Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
c51eb6bb
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c51eb6bb
编写于
8月 11, 2019
作者:
Z
Zeng Jinle
提交者:
GitHub
8月 11, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove book_memory_optimization directory, test=develop (#19117)
上级
c194b0c8
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
0 addition
and
319 deletion
+0
-319
python/paddle/fluid/tests/CMakeLists.txt
python/paddle/fluid/tests/CMakeLists.txt
+0
-1
python/paddle/fluid/tests/book_memory_optimization/CMakeLists.txt
...addle/fluid/tests/book_memory_optimization/CMakeLists.txt
+0
-11
python/paddle/fluid/tests/book_memory_optimization/test_memopt_image_classification_train.py
...ry_optimization/test_memopt_image_classification_train.py
+0
-168
python/paddle/fluid/tests/book_memory_optimization/test_memopt_machine_translation.py
...ok_memory_optimization/test_memopt_machine_translation.py
+0
-139
未找到文件。
python/paddle/fluid/tests/CMakeLists.txt
浏览文件 @
c51eb6bb
...
...
@@ -11,4 +11,3 @@ endforeach()
add_subdirectory
(
unittests
)
add_subdirectory
(
book
)
add_subdirectory
(
book_memory_optimization
)
python/paddle/fluid/tests/book_memory_optimization/CMakeLists.txt
已删除
100644 → 0
浏览文件 @
c194b0c8
file
(
GLOB TEST_OPS RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"test_*.py"
)
string
(
REPLACE
".py"
""
TEST_OPS
"
${
TEST_OPS
}
"
)
list
(
REMOVE_ITEM TEST_OPS test_memopt_image_classification_train
)
py_test
(
test_memopt_image_classification_train_resnet SRCS test_memopt_image_classification_train.py ARGS resnet
)
py_test
(
test_memopt_image_classification_train_vgg SRCS test_memopt_image_classification_train.py ARGS vgg
)
# default test
foreach
(
src
${
TEST_OPS
}
)
py_test
(
${
src
}
SRCS
${
src
}
.py
)
endforeach
()
python/paddle/fluid/tests/book_memory_optimization/test_memopt_image_classification_train.py
已删除
100644 → 0
浏览文件 @
c194b0c8
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
sys
import
paddle
import
paddle.fluid
as
fluid
import
math
import
sys
# need to fix random seed and training data to compare the loss
# value accurately calculated by the default and the memory optimization
# version.
fluid
.
default_startup_program
().
random_seed
=
111
def
resnet_cifar10
(
input
,
depth
=
32
):
def
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
stride
,
padding
,
act
=
'relu'
):
tmp
=
fluid
.
layers
.
conv2d
(
input
=
input
,
filter_size
=
filter_size
,
num_filters
=
ch_out
,
stride
=
stride
,
padding
=
padding
,
act
=
None
,
bias_attr
=
False
)
return
fluid
.
layers
.
batch_norm
(
input
=
tmp
,
act
=
act
)
def
shortcut
(
input
,
ch_in
,
ch_out
,
stride
):
if
ch_in
!=
ch_out
:
return
conv_bn_layer
(
input
,
ch_out
,
1
,
stride
,
0
,
None
)
else
:
return
input
def
basicblock
(
input
,
ch_in
,
ch_out
,
stride
):
tmp
=
conv_bn_layer
(
input
,
ch_out
,
3
,
stride
,
1
)
tmp
=
conv_bn_layer
(
tmp
,
ch_out
,
3
,
1
,
1
,
act
=
None
)
short
=
shortcut
(
input
,
ch_in
,
ch_out
,
stride
)
return
fluid
.
layers
.
elementwise_add
(
x
=
tmp
,
y
=
short
,
act
=
'relu'
)
def
layer_warp
(
block_func
,
input
,
ch_in
,
ch_out
,
count
,
stride
):
tmp
=
block_func
(
input
,
ch_in
,
ch_out
,
stride
)
for
i
in
range
(
1
,
count
):
tmp
=
block_func
(
tmp
,
ch_out
,
ch_out
,
1
)
return
tmp
assert
(
depth
-
2
)
%
6
==
0
n
=
(
depth
-
2
)
//
6
conv1
=
conv_bn_layer
(
input
=
input
,
ch_out
=
16
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
res1
=
layer_warp
(
basicblock
,
conv1
,
16
,
16
,
n
,
1
)
res2
=
layer_warp
(
basicblock
,
res1
,
16
,
32
,
n
,
2
)
res3
=
layer_warp
(
basicblock
,
res2
,
32
,
64
,
n
,
2
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
res3
,
pool_size
=
8
,
pool_type
=
'avg'
,
pool_stride
=
1
)
return
pool
def
vgg16_bn_drop
(
input
):
def
conv_block
(
input
,
num_filter
,
groups
,
dropouts
):
return
fluid
.
nets
.
img_conv_group
(
input
=
input
,
pool_size
=
2
,
pool_stride
=
2
,
conv_num_filter
=
[
num_filter
]
*
groups
,
conv_filter_size
=
3
,
conv_act
=
'relu'
,
conv_with_batchnorm
=
True
,
conv_batchnorm_drop_rate
=
dropouts
,
pool_type
=
'max'
)
conv1
=
conv_block
(
input
,
64
,
2
,
[
0.3
,
0
])
conv2
=
conv_block
(
conv1
,
128
,
2
,
[
0.4
,
0
])
conv3
=
conv_block
(
conv2
,
256
,
3
,
[
0.4
,
0.4
,
0
])
conv4
=
conv_block
(
conv3
,
512
,
3
,
[
0.4
,
0.4
,
0
])
conv5
=
conv_block
(
conv4
,
512
,
3
,
[
0.4
,
0.4
,
0
])
drop
=
fluid
.
layers
.
dropout
(
x
=
conv5
,
dropout_prob
=
0.5
)
fc1
=
fluid
.
layers
.
fc
(
input
=
drop
,
size
=
4096
,
act
=
None
)
bn
=
fluid
.
layers
.
batch_norm
(
input
=
fc1
,
act
=
'relu'
)
drop2
=
fluid
.
layers
.
dropout
(
x
=
bn
,
dropout_prob
=
0.5
)
fc2
=
fluid
.
layers
.
fc
(
input
=
drop2
,
size
=
4096
,
act
=
None
)
return
fc2
classdim
=
10
data_shape
=
[
3
,
32
,
32
]
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
data_shape
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
net_type
=
"vgg"
if
len
(
sys
.
argv
)
>=
2
:
net_type
=
sys
.
argv
[
1
]
if
net_type
==
"vgg"
:
print
(
"train vgg net"
)
net
=
vgg16_bn_drop
(
images
)
elif
net_type
==
"resnet"
:
print
(
"train resnet"
)
net
=
resnet_cifar10
(
images
,
32
)
else
:
raise
ValueError
(
"%s network is not supported"
%
net_type
)
predict
=
fluid
.
layers
.
fc
(
input
=
net
,
size
=
classdim
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
opts
=
optimizer
.
minimize
(
avg_cost
)
batch_size
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
batch_acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
,
total
=
batch_size
)
fluid
.
memory_optimize
(
fluid
.
default_main_program
(),
level
=
0
)
# fluid.release_memory(fluid.default_main_program())
BATCH_SIZE
=
16
PASS_NUM
=
1
# fix the order of training data
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
cifar
.
train10
(),
batch_size
=
BATCH_SIZE
)
# train_reader = paddle.batch(
# paddle.reader.shuffle(
# paddle.dataset.cifar.train10(), buf_size=128 * 10),
# batch_size=BATCH_SIZE)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
images
,
label
])
exe
.
run
(
fluid
.
default_startup_program
())
i
=
0
accuracy
=
fluid
.
average
.
WeightedAverage
()
for
pass_id
in
range
(
PASS_NUM
):
accuracy
.
reset
()
for
data
in
train_reader
():
loss
,
acc
,
weight
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
,
batch_acc
,
batch_size
])
accuracy
.
add
(
value
=
acc
,
weight
=
weight
)
pass_acc
=
accuracy
.
eval
()
print
(
"loss:"
+
str
(
loss
)
+
" acc:"
+
str
(
acc
)
+
" pass_acc:"
+
str
(
pass_acc
))
# this model is slow, so if we can train two mini batch, we think it works properly.
if
i
>
0
:
exit
(
0
)
if
math
.
isnan
(
float
(
loss
)):
sys
.
exit
(
"got NaN loss, training failed."
)
i
+=
1
exit
(
1
)
python/paddle/fluid/tests/book_memory_optimization/test_memopt_machine_translation.py
已删除
100644 → 0
浏览文件 @
c194b0c8
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle.fluid.framework
as
framework
import
paddle.fluid.layers
as
layers
from
paddle.fluid.executor
import
Executor
import
math
import
sys
dict_size
=
30000
source_dict_dim
=
target_dict_dim
=
dict_size
src_dict
,
trg_dict
=
paddle
.
dataset
.
wmt14
.
get_dict
(
dict_size
)
hidden_dim
=
32
word_dim
=
16
IS_SPARSE
=
True
batch_size
=
10
max_length
=
50
topk_size
=
50
trg_dic_size
=
10000
decoder_size
=
hidden_dim
# need to fix random seed and training data to compare the loss
# value accurately calculated by the default and the memory optimization
# version.
fluid
.
default_startup_program
().
random_seed
=
111
def
encoder_decoder
():
# encoder
src_word_id
=
layers
.
data
(
name
=
"src_word_id"
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
src_embedding
=
layers
.
embedding
(
input
=
src_word_id
,
size
=
[
dict_size
,
word_dim
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'vemb'
))
fc1
=
fluid
.
layers
.
fc
(
input
=
src_embedding
,
size
=
hidden_dim
*
4
,
act
=
'tanh'
)
lstm_hidden0
,
lstm_0
=
layers
.
dynamic_lstm
(
input
=
fc1
,
size
=
hidden_dim
*
4
)
encoder_out
=
layers
.
sequence_last_step
(
input
=
lstm_hidden0
)
# decoder
trg_language_word
=
layers
.
data
(
name
=
"target_language_word"
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
trg_embedding
=
layers
.
embedding
(
input
=
trg_language_word
,
size
=
[
dict_size
,
word_dim
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'vemb'
))
rnn
=
fluid
.
layers
.
DynamicRNN
()
with
rnn
.
block
():
current_word
=
rnn
.
step_input
(
trg_embedding
)
mem
=
rnn
.
memory
(
init
=
encoder_out
)
fc1
=
fluid
.
layers
.
fc
(
input
=
[
current_word
,
mem
],
size
=
decoder_size
,
act
=
'tanh'
)
out
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
target_dict_dim
,
act
=
'softmax'
)
rnn
.
update_memory
(
mem
,
fc1
)
rnn
.
output
(
out
)
return
rnn
()
def
main
():
rnn_out
=
encoder_decoder
()
label
=
layers
.
data
(
name
=
"target_language_next_word"
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
cost
=
layers
.
cross_entropy
(
input
=
rnn_out
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
1e-4
)
optimizer
.
minimize
(
avg_cost
)
fluid
.
memory_optimize
(
fluid
.
default_main_program
())
# fluid.release_memory(fluid.default_main_program())
# fix the order of training data
train_data
=
paddle
.
batch
(
paddle
.
dataset
.
wmt14
.
train
(
dict_size
),
batch_size
=
batch_size
)
# train_data = paddle.batch(
# paddle.reader.shuffle(
# paddle.dataset.wmt14.train(dict_size), buf_size=1000),
# batch_size=batch_size)
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
framework
.
default_startup_program
())
feed_order
=
[
'src_word_id'
,
'target_language_word'
,
'target_language_next_word'
]
feed_list
=
[
fluid
.
default_main_program
().
global_block
().
var
(
var_name
)
for
var_name
in
feed_order
]
feeder
=
fluid
.
DataFeeder
(
feed_list
,
place
)
batch_id
=
0
for
pass_id
in
range
(
10
):
for
data
in
train_data
():
outs
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
])
avg_cost_val
=
np
.
array
(
outs
[
0
])
print
(
'pass_id='
+
str
(
pass_id
)
+
' batch='
+
str
(
batch_id
)
+
" avg_cost="
+
str
(
avg_cost_val
))
if
batch_id
>
2
:
exit
(
0
)
if
math
.
isnan
(
float
(
avg_cost_val
)):
sys
.
exit
(
"got NaN loss, training failed."
)
batch_id
+=
1
if
__name__
==
'__main__'
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录