
DeviceContext
,
T
>
functor
;
for
(
int
i
=
0
;
i
<
d_in_size
;
++
i
)
{
for
(
int
i
=
0
;
i
<
d_in_size
;
++
i
)
{
auto
dim
=
input_array
->
at
(
i
).
dims
();
auto
dim
=
input_array
->
at
(
i
).
dims
();
...
@@ -440,7 +440,7 @@ class SliceGradKernel : public framework::OpKernel<T> {
...
@@ -440,7 +440,7 @@ class SliceGradKernel : public framework::OpKernel<T> {
auto
d_out_t
=
auto
d_out_t
=
framework
::
EigenTensor
<
T
,
D
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>::
From
(
framework
::
EigenTensor
<
T
,
D
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>::
From
(
*
d_out
,
out_dims
);
*
d_out
,
out_dims
);
d_in_t
.
device
(
place
)
=
d_out_t
.
pad
(
paddings
,
0
);
d_in_t
.
device
(
place
)
=
d_out_t
.
pad
(
paddings
,
T
(
0
)
);
}
}
};
};
}
// namespace operators
}
// namespace operators
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录