Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
c919b2f3
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c919b2f3
编写于
1月 03, 2019
作者:
P
peizhilin
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'upstream/develop' into windows/fixgpuissue
上级
fd4f4d0e
a1e60ab1
变更
20
隐藏空白更改
内联
并排
Showing
20 changed file
with
436 addition
and
158 deletion
+436
-158
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+1
-1
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+2
-0
paddle/fluid/framework/details/all_reduce_op_handle.cc
paddle/fluid/framework/details/all_reduce_op_handle.cc
+93
-82
paddle/fluid/framework/details/build_strategy.cc
paddle/fluid/framework/details/build_strategy.cc
+9
-3
paddle/fluid/framework/details/build_strategy.h
paddle/fluid/framework/details/build_strategy.h
+8
-0
paddle/fluid/framework/details/multi_devices_graph_pass.cc
paddle/fluid/framework/details/multi_devices_graph_pass.cc
+6
-5
paddle/fluid/framework/details/parallel_ssa_graph_executor.cc
...le/fluid/framework/details/parallel_ssa_graph_executor.cc
+99
-0
paddle/fluid/framework/details/parallel_ssa_graph_executor.h
paddle/fluid/framework/details/parallel_ssa_graph_executor.h
+51
-0
paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.cc
...id/framework/details/scope_buffered_ssa_graph_executor.cc
+1
-1
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+103
-30
paddle/fluid/framework/parallel_executor.h
paddle/fluid/framework/parallel_executor.h
+10
-0
paddle/fluid/framework/threadpool.cc
paddle/fluid/framework/threadpool.cc
+0
-1
paddle/fluid/operators/reader/ctr_reader.h
paddle/fluid/operators/reader/ctr_reader.h
+1
-1
paddle/fluid/platform/nccl_helper.h
paddle/fluid/platform/nccl_helper.h
+1
-1
paddle/fluid/platform/profiler.cc
paddle/fluid/platform/profiler.cc
+6
-5
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+6
-9
python/paddle/fluid/tests/unittests/parallel_executor_test_base.py
...ddle/fluid/tests/unittests/parallel_executor_test_base.py
+0
-1
python/paddle/fluid/tests/unittests/test_dist_base.py
python/paddle/fluid/tests/unittests/test_dist_base.py
+2
-2
python/paddle/fluid/tests/unittests/test_parallel_executor_crf.py
...addle/fluid/tests/unittests/test_parallel_executor_crf.py
+36
-16
python/paddle/fluid/tests/unittests/test_parallel_executor_mnist.py
...dle/fluid/tests/unittests/test_parallel_executor_mnist.py
+1
-0
未找到文件。
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
c919b2f3
...
...
@@ -184,7 +184,7 @@ endif()
target_link_libraries
(
executor garbage_collector
)
cc_library
(
parallel_executor SRCS parallel_executor.cc DEPS
threaded_ssa_graph_executor scope_buffered_ssa_graph_executor
threaded_ssa_graph_executor scope_buffered_ssa_graph_executor
parallel_ssa_graph_executor
graph build_strategy
fast_threaded_ssa_graph_executor variable_helper
)
...
...
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
c919b2f3
...
...
@@ -77,6 +77,8 @@ cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ${SSA_GRAPH_EXECUT
cc_library
(
threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope
simple_threadpool device_context
)
cc_library
(
parallel_ssa_graph_executor SRCS parallel_ssa_graph_executor.cc DEPS threaded_ssa_graph_executor
)
cc_test
(
broadcast_op_test SRCS broadcast_op_handle_test.cc DEPS var_handle op_handle_base scope ddim memory
device_context broadcast_op_handle
)
cc_test
(
gather_op_test SRCS gather_op_handle_test.cc DEPS var_handle op_handle_base scope ddim memory
...
...
paddle/fluid/framework/details/all_reduce_op_handle.cc
浏览文件 @
c919b2f3
...
...
@@ -19,6 +19,13 @@
#include "paddle/fluid/framework/details/variable_visitor.h"
#include "paddle/fluid/platform/profiler.h"
// asynchronous nccl allreduce or synchronous issue:
// https://github.com/PaddlePaddle/Paddle/issues/15049
DEFINE_bool
(
sync_nccl_allreduce
,
false
,
"If set true, will call `cudaStreamSynchronize(nccl_stream)`"
"after allreduce, this mode can get better performance in some scenarios."
);
namespace
paddle
{
namespace
framework
{
namespace
details
{
...
...
@@ -48,100 +55,104 @@ AllReduceOpHandle::AllReduceOpHandle(ir::Node *node,
void
AllReduceOpHandle
::
RunImpl
()
{
platform
::
RecordEvent
record_event
(
Name
(),
dev_ctxes_
.
cbegin
()
->
second
);
// FIXME(typhoonzero): If scope0(global scope) have NCCL_ID_VAR,
// this is a distributed or inter-process call, find a better way.
WaitInputVarGenerated
();
auto
in_var_handles
=
DynamicCast
<
VarHandle
>
(
this
->
Inputs
());
auto
out_var_handles
=
DynamicCast
<
VarHandle
>
(
this
->
Outputs
());
PADDLE_ENFORCE_EQ
(
in_var_handles
.
size
(),
places_
.
size
(),
"The NoDummyInputSize should be equal to the number of places."
);
PADDLE_ENFORCE_EQ
(
in_var_handles
.
size
(),
out_var_handles
.
size
(),
"The NoDummyInputSize and NoDummyOutputSize should be equal."
);
std
::
vector
<
const
LoDTensor
*>
lod_tensors
;
for
(
size_t
i
=
0
;
i
<
local_scopes_
.
size
();
++
i
)
{
auto
*
s
=
local_scopes_
[
i
];
auto
&
local_scope
=
*
s
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
();
auto
&
lod_tensor
=
local_scope
.
FindVar
(
in_var_handles
[
i
]
->
name_
)
->
Get
<
LoDTensor
>
();
lod_tensors
.
emplace_back
(
&
lod_tensor
);
PADDLE_ENFORCE_EQ
(
in_var_handles
[
i
]
->
name_
,
out_var_handles
[
i
]
->
name_
,
"The name of input and output should be equal."
);
}
if
(
platform
::
is_gpu_place
(
lod_tensors
[
0
]
->
place
()))
{
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
if
(
NoDummyInputSize
()
==
1
&&
local_scopes_
[
0
]
->
FindLocalVar
(
NCCL_ID_VARNAME
)
==
nullptr
)
{
#else
if
(
NoDummyInputSize
()
==
1
)
{
#endif
return
;
// No need to all reduce when GPU count = 1;
}
else
{
// Wait input done
WaitInputVarGenerated
();
auto
in_var_handles
=
DynamicCast
<
VarHandle
>
(
this
->
Inputs
());
auto
out_var_handles
=
DynamicCast
<
VarHandle
>
(
this
->
Outputs
());
PADDLE_ENFORCE_EQ
(
in_var_handles
.
size
(),
places_
.
size
(),
"The NoDummyInputSize should be equal to the number of places."
);
PADDLE_ENFORCE_EQ
(
in_var_handles
.
size
(),
out_var_handles
.
size
(),
"The NoDummyInputSize and NoDummyOutputSize should be equal."
);
std
::
vector
<
const
LoDTensor
*>
lod_tensors
;
PADDLE_ENFORCE
(
nccl_ctxs_
,
"nccl_ctxs should not be nullptr."
);
int
dtype
=
-
1
;
size_t
numel
=
0
;
std
::
vector
<
std
::
function
<
void
()
>>
all_reduce_calls
;
for
(
size_t
i
=
0
;
i
<
local_scopes_
.
size
();
++
i
)
{
auto
*
s
=
local_scopes_
[
i
];
auto
&
local_scope
=
*
s
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
();
auto
&
lod_tensor
=
local_scope
.
FindVar
(
in_var_handles
[
i
]
->
name_
)
->
Get
<
LoDTensor
>
();
lod_tensors
.
emplace_back
(
&
lod_tensor
);
PADDLE_ENFORCE_EQ
(
in_var_handles
[
i
]
->
name_
,
out_var_handles
[
i
]
->
name_
,
"The name of input and output should be equal."
);
}
auto
&
p
=
places_
[
i
];
auto
&
lod_tensor
=
*
lod_tensors
[
i
];
void
*
buffer
=
const_cast
<
void
*>
(
lod_tensor
.
data
<
void
>
());
if
(
platform
::
is_gpu_place
(
lod_tensors
[
0
]
->
place
()))
{
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
PADDLE_ENFORCE
(
nccl_ctxs_
,
"nccl_ctxs should not be nullptr."
);
int
dtype
=
-
1
;
size_t
numel
=
0
;
std
::
vector
<
std
::
function
<
void
()
>>
all_reduce_calls
;
for
(
size_t
i
=
0
;
i
<
local_scopes_
.
size
();
++
i
)
{
auto
&
p
=
places_
[
i
];
auto
&
lod_tensor
=
*
lod_tensors
[
i
];
void
*
buffer
=
const_cast
<
void
*>
(
lod_tensor
.
data
<
void
>
());
if
(
dtype
==
-
1
)
{
dtype
=
platform
::
ToNCCLDataType
(
lod_tensor
.
type
());
}
if
(
dtype
==
-
1
)
{
dtype
=
platform
::
ToNCCLDataType
(
lod_tensor
.
type
());
}
if
(
numel
==
0
)
{
numel
=
static_cast
<
size_t
>
(
lod_tensor
.
numel
());
}
if
(
numel
==
0
)
{
numel
=
static_cast
<
size_t
>
(
lod_tensor
.
numel
());
int
dev_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
p
).
device
;
auto
&
nccl_ctx
=
nccl_ctxs_
->
at
(
dev_id
);
auto
stream
=
nccl_ctx
.
stream
();
auto
comm
=
nccl_ctx
.
comm_
;
all_reduce_calls
.
emplace_back
([
=
]
{
PADDLE_ENFORCE
(
platform
::
dynload
::
ncclAllReduce
(
buffer
,
buffer
,
numel
,
static_cast
<
ncclDataType_t
>
(
dtype
),
ncclSum
,
comm
,
stream
));
});
}
this
->
RunAndRecordEvent
([
&
]
{
if
(
all_reduce_calls
.
size
()
==
1UL
)
{
// Do not use NCCLGroup when manage NCCL by per thread per device
all_reduce_calls
[
0
]();
}
else
{
platform
::
NCCLGroupGuard
guard
;
for
(
auto
&
call
:
all_reduce_calls
)
{
call
();
}
}
});
if
(
FLAGS_sync_nccl_allreduce
)
{
for
(
auto
&
p
:
places_
)
{
int
dev_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
p
).
device
;
auto
&
nccl_ctx
=
nccl_ctxs_
->
at
(
dev_id
);
auto
stream
=
nccl_ctx
.
stream
();
auto
comm
=
nccl_ctx
.
comm_
;
all_reduce_calls
.
emplace_back
([
=
]
{
PADDLE_ENFORCE
(
platform
::
dynload
::
ncclAllReduce
(
buffer
,
buffer
,
numel
,
static_cast
<
ncclDataType_t
>
(
dtype
),
ncclSum
,
comm
,
stream
));
});
cudaStreamSynchronize
(
stream
);
}
this
->
RunAndRecordEvent
([
&
]
{
platform
::
NCCLGroupGuard
guard
;
for
(
auto
&
call
:
all_reduce_calls
)
{
call
();
}
});
}
#else
PADDLE_THROW
(
"Not compiled with CUDA"
);
PADDLE_THROW
(
"Not compiled with CUDA"
);
#endif
}
else
{
// Special handle CPU only Operator's gradient. Like CRF
auto
&
trg
=
*
this
->
local_scopes_
[
0
]
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
()
->
FindVar
(
out_var_handles
[
0
]
->
name_
)
->
GetMutable
<
framework
::
LoDTensor
>
();
// Reduce All Tensor to trg in CPU
ReduceLoDTensor
func
(
lod_tensors
,
&
trg
);
VisitDataType
(
lod_tensors
[
0
]
->
type
(),
func
);
for
(
size_t
i
=
1
;
i
<
local_scopes_
.
size
();
++
i
)
{
auto
&
scope
=
*
local_scopes_
[
i
]
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
();
auto
&
p
=
places_
[
i
];
auto
*
var
=
scope
.
FindVar
(
out_var_handles
[
i
]
->
name_
);
auto
*
dev_ctx
=
dev_ctxes_
.
at
(
p
);
RunAndRecordEvent
(
p
,
[
&
trg
,
var
,
dev_ctx
,
p
]
{
auto
&
tensor_gpu
=
*
var
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
&
tensor_cpu
=
trg
;
TensorCopy
(
tensor_cpu
,
p
,
*
dev_ctx
,
&
tensor_gpu
);
});
}
}
else
{
// Special handle CPU only Operator's gradient. Like CRF
auto
&
trg
=
*
this
->
local_scopes_
[
0
]
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
()
->
FindVar
(
out_var_handles
[
0
]
->
name_
)
->
GetMutable
<
framework
::
LoDTensor
>
();
// Reduce All Tensor to trg in CPU
ReduceLoDTensor
func
(
lod_tensors
,
&
trg
);
VisitDataType
(
lod_tensors
[
0
]
->
type
(),
func
);
for
(
size_t
i
=
1
;
i
<
local_scopes_
.
size
();
++
i
)
{
auto
&
scope
=
*
local_scopes_
[
i
]
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
();
auto
&
p
=
places_
[
i
];
auto
*
var
=
scope
.
FindVar
(
out_var_handles
[
i
]
->
name_
);
auto
*
dev_ctx
=
dev_ctxes_
.
at
(
p
);
RunAndRecordEvent
(
p
,
[
&
trg
,
var
,
dev_ctx
,
p
]
{
auto
&
tensor_gpu
=
*
var
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
&
tensor_cpu
=
trg
;
TensorCopy
(
tensor_cpu
,
p
,
*
dev_ctx
,
&
tensor_gpu
);
});
}
}
}
...
...
paddle/fluid/framework/details/build_strategy.cc
浏览文件 @
c919b2f3
...
...
@@ -31,7 +31,11 @@ namespace framework {
namespace
details
{
static
inline
bool
SeqOnlyAllReduceOps
(
const
BuildStrategy
&
strategy
)
{
return
(
!
strategy
.
enable_sequential_execution_
&&
strategy
.
num_trainers_
>
1
);
// Should fix the allreduce op order if scheduling
// them in multiple threads or processes to avoid hang.
return
(
!
strategy
.
enable_sequential_execution_
&&
strategy
.
num_trainers_
>
1
)
||
strategy
.
enable_parallel_graph_
;
}
class
ParallelExecutorPassBuilder
:
public
ir
::
PassBuilder
{
...
...
@@ -86,8 +90,6 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
auto
multi_devices_pass
=
AppendPass
(
"multi_devices_pass"
);
multi_devices_pass
->
SetNotOwned
<
const
BuildStrategy
>
(
"strategy"
,
&
strategy_
);
multi_devices_pass
->
Set
<
int
>
(
"num_trainers"
,
new
int
(
strategy_
.
num_trainers_
));
// Add a graph print pass to record a graph with device info.
if
(
!
strategy_
.
debug_graphviz_path_
.
empty
())
{
...
...
@@ -132,6 +134,7 @@ std::shared_ptr<ir::PassBuilder> BuildStrategy::CreatePassesFromStrategy(
std
::
unique_ptr
<
ir
::
Graph
>
BuildStrategy
::
Apply
(
const
ProgramDesc
&
main_program
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
string
&
loss_var_name
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
size_t
&
nranks
,
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
const
bool
use_cuda
,
platform
::
NCCLContextMap
*
nccl_ctxs
)
const
{
#else
...
...
@@ -150,6 +153,9 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
pass
->
Erase
(
"local_scopes"
);
pass
->
SetNotOwned
<
const
std
::
vector
<
Scope
*>>
(
"local_scopes"
,
&
local_scopes
);
pass
->
Erase
(
"nranks"
);
pass
->
Set
<
size_t
>
(
"nranks"
,
new
size_t
(
nranks
));
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
platform
::
NCCLContextMap
*
nctx
=
use_cuda
?
nccl_ctxs
:
nullptr
;
pass
->
Erase
(
"nccl_ctxs"
);
...
...
paddle/fluid/framework/details/build_strategy.h
浏览文件 @
c919b2f3
...
...
@@ -110,6 +110,7 @@ struct BuildStrategy {
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
string
&
loss_var_name
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
size_t
&
nranks
,
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
const
bool
use_cuda
,
platform
::
NCCLContextMap
*
nccl_ctxs
)
const
;
...
...
@@ -117,6 +118,13 @@ struct BuildStrategy {
const
bool
use_cuda
)
const
;
#endif
// If set true, ParallelExecutor would build the main_program into multiple
// graphs,
// each of the graphs would run with one device. This approach can achieve
// better performance
// on some scenarios.
mutable
bool
enable_parallel_graph_
=
false
;
private:
mutable
bool
is_finalized_
=
false
;
mutable
std
::
shared_ptr
<
ir
::
PassBuilder
>
pass_builder_
;
...
...
paddle/fluid/framework/details/multi_devices_graph_pass.cc
浏览文件 @
c919b2f3
...
...
@@ -138,7 +138,7 @@ static const char kLossVarName[] = "loss_var_name";
static
const
char
kPlaces
[]
=
"places"
;
static
const
char
kLocalScopes
[]
=
"local_scopes"
;
static
const
char
kStrategy
[]
=
"strategy"
;
static
const
char
kN
umTrainers
[]
=
"num_trainer
s"
;
static
const
char
kN
Ranks
[]
=
"nrank
s"
;
void
MultiDevSSAGraphBuilder
::
Init
()
const
{
all_vars_
.
clear
();
...
...
@@ -174,7 +174,7 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
auto
nodes
=
graph
->
ReleaseNodes
();
ir
::
Graph
&
result
=
*
graph
;
int
num_trainers
=
Get
<
int
>
(
kNumTrainer
s
);
size_t
nranks
=
Get
<
size_t
>
(
kNRank
s
);
for
(
auto
&
node
:
nodes
)
{
if
(
node
->
IsVar
()
&&
node
->
Var
())
{
...
...
@@ -251,7 +251,7 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
CreateComputationalOps
(
&
result
,
node
,
places_
.
size
());
}
if
(
!
is_forwarding
&&
(
places_
.
size
()
>
1
||
num_trainers
>
1
)
)
{
if
(
!
is_forwarding
&&
nranks
>
1UL
)
{
bool
is_bk_op
=
static_cast
<
bool
>
(
boost
::
get
<
int
>
(
node
->
Op
()
->
GetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
()))
&
...
...
@@ -649,12 +649,13 @@ int MultiDevSSAGraphBuilder::GetVarDeviceID(
void
MultiDevSSAGraphBuilder
::
CreateScaleLossGradOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
loss_grad_name
,
ir
::
Node
*
out_var_node
,
proto
::
VarType
::
Type
dtype
)
const
{
size_t
nranks
=
Get
<
size_t
>
(
"nranks"
);
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
// Insert ScaleCost OpHandle
auto
*
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
places_
[
i
]);
auto
*
op_handle
=
new
ScaleLossGradOpHandle
(
result
->
CreateEmptyNode
(
"scale_loss_grad"
,
ir
::
Node
::
Type
::
kOperation
),
local_scopes_
.
size
()
,
local_scopes_
[
i
],
places_
[
i
],
dev_ctx
,
dtype
);
nranks
,
local_scopes_
[
i
],
places_
[
i
],
dev_ctx
,
dtype
);
result
->
Get
<
GraphOps
>
(
kGraphOps
).
emplace_back
(
op_handle
);
// FIXME: Currently ScaleLossGradOp only use device_count as scale
...
...
@@ -887,4 +888,4 @@ REGISTER_PASS(multi_devices_pass,
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kPlaces
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kLocalScopes
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kStrategy
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kN
umTrainer
s
);
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kN
Rank
s
);
paddle/fluid/framework/details/parallel_ssa_graph_executor.cc
0 → 100644
浏览文件 @
c919b2f3
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
ParallelSSAGraphExecutor
::
ParallelSSAGraphExecutor
(
const
ExecutionStrategy
&
strategy
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
&&
graphs
)
:
strategy_
(
std
::
move
(
strategy
)),
local_scopes_
(
std
::
move
(
local_scopes
)),
pool_
(
places
.
size
()
>=
2
?
new
::
ThreadPool
(
places
.
size
())
:
nullptr
),
places_
(
std
::
move
(
places
)),
graphs_
(
std
::
move
(
graphs
))
{
PADDLE_ENFORCE_EQ
(
places_
.
size
(),
local_scopes_
.
size
());
// set the correct size of thread pool to each device.
strategy_
.
num_threads_
=
strategy_
.
num_threads_
<
places_
.
size
()
?
1UL
:
strategy_
.
num_threads_
/
places_
.
size
();
VLOG
(
1
)
<<
"set num_threads: "
<<
strategy_
.
num_threads_
<<
" to run the operators of the graph on each device."
;
for
(
size_t
i
=
0
;
i
<
places
.
size
();
++
i
)
{
executors_
.
emplace_back
(
new
details
::
ThreadedSSAGraphExecutor
(
strategy_
,
{
local_scopes_
[
i
]},
{
places_
[
i
]},
std
::
move
(
graphs_
[
i
])));
}
}
FeedFetchList
ParallelSSAGraphExecutor
::
Run
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
)
{
std
::
vector
<
std
::
future
<
FeedFetchList
>>
run_futures
;
std
::
vector
<
FeedFetchList
>
fetch_data
;
FeedFetchList
ret
;
fetch_data
.
reserve
(
places_
.
size
());
ret
.
reserve
(
fetch_tensors
.
size
());
exception_holder_
.
Clear
();
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
auto
call
=
[
this
,
i
,
&
fetch_tensors
]()
->
FeedFetchList
{
try
{
return
executors_
[
i
]
->
Run
(
fetch_tensors
);
}
catch
(...)
{
exception_holder_
.
Catch
(
std
::
current_exception
());
}
return
FeedFetchList
();
};
if
(
pool_
)
{
run_futures
.
emplace_back
(
pool_
->
enqueue
(
std
::
move
(
call
)));
}
else
{
fetch_data
.
emplace_back
(
std
::
move
(
call
()));
}
}
if
(
pool_
)
{
for
(
auto
&
f
:
run_futures
)
{
if
(
exception_holder_
.
IsCaught
())
{
f
.
wait
();
}
else
{
fetch_data
.
emplace_back
(
std
::
move
(
f
.
get
()));
}
}
}
if
(
exception_holder_
.
IsCaught
())
{
exception_holder_
.
ReThrow
();
}
for
(
size_t
fetch_idx
=
0
;
fetch_idx
<
fetch_tensors
.
size
();
++
fetch_idx
)
{
std
::
vector
<
const
LoDTensor
*>
lodtensor_ptrs
;
lodtensor_ptrs
.
reserve
(
local_scopes_
.
size
());
for
(
size_t
scope_idx
=
0
;
scope_idx
<
local_scopes_
.
size
();
++
scope_idx
)
{
lodtensor_ptrs
.
push_back
(
&
fetch_data
.
at
(
scope_idx
).
at
(
fetch_idx
));
}
ret
.
emplace_back
();
ret
.
back
().
MergeLoDTensor
(
lodtensor_ptrs
,
platform
::
CPUPlace
());
}
return
ret
;
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/parallel_ssa_graph_executor.h
0 → 100644
浏览文件 @
c919b2f3
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "ThreadPool.h"
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
class
ParallelSSAGraphExecutor
:
public
SSAGraphExecutor
{
public:
ParallelSSAGraphExecutor
(
const
ExecutionStrategy
&
strategy
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
&&
graphs
);
~
ParallelSSAGraphExecutor
()
final
=
default
;
const
ir
::
Graph
&
Graph
()
const
override
{
return
*
graphs_
[
0
];
}
FeedFetchList
Run
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
)
override
;
private:
ExecutionStrategy
strategy_
;
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
unique_ptr
<::
ThreadPool
>
pool_
{
nullptr
};
std
::
vector
<
platform
::
Place
>
places_
;
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
graphs_
;
std
::
vector
<
std
::
unique_ptr
<
details
::
ThreadedSSAGraphExecutor
>>
executors_
;
ExceptionHolder
exception_holder_
;
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.cc
浏览文件 @
c919b2f3
...
...
@@ -56,7 +56,7 @@ FeedFetchList ScopeBufferedSSAGraphExecutor::Run(
}
}
std
::
vector
<
framework
::
LoDTensor
>
fetch_data
;
std
::
exception_ptr
eptr
;
std
::
exception_ptr
eptr
=
nullptr
;
try
{
fetch_data
=
underlying_executor_
->
Run
(
fetch_tensors
);
}
catch
(...)
{
...
...
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
c919b2f3
...
...
@@ -21,12 +21,9 @@ limitations under the License. */
#include "paddle/fluid/framework/ir/graph.h"
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
#include "paddle/fluid/platform/nccl_helper.h"
#endif
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
...
...
@@ -38,6 +35,8 @@ limitations under the License. */
DEFINE_string
(
pe_profile_fname
,
""
,
"Profiler filename for PE, which generated by gperftools."
"Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable."
);
DEFINE_bool
(
enable_parallel_graph
,
false
,
"Force disable parallel graph execution mode if set false."
);
namespace
paddle
{
namespace
framework
{
...
...
@@ -106,6 +105,7 @@ class ParallelExecutorPrivate {
bool
own_local_scope_
;
bool
use_cuda_
;
bool
use_all_reduce_
;
size_t
nranks_
;
// global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
// then keeps unchanged
...
...
@@ -201,6 +201,7 @@ ParallelExecutor::ParallelExecutor(
member_
->
build_strategy_
=
build_strategy
;
member_
->
use_all_reduce_
=
build_strategy
.
reduce_
==
BuildStrategy
::
ReduceStrategy
::
kAllReduce
;
member_
->
nranks_
=
num_trainers
*
places
.
size
();
if
(
!
member_
->
use_all_reduce_
)
{
PADDLE_ENFORCE
(
places
.
size
()
>
1
,
...
...
@@ -224,62 +225,98 @@ ParallelExecutor::ParallelExecutor(
}
}
// FIXME(Yancey1989): parallel graph mode get better performance
// in GPU allreduce distributed training. Need an elegant way to
// choice the execution strategy.
build_strategy
.
enable_parallel_graph_
=
EnableParallelGraphExecution
(
main_program
,
exec_strategy
,
build_strategy
);
VLOG
(
1
)
<<
"Enable ParallelGraph Execution: "
<<
build_strategy
.
enable_parallel_graph_
;
if
(
member_
->
use_cuda_
)
{
// Bcast Parameters to all GPUs
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
auto
*
nccl_id_var
=
scope
->
FindVar
(
NCCL_ID_VARNAME
);
ncclUniqueId
*
nccl_id
=
nullptr
;
// gen_nccl_id operator can broadcast the ncclUniqueId for nccl2 collective
// distributed training
auto
*
nccl_id_var
=
scope
->
FindVar
(
NCCL_ID_VARNAME
);
if
(
nccl_id_var
!=
nullptr
)
{
nccl_id
=
nccl_id_var
->
GetMutable
<
ncclUniqueId
>
();
}
if
(
build_strategy
.
enable_parallel_graph_
&&
member_
->
nranks_
>
1UL
)
{
if
(
nccl_id
==
nullptr
)
{
local_nccl_id_
.
reset
(
new
ncclUniqueId
());
platform
::
dynload
::
ncclGetUniqueId
(
local_nccl_id_
.
get
());
nccl_id
=
local_nccl_id_
.
get
();
}
}
member_
->
nccl_ctxs_
.
reset
(
new
platform
::
NCCLContextMap
(
member_
->
places_
,
nccl_id
,
num_trainers
,
trainer_id
));
#else
PADDLE_THROW
(
"Not compiled with CUDA"
);
#endif
}
if
(
member_
->
local_scopes_
.
size
()
!=
1
&&
local_scopes
.
empty
())
{
BCastParamsToDevices
(
bcast_vars
);
}
// Startup Program has been run. All local scopes has correct parameters.
// Startup Program has been run. All local scopes has correct parameters.
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
graphs
;
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
if
(
build_strategy
.
enable_parallel_graph_
)
{
for
(
size_t
i
=
0
;
i
<
member_
->
places_
.
size
();
++
i
)
{
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
build_strategy
.
Apply
(
main_program
,
{
member_
->
places_
[
i
]},
loss_var_name
,
{
member_
->
local_scopes_
[
i
]},
member_
->
nranks_
,
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
graphs
.
push_back
(
std
::
move
(
graph
));
}
}
else
{
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
build_strategy
.
Apply
(
main_program
,
member_
->
places_
,
loss_var_name
,
member_
->
local_scopes_
,
member_
->
nranks_
,
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
graphs
.
push_back
(
std
::
move
(
graph
));
}
#else
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
build_strategy
.
Apply
(
main_program
,
member_
->
places_
,
loss_var_name
,
member_
->
local_scopes_
,
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
#else
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
build_strategy
.
Apply
(
main_program
,
member_
->
places_
,
loss_var_name
,
member_
->
local_scopes_
,
member_
->
use_cuda_
);
member_
->
nranks_
,
member_
->
use_cuda_
);
graphs
.
push_back
(
std
::
move
(
graph
));
#endif
auto
max_memory_size
=
GetEagerDeletionThreshold
();
if
(
max_memory_size
>=
0
)
{
graph
=
member_
->
PrepareGCAndRefCnts
(
std
::
move
(
graph
),
static_cast
<
size_t
>
(
max_memory_size
));
for
(
size_t
i
=
0
;
i
<
graphs
.
size
();
++
i
)
{
graphs
[
i
]
=
member_
->
PrepareGCAndRefCnts
(
std
::
move
(
graphs
[
i
]),
static_cast
<
size_t
>
(
max_memory_size
));
}
}
// Step 3. Create vars in each scope. Passes may also create new vars.
// skip control vars and empty vars
std
::
vector
<
details
::
VariableInfo
>
var_infos
;
for
(
auto
&
node
:
graph
->
Nodes
())
{
if
(
node
->
IsVar
()
&&
!
node
->
IsCtrlVar
()
&&
node
->
Var
())
{
var_infos
.
emplace_back
();
var_infos
.
back
().
name_
=
node
->
Var
()
->
Name
();
var_infos
.
back
().
type_
=
node
->
Var
()
->
GetType
();
var_infos
.
back
().
persistable_
=
node
->
Var
()
->
Persistable
();
for
(
auto
&
graph
:
graphs
)
{
for
(
auto
&
node
:
graph
->
Nodes
())
{
if
(
node
->
IsVar
()
&&
!
node
->
IsCtrlVar
()
&&
node
->
Var
())
{
var_infos
.
emplace_back
();
var_infos
.
back
().
name_
=
node
->
Var
()
->
Name
();
var_infos
.
back
().
type_
=
node
->
Var
()
->
GetType
();
var_infos
.
back
().
persistable_
=
node
->
Var
()
->
Persistable
();
}
}
}
// If the loss_var_name is given, the number of graph should be only one.
if
(
loss_var_name
.
size
())
{
size_t
graph_num
=
ir
::
GraphNum
(
*
graph
);
size_t
graph_num
=
ir
::
GraphNum
(
*
graph
s
[
0
]
);
if
(
graph_num
>
1
)
{
LOG
(
WARNING
)
<<
"The number of graph should be only one, "
"but the current graph has "
<<
ir
::
GraphNum
(
*
graph
)
<<
ir
::
GraphNum
(
*
graph
s
[
0
]
)
<<
" sub_graphs. If you want to see the nodes of the "
"sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
"to specify the output dir. NOTES: if you not do training, "
...
...
@@ -287,14 +324,20 @@ ParallelExecutor::ParallelExecutor(
}
}
if
(
exec_strategy
.
type_
==
ExecutionStrategy
::
kDefault
)
{
member_
->
executor_
.
reset
(
new
details
::
Threaded
SSAGraphExecutor
(
if
(
build_strategy
.
enable_parallel_graph_
)
{
member_
->
executor_
.
reset
(
new
details
::
Parallel
SSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
member_
->
places_
,
std
::
move
(
graph
)));
std
::
move
(
graph
s
)));
}
else
{
member_
->
executor_
.
reset
(
new
details
::
FastThreadedSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
member_
->
places_
,
std
::
move
(
graph
)));
if
(
exec_strategy
.
type_
==
ExecutionStrategy
::
kDefault
)
{
member_
->
executor_
.
reset
(
new
details
::
ThreadedSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
member_
->
places_
,
std
::
move
(
graphs
[
0
])));
}
else
{
member_
->
executor_
.
reset
(
new
details
::
FastThreadedSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
member_
->
places_
,
std
::
move
(
graphs
[
0
])));
}
}
member_
->
executor_
.
reset
(
new
details
::
ScopeBufferedSSAGraphExecutor
(
...
...
@@ -423,6 +466,36 @@ void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
}
}
bool
ParallelExecutor
::
EnableParallelGraphExecution
(
const
ProgramDesc
&
main_program
,
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
)
const
{
if
(
!
FLAGS_enable_parallel_graph
)
return
false
;
bool
enable_parallel_graph
=
true
;
// TODO(Yancey1989): support sparse update in ParallelGraph mode.
for
(
auto
&
var_desc
:
main_program
.
Block
(
0
).
AllVars
())
{
if
(
var_desc
->
GetType
()
==
proto
::
VarType
::
SELECTED_ROWS
)
{
enable_parallel_graph
=
false
;
}
}
// TODO(Yancey1989): support pserver mode
for
(
auto
&
op_desc
:
main_program
.
Block
(
0
).
AllOps
())
{
if
(
op_desc
->
Type
()
==
"send"
||
op_desc
->
Type
()
==
"recv"
)
{
enable_parallel_graph
=
false
;
break
;
}
}
if
(
!
member_
->
use_all_reduce_
||
!
member_
->
use_cuda_
)
enable_parallel_graph
=
false
;
if
(
build_strategy
.
enable_sequential_execution_
||
exec_strategy
.
type_
==
ExecutionStrategy
::
ExecutorType
::
kExperimental
)
enable_parallel_graph
=
false
;
return
enable_parallel_graph
;
}
ParallelExecutor
::~
ParallelExecutor
()
{
for
(
auto
&
p
:
member_
->
places_
)
{
platform
::
DeviceContextPool
::
Instance
().
Get
(
p
)
->
Wait
();
...
...
paddle/fluid/framework/parallel_executor.h
浏览文件 @
c919b2f3
...
...
@@ -28,6 +28,10 @@ limitations under the License. */
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
#include "paddle/fluid/platform/nccl_helper.h"
#endif
namespace
paddle
{
namespace
framework
{
...
...
@@ -68,8 +72,14 @@ class ParallelExecutor {
private:
void
BCastParamsToDevices
(
const
std
::
unordered_set
<
std
::
string
>
&
vars
)
const
;
bool
EnableParallelGraphExecution
(
const
ProgramDesc
&
main_program
,
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
)
const
;
ParallelExecutorPrivate
*
member_
;
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
std
::
unique_ptr
<
ncclUniqueId
>
local_nccl_id_
;
#endif
};
}
// namespace framework
...
...
paddle/fluid/framework/threadpool.cc
浏览文件 @
c919b2f3
...
...
@@ -89,7 +89,6 @@ void ThreadPool::TaskLoop() {
task
=
std
::
move
(
tasks_
.
front
());
tasks_
.
pop
();
}
// run the task
task
();
}
...
...
paddle/fluid/operators/reader/ctr_reader.h
浏览文件 @
c919b2f3
...
...
@@ -49,7 +49,7 @@ void MonitorThread(std::vector<ReaderThreadStatus>* thread_status,
class
CTRReader
:
public
framework
::
FileReader
{
public:
explicit
CTRReader
(
const
std
::
shared_ptr
<
LoDTensorBlockingQueue
>&
queue
,
int
batch_size
,
in
t
thread_num
,
int
batch_size
,
size_
t
thread_num
,
const
std
::
vector
<
std
::
string
>&
slots
,
const
std
::
vector
<
std
::
string
>&
file_list
)
:
batch_size_
(
batch_size
),
slots_
(
slots
),
file_list_
(
file_list
)
{
...
...
paddle/fluid/platform/nccl_helper.h
浏览文件 @
c919b2f3
...
...
@@ -106,7 +106,7 @@ struct NCCLContextMap {
}
std
::
unique_ptr
<
ncclComm_t
[]
>
comms
(
new
ncclComm_t
[
order_
.
size
()]);
// if num_trainers == 1, should create a new nccl id for local comms.
if
(
num_trainers
==
1
)
{
if
(
num_trainers
==
1
&&
nccl_id
==
nullptr
)
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
NCCLGroupGuard
::
NCCLMutex
());
PADDLE_ENFORCE
(
platform
::
dynload
::
ncclCommInitAll
(
comms
.
get
(),
static_cast
<
int
>
(
order_
.
size
()),
order_
.
data
()));
...
...
paddle/fluid/platform/profiler.cc
浏览文件 @
c919b2f3
...
...
@@ -12,9 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/platform/port.h"
#include <algorithm>
#include <iomanip>
#include <limits>
...
...
@@ -25,9 +22,12 @@ limitations under the License. */
#ifdef PADDLE_WITH_CUDA
#include <cuda.h>
#endif // PADDLE_WITH_CUDA
#include "glog/logging.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/platform/device_tracer.h"
#include "paddle/fluid/platform/port.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/string/printf.h"
DEFINE_bool
(
enable_rpc_profiler
,
false
,
"Enable rpc profiler or not."
);
...
...
@@ -173,8 +173,9 @@ void PopEvent(const std::string& name, const DeviceContext* dev_ctx) {
RecordEvent
::
RecordEvent
(
const
std
::
string
&
name
,
const
DeviceContext
*
dev_ctx
)
:
is_enabled_
(
false
),
start_ns_
(
PosixInNsec
())
{
std
::
lock_guard
<
std
::
mutex
>
l
(
profiler_mu
);
if
(
g_state
==
ProfilerState
::
kDisabled
)
return
;
std
::
lock_guard
<
std
::
mutex
>
l
(
profiler_mu
);
is_enabled_
=
true
;
dev_ctx_
=
dev_ctx
;
name_
=
name
;
...
...
@@ -184,8 +185,8 @@ RecordEvent::RecordEvent(const std::string& name, const DeviceContext* dev_ctx)
}
RecordEvent
::~
RecordEvent
()
{
std
::
lock_guard
<
std
::
mutex
>
l
(
profiler_mu
);
if
(
g_state
==
ProfilerState
::
kDisabled
||
!
is_enabled_
)
return
;
std
::
lock_guard
<
std
::
mutex
>
l
(
profiler_mu
);
DeviceTracer
*
tracer
=
GetDeviceTracer
();
if
(
tracer
)
{
tracer
->
AddCPURecords
(
CurAnnotation
(),
start_ns_
,
PosixInNsec
(),
...
...
python/paddle/fluid/__init__.py
浏览文件 @
c919b2f3
...
...
@@ -135,7 +135,8 @@ def __bootstrap__():
'free_idle_memory'
,
'paddle_num_threads'
,
"dist_threadpool_size"
,
'eager_delete_tensor_gb'
,
'fast_eager_deletion_mode'
,
'allocator_strategy'
,
'reader_queue_speed_test_mode'
,
'print_sub_graph_dir'
,
'pe_profile_fname'
,
'warpctc_dir'
'print_sub_graph_dir'
,
'pe_profile_fname'
,
'warpctc_dir'
,
'enable_parallel_graph'
]
if
'Darwin'
not
in
sysstr
:
read_env_flags
.
append
(
'use_pinned_memory'
)
...
...
@@ -158,14 +159,10 @@ def __bootstrap__():
if
core
.
is_compiled_with_cuda
():
read_env_flags
+=
[
'fraction_of_gpu_memory_to_use'
,
'cudnn_deterministic'
,
'enable_cublas_tensor_op_math'
,
'conv_workspace_size_limit'
,
'cudnn_exhaustive_search'
,
'memory_optimize_debug'
,
'selected_gpus'
,
'cudnn_exhaustive_search_times'
,
'fraction_of_gpu_memory_to_use'
,
'cudnn_deterministic'
,
'enable_cublas_tensor_op_math'
,
'conv_workspace_size_limit'
,
'cudnn_exhaustive_search'
,
'memory_optimize_debug'
,
'selected_gpus'
,
'cudnn_exhaustive_search_times'
,
'sync_nccl_allreduce'
]
core
.
init_gflags
([
sys
.
argv
[
0
]]
+
...
...
python/paddle/fluid/tests/unittests/parallel_executor_test_base.py
浏览文件 @
c919b2f3
...
...
@@ -78,7 +78,6 @@ class TestParallelExecutorBase(unittest.TestCase):
exec_strategy
.
allow_op_delay
=
allow_op_delay
if
use_fast_executor
:
exec_strategy
.
use_experimental_executor
=
True
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
\
if
use_reduce
else
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
...
...
python/paddle/fluid/tests/unittests/test_dist_base.py
浏览文件 @
c919b2f3
...
...
@@ -442,10 +442,10 @@ class TestDistBase(unittest.TestCase):
tr_cmd
=
"%s %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method nccl2 --lr %f"
tr0_cmd
=
tr_cmd
%
\
(
self
.
_python_interp
,
model
,
self
.
_ps_endpoints
,
0
,
w0_ep
,
self
.
_lr
/
2
)
0
,
w0_ep
,
self
.
_lr
)
tr1_cmd
=
tr_cmd
%
\
(
self
.
_python_interp
,
model
,
self
.
_ps_endpoints
,
1
,
w1_ep
,
self
.
_lr
/
2
)
1
,
w1_ep
,
self
.
_lr
)
if
self
.
_mem_opt
:
tr0_cmd
+=
" --mem_opt"
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_crf.py
浏览文件 @
c919b2f3
...
...
@@ -175,41 +175,61 @@ class TestCRFModel(unittest.TestCase):
print
(
pe
.
run
(
feed
=
feeder
.
feed
(
cur_batch
),
fetch_list
=
[
avg_cost
.
name
])[
0
])
def
test_update_sparse_parameter_all_reduce
(
self
):
def
_new_build_strategy
(
self
,
use_reduce
=
False
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
if
use_reduce
:
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
else
:
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
return
build_strategy
def
test_update_sparse_parameter_all_reduce
(
self
):
if
core
.
is_compiled_with_cuda
():
self
.
check_network_convergence
(
is_sparse
=
True
,
build_strategy
=
build_strategy
,
use_cuda
=
True
)
is_sparse
=
True
,
build_strategy
=
self
.
_new_build_strategy
(),
use_cuda
=
True
)
self
.
check_network_convergence
(
is_sparse
=
True
,
build_strategy
=
build_strategy
,
use_cuda
=
False
)
is_sparse
=
True
,
build_strategy
=
self
.
_new_build_strategy
(),
use_cuda
=
False
)
def
test_update_dense_parameter_all_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
if
core
.
is_compiled_with_cuda
():
self
.
check_network_convergence
(
is_sparse
=
False
,
build_strategy
=
build_strategy
,
use_cuda
=
True
)
is_sparse
=
False
,
build_strategy
=
self
.
_new_build_strategy
(),
use_cuda
=
True
)
self
.
check_network_convergence
(
is_sparse
=
False
,
build_strategy
=
build_strategy
,
use_cuda
=
False
)
is_sparse
=
False
,
build_strategy
=
self
.
_new_build_strategy
(),
use_cuda
=
False
)
def
test_update_sparse_parameter_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
if
core
.
is_compiled_with_cuda
():
self
.
check_network_convergence
(
is_sparse
=
True
,
build_strategy
=
build_strategy
,
use_cuda
=
True
)
is_sparse
=
True
,
build_strategy
=
self
.
_new_build_strategy
(
use_reduce
=
True
),
use_cuda
=
True
)
self
.
check_network_convergence
(
is_sparse
=
True
,
build_strategy
=
build_strategy
,
use_cuda
=
False
)
is_sparse
=
True
,
build_strategy
=
self
.
_new_build_strategy
(
use_reduce
=
True
),
use_cuda
=
False
)
def
test_update_dense_parameter_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
if
core
.
is_compiled_with_cuda
():
self
.
check_network_convergence
(
is_sparse
=
False
,
build_strategy
=
build_strategy
,
use_cuda
=
True
)
is_sparse
=
False
,
build_strategy
=
self
.
_new_build_strategy
(
use_reduce
=
True
),
use_cuda
=
True
)
self
.
check_network_convergence
(
is_sparse
=
False
,
build_strategy
=
build_strategy
,
use_cuda
=
False
)
is_sparse
=
False
,
build_strategy
=
self
.
_new_build_strategy
(
use_reduce
=
True
),
use_cuda
=
False
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_mnist.py
浏览文件 @
c919b2f3
...
...
@@ -86,6 +86,7 @@ class TestMNIST(TestParallelExecutorBase):
"label"
:
label
},
use_cuda
=
use_cuda
,
use_reduce
=
False
)
reduce_first_loss
,
reduce_last_loss
=
self
.
check_network_convergence
(
model
,
feed_dict
=
{
"image"
:
img
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录