Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
c2a00f01
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c2a00f01
编写于
6月 11, 2018
作者:
S
sneaxiy
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into argmin_argmax
上级
4b6d584f
831909ce
变更
48
隐藏空白更改
内联
并排
Showing
48 changed file
with
667 addition
and
381 deletion
+667
-381
doc/fluid/dev/api_doc_std_cn.md
doc/fluid/dev/api_doc_std_cn.md
+5
-4
doc/fluid/dev/api_doc_std_en.md
doc/fluid/dev/api_doc_std_en.md
+5
-4
paddle/contrib/inference/test_paddle_inference_api_impl.cc
paddle/contrib/inference/test_paddle_inference_api_impl.cc
+2
-7
paddle/fluid/framework/data_type.cc
paddle/fluid/framework/data_type.cc
+3
-0
paddle/fluid/framework/details/fuse_vars_op_handle.cc
paddle/fluid/framework/details/fuse_vars_op_handle.cc
+1
-1
paddle/fluid/framework/executor.cc
paddle/fluid/framework/executor.cc
+17
-1
paddle/fluid/framework/executor.h
paddle/fluid/framework/executor.h
+2
-0
paddle/fluid/inference/tests/book/test_inference_image_classification.cc
...ference/tests/book/test_inference_image_classification.cc
+1
-4
paddle/fluid/inference/tests/book/test_inference_nlp.cc
paddle/fluid/inference/tests/book/test_inference_nlp.cc
+0
-4
paddle/fluid/inference/tests/test_helper.h
paddle/fluid/inference/tests/test_helper.h
+7
-18
paddle/fluid/operators/arg_max_op.cc
paddle/fluid/operators/arg_max_op.cc
+13
-15
paddle/fluid/operators/arg_max_op.cu
paddle/fluid/operators/arg_max_op.cu
+9
-10
paddle/fluid/operators/arg_max_op.h
paddle/fluid/operators/arg_max_op.h
+0
-16
paddle/fluid/operators/arg_min_max_op_base.h
paddle/fluid/operators/arg_min_max_op_base.h
+16
-13
paddle/fluid/operators/arg_min_op.cc
paddle/fluid/operators/arg_min_op.cc
+13
-15
paddle/fluid/operators/arg_min_op.cu
paddle/fluid/operators/arg_min_op.cu
+9
-10
paddle/fluid/operators/arg_min_op.h
paddle/fluid/operators/arg_min_op.h
+0
-16
paddle/fluid/operators/batch_size_like.h
paddle/fluid/operators/batch_size_like.h
+7
-7
paddle/fluid/operators/bilinear_interp_op.cc
paddle/fluid/operators/bilinear_interp_op.cc
+5
-6
paddle/fluid/operators/detail/request_handler_impl.cc
paddle/fluid/operators/detail/request_handler_impl.cc
+10
-2
paddle/fluid/operators/detail/request_handler_impl.h
paddle/fluid/operators/detail/request_handler_impl.h
+5
-0
paddle/fluid/operators/detail/rpc_server.cc
paddle/fluid/operators/detail/rpc_server.cc
+0
-13
paddle/fluid/operators/detail/rpc_server.h
paddle/fluid/operators/detail/rpc_server.h
+0
-5
paddle/fluid/operators/fill_constant_batch_size_like_op.cc
paddle/fluid/operators/fill_constant_batch_size_like_op.cc
+7
-7
paddle/fluid/operators/gather_test.cc
paddle/fluid/operators/gather_test.cc
+2
-1
paddle/fluid/operators/linear_chain_crf_op.cc
paddle/fluid/operators/linear_chain_crf_op.cc
+0
-2
paddle/fluid/operators/listen_and_serv_op.cc
paddle/fluid/operators/listen_and_serv_op.cc
+3
-1
paddle/fluid/operators/load_op.cc
paddle/fluid/operators/load_op.cc
+4
-11
paddle/fluid/operators/math/math_function_test.cc
paddle/fluid/operators/math/math_function_test.cc
+2
-0
paddle/fluid/operators/max_sequence_len_op.cc
paddle/fluid/operators/max_sequence_len_op.cc
+9
-4
paddle/testing/paddle_gtest_main.cc
paddle/testing/paddle_gtest_main.cc
+1
-1
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+2
-1
python/paddle/fluid/inferencer.py
python/paddle/fluid/inferencer.py
+2
-0
python/paddle/fluid/io.py
python/paddle/fluid/io.py
+174
-72
python/paddle/fluid/layers/control_flow.py
python/paddle/fluid/layers/control_flow.py
+12
-16
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+28
-1
python/paddle/fluid/layers/layer_function_generator.py
python/paddle/fluid/layers/layer_function_generator.py
+29
-11
python/paddle/fluid/layers/learning_rate_scheduler.py
python/paddle/fluid/layers/learning_rate_scheduler.py
+19
-17
python/paddle/fluid/layers/metric.py
python/paddle/fluid/layers/metric.py
+0
-4
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+15
-8
python/paddle/fluid/layers/ops.py
python/paddle/fluid/layers/ops.py
+1
-0
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+17
-33
python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py
...d/tests/book/high-level-api/fit_a_line/test_fit_a_line.py
+2
-2
python/paddle/fluid/tests/unittests/test_checkpoint.py
python/paddle/fluid/tests/unittests/test_checkpoint.py
+75
-0
python/paddle/fluid/tests/unittests/test_dynrnn_gradient_check.py
...addle/fluid/tests/unittests/test_dynrnn_gradient_check.py
+0
-3
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+8
-0
python/paddle/fluid/trainer.py
python/paddle/fluid/trainer.py
+122
-13
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+3
-2
未找到文件。
doc/fluid/dev/api_doc_std_cn.md
浏览文件 @
c2a00f01
# API注释撰写标准
-
[
API注释模块
](
#API注释模块
)
-
[
格式及示例
](
#格式及示例
)
-
[
完整示例
](
#完整示例
)
-
[
API注释撰写标准
](
#api
)
-
[
API注释模块
](
#api
)
-
[
格式及示例
](
#
)
-
[
完整示例
](
#
)
## API注释模块
...
...
@@ -217,4 +218,4 @@ API文档须使用reStructuredText格式撰写,该格式详情请参考[链接
## 完整示例
fc 的完整注释见
[
示例
](
src/fc.py
)
。
fc 的完整注释见
[
示例
](
https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/dev/
src/fc.py
)
。
doc/fluid/dev/api_doc_std_en.md
浏览文件 @
c2a00f01
# API Doc Standard
-
[
API Doc Structure
](
#API
Doc Structure)
-
[
Format and Examples
](
#Format
and Examples)
-
[
Complete Example
](
#Complete
Example)
-
[
API Doc Standard
](
#api-doc-standard
)
-
[
API Doc Structure
](
#api-doc-structure
)
-
[
Format and Examples
](
#format-and-examples
)
-
[
Complete Example
](
#complete-example
)
## API Doc Structure
...
...
@@ -223,4 +224,4 @@ Format and examples of each part of API documantation are as follows: (take fc f
## Complete Example
Complete Example of fc please see
[
here
](
src/fc.py
)
。
Complete Example of fc please see
[
here
](
https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/dev/
src/fc.py
)
。
paddle/contrib/inference/test_paddle_inference_api_impl.cc
浏览文件 @
c2a00f01
...
...
@@ -109,7 +109,6 @@ void MainWord2Vec(bool use_gpu) {
void
MainImageClassification
(
bool
use_gpu
)
{
int
batch_size
=
2
;
bool
use_mkldnn
=
false
;
bool
repeat
=
false
;
NativeConfig
config
=
GetConfig
();
config
.
use_gpu
=
use_gpu
;
...
...
@@ -134,12 +133,8 @@ void MainImageClassification(bool use_gpu) {
std
::
vector
<
framework
::
LoDTensor
*>
cpu_fetchs1
;
cpu_fetchs1
.
push_back
(
&
output1
);
TestInference
<
platform
::
CPUPlace
,
false
,
true
>
(
config
.
model_dir
,
cpu_feeds
,
cpu_fetchs1
,
repeat
,
is_combined
,
use_mkldnn
);
TestInference
<
platform
::
CPUPlace
,
false
,
true
>
(
config
.
model_dir
,
cpu_feeds
,
cpu_fetchs1
,
repeat
,
is_combined
);
auto
predictor
=
CreatePaddlePredictor
(
config
);
std
::
vector
<
PaddleTensor
>
paddle_tensor_feeds
;
...
...
paddle/fluid/framework/data_type.cc
浏览文件 @
c2a00f01
...
...
@@ -28,6 +28,9 @@ struct DataTypeMap {
};
static
DataTypeMap
*
InitDataTypeMap
();
// C++11 removes the need for manual locking. Concurrent execution shall wait if
// a static local variable is already being initialized.
// https://stackoverflow.com/questions/11711920/how-to-implement-multithread-safe-singleton-in-c11-without-using-mutex
static
DataTypeMap
&
gDataTypeMap
()
{
static
DataTypeMap
*
g_data_type_map_
=
InitDataTypeMap
();
return
*
g_data_type_map_
;
...
...
paddle/fluid/framework/details/fuse_vars_op_handle.cc
浏览文件 @
c2a00f01
...
...
@@ -42,7 +42,7 @@ void FuseVarsOpHandle::RunImpl() {
out_t
->
ShareDataWith
(
out_tensor
->
Slice
(
s
,
s
+
numel
));
s
+=
numel
;
}
this
->
RunAndRecordEvent
([
this
]
{});
this
->
RunAndRecordEvent
([]
{});
}
std
::
string
FuseVarsOpHandle
::
Name
()
const
{
return
"fuse vars"
;
}
...
...
paddle/fluid/framework/executor.cc
浏览文件 @
c2a00f01
...
...
@@ -24,6 +24,7 @@ limitations under the License. */
#include "paddle/fluid/platform/profiler.h"
DECLARE_bool
(
benchmark
);
DEFINE_bool
(
use_mkldnn
,
false
,
"Use MKLDNN to run"
);
namespace
paddle
{
namespace
framework
{
...
...
@@ -115,6 +116,7 @@ void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
void
Executor
::
Run
(
const
ProgramDesc
&
pdesc
,
Scope
*
scope
,
int
block_id
,
bool
create_local_scope
,
bool
create_vars
)
{
platform
::
RecordBlock
b
(
block_id
);
if
(
FLAGS_use_mkldnn
)
EnableMKLDNN
(
pdesc
);
auto
ctx
=
Prepare
(
pdesc
,
block_id
);
RunPreparedContext
(
ctx
.
get
(),
scope
,
create_local_scope
,
create_vars
);
}
...
...
@@ -214,6 +216,7 @@ void Executor::Run(const ProgramDesc& program, Scope* scope,
const
std
::
string
&
feed_holder_name
,
const
std
::
string
&
fetch_holder_name
)
{
platform
::
RecordBlock
b
(
kProgramId
);
if
(
FLAGS_use_mkldnn
)
EnableMKLDNN
(
program
);
bool
has_feed_ops
=
has_feed_operators
(
program
.
Block
(
0
),
*
feed_targets
,
feed_holder_name
);
bool
has_fetch_ops
=
...
...
@@ -225,7 +228,6 @@ void Executor::Run(const ProgramDesc& program, Scope* scope,
unique_ptr_of_copy_program
.
reset
(
new
ProgramDesc
(
program
));
copy_program
=
unique_ptr_of_copy_program
.
get
();
}
auto
*
global_block
=
copy_program
->
MutableBlock
(
0
);
if
(
!
has_feed_ops
)
{
...
...
@@ -378,5 +380,19 @@ void Executor::RunPreparedContext(
}
}
void
Executor
::
EnableMKLDNN
(
const
ProgramDesc
&
program
)
{
#ifdef PADDLE_WITH_MKLDNN
VLOG
(
3
)
<<
"use_mkldnn=True"
;
for
(
size_t
bid
=
0
;
bid
<
program
.
Size
();
++
bid
)
{
auto
*
block
=
const_cast
<
ProgramDesc
&>
(
program
).
MutableBlock
(
bid
);
for
(
auto
*
op
:
block
->
AllOps
())
{
if
(
op
->
HasAttr
(
"use_mkldnn"
))
{
op
->
SetAttr
(
"use_mkldnn"
,
true
);
}
}
}
#endif
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/executor.h
浏览文件 @
c2a00f01
...
...
@@ -81,6 +81,8 @@ class Executor {
const
std
::
string
&
feed_holder_name
=
"feed"
,
const
std
::
string
&
fetch_holder_name
=
"fetch"
);
void
EnableMKLDNN
(
const
ProgramDesc
&
program
);
private:
const
platform
::
Place
place_
;
};
...
...
paddle/fluid/inference/tests/book/test_inference_image_classification.cc
浏览文件 @
c2a00f01
...
...
@@ -21,7 +21,6 @@ DEFINE_string(fp16_dirname, "", "Directory of the float16 inference model.");
DEFINE_int32
(
batch_size
,
1
,
"Batch size of input data"
);
DEFINE_int32
(
repeat
,
1
,
"Running the inference program repeat times"
);
DEFINE_bool
(
skip_cpu
,
false
,
"Skip the cpu test"
);
DEFINE_bool
(
use_mkldnn
,
false
,
"Use MKLDNN to run inference"
);
TEST
(
inference
,
image_classification
)
{
if
(
FLAGS_dirname
.
empty
()
||
FLAGS_batch_size
<
1
||
FLAGS_repeat
<
1
)
{
...
...
@@ -59,10 +58,8 @@ TEST(inference, image_classification) {
// Run inference on CPU
LOG
(
INFO
)
<<
"--- CPU Runs: ---"
;
LOG
(
INFO
)
<<
"Batch size is "
<<
FLAGS_batch_size
;
LOG
(
INFO
)
<<
"FLAGS_use_mkldnn: "
<<
FLAGS_use_mkldnn
;
TestInference
<
paddle
::
platform
::
CPUPlace
,
false
,
true
>
(
dirname
,
cpu_feeds
,
cpu_fetchs1
,
FLAGS_repeat
,
is_combined
,
FLAGS_use_mkldnn
);
dirname
,
cpu_feeds
,
cpu_fetchs1
,
FLAGS_repeat
,
is_combined
);
LOG
(
INFO
)
<<
output1
.
dims
();
}
...
...
paddle/fluid/inference/tests/book/test_inference_nlp.cc
浏览文件 @
c2a00f01
...
...
@@ -27,7 +27,6 @@ limitations under the License. */
DEFINE_string
(
model_path
,
""
,
"Directory of the inference model."
);
DEFINE_string
(
data_file
,
""
,
"File of input index data."
);
DEFINE_int32
(
repeat
,
100
,
"Running the inference program repeat times"
);
DEFINE_bool
(
use_mkldnn
,
false
,
"Use MKLDNN to run inference"
);
DEFINE_bool
(
prepare_vars
,
true
,
"Prepare variables before executor"
);
DEFINE_int32
(
num_threads
,
1
,
"Number of threads should be used"
);
...
...
@@ -190,9 +189,6 @@ TEST(inference, nlp) {
std
::
unique_ptr
<
paddle
::
framework
::
ProgramDesc
>
inference_program
;
inference_program
=
InitProgram
(
&
executor
,
scope
.
get
(),
FLAGS_model_path
,
/*model combined*/
false
);
if
(
FLAGS_use_mkldnn
)
{
EnableMKLDNN
(
inference_program
);
}
// always prepare context
std
::
unique_ptr
<
paddle
::
framework
::
ExecutorPrepareContext
>
ctx
;
ctx
=
executor
.
Prepare
(
*
inference_program
,
0
);
...
...
paddle/fluid/inference/tests/test_helper.h
浏览文件 @
c2a00f01
...
...
@@ -22,6 +22,8 @@ limitations under the License. */
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/platform/profiler.h"
DECLARE_bool
(
use_mkldnn
);
template
<
typename
T
>
void
SetupTensor
(
paddle
::
framework
::
LoDTensor
*
input
,
paddle
::
framework
::
DDim
dims
,
T
lower
,
T
upper
)
{
...
...
@@ -133,24 +135,11 @@ std::vector<std::vector<int64_t>> GetFeedTargetShapes(
return
feed_target_shapes
;
}
void
EnableMKLDNN
(
const
std
::
unique_ptr
<
paddle
::
framework
::
ProgramDesc
>&
program
)
{
for
(
size_t
bid
=
0
;
bid
<
program
->
Size
();
++
bid
)
{
auto
*
block
=
program
->
MutableBlock
(
bid
);
for
(
auto
*
op
:
block
->
AllOps
())
{
if
(
op
->
HasAttr
(
"use_mkldnn"
))
{
op
->
SetAttr
(
"use_mkldnn"
,
true
);
}
}
}
}
template
<
typename
Place
,
bool
CreateVars
=
true
,
bool
PrepareContext
=
false
>
void
TestInference
(
const
std
::
string
&
dirname
,
const
std
::
vector
<
paddle
::
framework
::
LoDTensor
*>&
cpu_feeds
,
const
std
::
vector
<
paddle
::
framework
::
LoDTensor
*>&
cpu_fetchs
,
const
int
repeat
=
1
,
const
bool
is_combined
=
false
,
const
bool
use_mkldnn
=
false
)
{
const
int
repeat
=
1
,
const
bool
is_combined
=
false
)
{
// 1. Define place, executor, scope
auto
place
=
Place
();
auto
executor
=
paddle
::
framework
::
Executor
(
place
);
...
...
@@ -182,9 +171,6 @@ void TestInference(const std::string& dirname,
"init_program"
,
paddle
::
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
));
inference_program
=
InitProgram
(
&
executor
,
scope
,
dirname
,
is_combined
);
if
(
use_mkldnn
)
{
EnableMKLDNN
(
inference_program
);
}
}
// Disable the profiler and print the timing information
paddle
::
platform
::
DisableProfiler
(
paddle
::
platform
::
EventSortingKey
::
kDefault
,
...
...
@@ -210,7 +196,10 @@ void TestInference(const std::string& dirname,
fetch_targets
[
fetch_target_names
[
i
]]
=
cpu_fetchs
[
i
];
}
// 6. Run the inference program
// 6. If export Flags_use_mkldnn=True, use mkldnn related ops.
if
(
FLAGS_use_mkldnn
)
executor
.
EnableMKLDNN
(
*
inference_program
);
// 7. Run the inference program
{
if
(
!
CreateVars
)
{
// If users don't want to create and destroy variables every time they
...
...
paddle/fluid/operators/arg_max_op.cc
浏览文件 @
c2a00f01
...
...
@@ -12,24 +12,22 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/arg_m
ax_op
.h"
#include "paddle/fluid/operators/arg_m
in_max_op_base
.h"
REGISTER_OPERATOR
(
arg_max
,
paddle
::
operators
::
ArgMaxOp
,
REGISTER_OPERATOR
(
arg_max
,
paddle
::
operators
::
ArgM
inM
axOp
,
paddle
::
operators
::
ArgMaxOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
);
REGISTER_OP_CPU_KERNEL
(
arg_max
,
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
,
int64_t
>
,
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
,
arg_max
,
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
,
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
,
int64_t
>
,
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int32_t
,
int64_t
>
,
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int16_t
,
int64_t
>
,
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CPUDeviceContext
,
size_t
,
int64_t
>
,
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CPUDeviceContext
,
uint8_t
,
int64_t
>
);
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int32_t
>
,
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int16_t
>
,
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CPUDeviceContext
,
size_t
>
,
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CPUDeviceContext
,
uint8_t
>
);
paddle/fluid/operators/arg_max_op.cu
浏览文件 @
c2a00f01
...
...
@@ -12,21 +12,20 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/arg_m
ax_op
.h"
#include "paddle/fluid/operators/arg_m
in_max_op_base
.h"
REGISTER_OP_CUDA_KERNEL
(
arg_max
,
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
,
int64_t
>
,
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
,
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
,
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
64_t
,
int64
_t
>
,
int
32
_t
>
,
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
32_t
,
int64
_t
>
,
int
16
_t
>
,
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int16_t
,
int64_t
>
,
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CUDADeviceContext
,
size_t
,
int64_t
>
,
size_t
>
,
paddle
::
operators
::
ArgMaxKernel
<
paddle
::
platform
::
CUDADeviceContext
,
uint8_t
,
int64_t
>
);
uint8_t
>
);
paddle/fluid/operators/arg_max_op.h
已删除
100644 → 0
浏览文件 @
4b6d584f
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/operators/arg_min_max_op_base.h"
paddle/fluid/operators/arg_min_max_op_base.h
浏览文件 @
c2a00f01
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <type_traits>
#include <vector>
#include "paddle/fluid/framework/ddim.h"
...
...
@@ -37,9 +38,9 @@ struct ArgMinMaxFunctor {};
struct ArgMinMaxFunctor<DeviceContext, T, Tout, Rank, \
enum_argminmax_value> { \
void operator()(const DeviceContext& ctx, const framework::LoDTensor& in, \
framework::LoDTensor
&
out, int64_t axis) { \
framework::LoDTensor
*
out, int64_t axis) { \
auto in_eigen = framework::EigenTensor<T, Rank>::From(in); \
auto out_eigen = framework::EigenTensor<Tout, Rank - 1>::From(
out);
\
auto out_eigen = framework::EigenTensor<Tout, Rank - 1>::From(
*out);
\
out_eigen.device(*(ctx.eigen_device())) = \
in_eigen.eigen_op_type(axis).template cast<Tout>(); \
} \
...
...
@@ -62,7 +63,7 @@ class ArgMinMaxKernel : public framework::OpKernel<T> {
#define CALL_ARG_MINMAX_FUNCTOR(rank) \
ArgMinMaxFunctor<DeviceContext, T, Tout, rank, EnumArgMinMaxValue> \
functor##rank; \
functor##rank(dev_ctx, x, out, axis)
functor##rank(dev_ctx, x,
&
out, axis)
switch
(
x
.
dims
().
size
())
{
case
1
:
...
...
@@ -89,19 +90,20 @@ class ArgMinMaxKernel : public framework::OpKernel<T> {
"than 6."
,
(
EnumArgMinMaxValue
==
kArgMin
?
"argmin"
:
"argmax"
));
break
;
#undef CALL_ARG_MINMAX_FUNCTOR
}
}
};
template
<
typename
DeviceContext
,
typename
T
,
typename
Tout
>
template
<
typename
DeviceContext
,
typename
T
>
using
ArgMinKernel
=
ArgMinMaxKernel
<
DeviceContext
,
T
,
Tou
t
,
ArgMinMaxType
::
kArgMin
>
;
ArgMinMaxKernel
<
DeviceContext
,
T
,
int64_
t
,
ArgMinMaxType
::
kArgMin
>
;
template
<
typename
DeviceContext
,
typename
T
,
typename
Tout
>
template
<
typename
DeviceContext
,
typename
T
>
using
ArgMaxKernel
=
ArgMinMaxKernel
<
DeviceContext
,
T
,
Tou
t
,
ArgMinMaxType
::
kArgMax
>
;
ArgMinMaxKernel
<
DeviceContext
,
T
,
int64_
t
,
ArgMinMaxType
::
kArgMax
>
;
typedef
class
Base
ArgMinMaxOp
:
public
framework
::
OperatorWithKernel
{
class
ArgMinMaxOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -121,7 +123,7 @@ typedef class BaseArgMinMaxOp : public framework::OperatorWithKernel {
for
(
int64_t
i
=
axis
+
1
;
i
<
x_rank
;
i
++
)
vec
.
push_back
(
x_dims
[
i
]);
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
vec
));
}
}
ArgMinOp
,
ArgMaxOp
;
};
class
BaseArgMinMaxOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
protected:
...
...
@@ -133,12 +135,13 @@ class BaseArgMinMaxOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input tensor."
);
AddOutput
(
"Out"
,
"Output tensor."
);
AddAttr
<
int64_t
>
(
"axis"
,
"The axis in which to compute the arg indics."
);
AddComment
(
::
paddle
::
string
::
Sprintf
(
R"DOC(
%s Operator.
AddComment
(
string
::
Sprintf
(
R"DOC(
%s Operator.
Computes the indices of the %s elements of the input tensor's element along the provided axis.
Computes the indices of the %s elements of the input tensor's element
along the provided axis.
)DOC"
,
OpName
(),
Name
()));
OpName
(),
Name
()));
}
};
...
...
paddle/fluid/operators/arg_min_op.cc
浏览文件 @
c2a00f01
...
...
@@ -12,24 +12,22 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/arg_min_
op
.h"
#include "paddle/fluid/operators/arg_min_
max_op_base
.h"
REGISTER_OPERATOR
(
arg_min
,
paddle
::
operators
::
ArgMinOp
,
REGISTER_OPERATOR
(
arg_min
,
paddle
::
operators
::
ArgMin
Max
Op
,
paddle
::
operators
::
ArgMinOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
);
REGISTER_OP_CPU_KERNEL
(
arg_min
,
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
,
int64_t
>
,
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
,
arg_min
,
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
,
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
,
int64_t
>
,
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int32_t
,
int64_t
>
,
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int16_t
,
int64_t
>
,
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CPUDeviceContext
,
size_t
,
int64_t
>
,
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CPUDeviceContext
,
uint8_t
,
int64_t
>
);
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int32_t
>
,
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int16_t
>
,
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CPUDeviceContext
,
size_t
>
,
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CPUDeviceContext
,
uint8_t
>
);
paddle/fluid/operators/arg_min_op.cu
浏览文件 @
c2a00f01
...
...
@@ -12,21 +12,20 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/arg_min_
op
.h"
#include "paddle/fluid/operators/arg_min_
max_op_base
.h"
REGISTER_OP_CUDA_KERNEL
(
arg_min
,
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
,
int64_t
>
,
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
,
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
,
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
64_t
,
int64
_t
>
,
int
32
_t
>
,
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
32_t
,
int64
_t
>
,
int
16
_t
>
,
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int16_t
,
int64_t
>
,
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CUDADeviceContext
,
size_t
,
int64_t
>
,
size_t
>
,
paddle
::
operators
::
ArgMinKernel
<
paddle
::
platform
::
CUDADeviceContext
,
uint8_t
,
int64_t
>
);
uint8_t
>
);
paddle/fluid/operators/arg_min_op.h
已删除
100644 → 0
浏览文件 @
4b6d584f
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/operators/arg_min_max_op_base.h"
paddle/fluid/operators/batch_size_like.h
浏览文件 @
c2a00f01
...
...
@@ -54,18 +54,18 @@ class BatchSizeLikeOp : public framework::OperatorWithKernel {
class
BatchSizeLikeOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
final
{
AddInput
(
"Input"
,
"(Tensor) Tensor "
"
whose input_dim_idx'th dimension specifies the batch_size"
);
AddInput
(
"Input"
,
"Tensor
whose input_dim_idx'th dimension specifies the batch_size"
);
AddOutput
(
"Out"
,
"
(Tensor)
Tensor of specified shape will be filled "
"Tensor of specified shape will be filled "
"with the specified value"
);
AddAttr
<
std
::
vector
<
int
>>
(
"shape"
,
"
(vector<int>)
The shape of the output"
);
AddAttr
<
std
::
vector
<
int
>>
(
"shape"
,
"The shape of the output"
);
AddAttr
<
int
>
(
"input_dim_idx"
,
"
(int, default 0)
The index of input's batch size dimension"
)
"
default 0.
The index of input's batch size dimension"
)
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"output_dim_idx"
,
"
(int, default 0)
The index of output's batch size dimension"
)
"
default 0.
The index of output's batch size dimension"
)
.
SetDefault
(
0
);
Apply
();
}
...
...
paddle/fluid/operators/bilinear_interp_op.cc
浏览文件 @
c2a00f01
...
...
@@ -56,17 +56,16 @@ class BilinearInterpOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void
Make
()
override
{
AddInput
(
"X"
,
"
(Tensor)
The input tensor of bilinear interpolation, "
"The input tensor of bilinear interpolation, "
"This is a 4-D tensor with shape of (N x C x h x w)"
);
AddInput
(
"OutSize"
,
"
(Tensor)
This is a 1-D tensor with two number. "
"This is a 1-D tensor with two number. "
"The first number is height and the second number is width."
)
.
AsDispensable
();
AddOutput
(
"Out"
,
"(Tensor) The dimension of output is (N x C x out_h x out_w]"
);
AddOutput
(
"Out"
,
"The dimension of output is (N x C x out_h x out_w)"
);
AddAttr
<
int
>
(
"out_h"
,
"
(int)
output height of bilinear interpolation op."
);
AddAttr
<
int
>
(
"out_w"
,
"
(int)
output width of bilinear interpolation op."
);
AddAttr
<
int
>
(
"out_h"
,
"output height of bilinear interpolation op."
);
AddAttr
<
int
>
(
"out_w"
,
"output width of bilinear interpolation op."
);
AddComment
(
R"DOC(
Bilinear interpolation is an extension of linear interpolation for
interpolating functions of two variables (e.g. H-direction and
...
...
paddle/fluid/operators/detail/request_handler_impl.cc
浏览文件 @
c2a00f01
...
...
@@ -64,13 +64,21 @@ bool RequestSendHandler::Handle(const std::string& varname,
return
false
;
}
if
(
invar
->
IsType
<
framework
::
SelectedRows
>
())
{
rpc_server_
->
RecordSparseVar
(
invar
);
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_sparse_vars_
);
sparse_vars_
.
push_back
(
invar
);
}
}
return
true
;
}
void
RequestSendHandler
::
ResetSparseVarRecorder
()
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_sparse_vars_
);
for
(
auto
*
var
:
sparse_vars_
)
{
var
->
GetMutable
<
framework
::
SelectedRows
>
()
->
mutable_rows
()
->
clear
();
}
sparse_vars_
.
clear
();
}
bool
RequestGetHandler
::
Handle
(
const
std
::
string
&
varname
,
framework
::
Scope
*
scope
,
framework
::
Variable
*
invar
,
...
...
paddle/fluid/operators/detail/request_handler_impl.h
浏览文件 @
c2a00f01
...
...
@@ -41,6 +41,11 @@ class RequestSendHandler final : public RequestHandler {
virtual
~
RequestSendHandler
()
{}
bool
Handle
(
const
std
::
string
&
varname
,
framework
::
Scope
*
scope
,
framework
::
Variable
*
var
,
framework
::
Variable
**
outvar
)
override
;
void
ResetSparseVarRecorder
();
private:
std
::
mutex
mutex_sparse_vars_
;
std
::
vector
<
framework
::
Variable
*>
sparse_vars_
;
};
class
RequestGetHandler
final
:
public
RequestHandler
{
...
...
paddle/fluid/operators/detail/rpc_server.cc
浏览文件 @
c2a00f01
...
...
@@ -73,19 +73,6 @@ void RPCServer::ResetBarrierCounter() {
t
.
second
=
0
;
}
}
void
RPCServer
::
RecordSparseVar
(
framework
::
Variable
*
sparse_var
)
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_sparse_var_recorder_
);
sparse_vars_
.
push_back
(
sparse_var
);
}
void
RPCServer
::
ResetSparseVarsRecorder
()
{
VLOG
(
3
)
<<
"RPCServer reset sparse vars recorder."
;
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_sparse_var_recorder_
);
for
(
auto
*
var
:
sparse_vars_
)
{
var
->
GetMutable
<
framework
::
SelectedRows
>
()
->
mutable_rows
()
->
clear
();
}
sparse_vars_
.
clear
();
}
void
RPCServer
::
RegisterRPC
(
const
std
::
string
&
rpc_name
,
RequestHandler
*
handler
,
int
thread_num
)
{
...
...
paddle/fluid/operators/detail/rpc_server.h
浏览文件 @
c2a00f01
...
...
@@ -62,8 +62,6 @@ class RPCServer {
void
IncreaseBatchBarrier
(
const
std
::
string
rpc_name
);
void
ResetBarrierCounter
();
void
RecordSparseVar
(
framework
::
Variable
*
sparse_var
);
void
ResetSparseVarsRecorder
();
protected:
virtual
void
ShutDownImpl
()
=
0
;
...
...
@@ -77,9 +75,6 @@ class RPCServer {
std
::
atomic
<
int
>
cur_cond_
;
std
::
condition_variable
rpc_cond_
;
std
::
vector
<
framework
::
Variable
*>
sparse_vars_
;
std
::
mutex
mutex_sparse_var_recorder_
;
protected:
std
::
string
bind_address_
;
std
::
atomic
<
int
>
exit_flag_
;
...
...
paddle/fluid/operators/fill_constant_batch_size_like_op.cc
浏览文件 @
c2a00f01
...
...
@@ -32,16 +32,16 @@ class FillConstantBatchSizeLikeOp : public BatchSizeLikeOp {
class
FillConstantBatchSizeLikeOpMaker
:
public
BatchSizeLikeOpMaker
{
protected:
void
Apply
()
override
{
AddAttr
<
int
>
(
"dtype"
,
"(int, default 5 (FP32)) "
"Output data type
"
)
AddAttr
<
int
>
(
"dtype"
,
"It could be numpy.dtype. Output data type. Default is float32
"
)
.
SetDefault
(
framework
::
proto
::
VarType
::
FP32
);
AddAttr
<
float
>
(
"value"
,
"
(float, default 0)
The value to be filled"
)
AddAttr
<
float
>
(
"value"
,
"
default 0.
The value to be filled"
)
.
SetDefault
(
0.0
f
);
AddComment
(
R"DOC(
FillConstantBatchSizeLike Operator.
Fill up a variable with specified constant value
.
This function creates a tensor of specified *shape*, *dtype* and batch size,
and initializes this with a constant supplied in *value*. The batch size is
obtained from the `input` tensor
.
)DOC"
);
}
...
...
paddle/fluid/operators/gather_test.cc
浏览文件 @
c2a00f01
...
...
@@ -43,7 +43,8 @@ TEST(Gather, GatherData) {
auto
*
cpu_place
=
new
paddle
::
platform
::
CPUPlace
();
paddle
::
platform
::
CPUDeviceContext
ctx
(
*
cpu_place
);
paddle
::
operators
::
CPUGather
<
int
>
(
ctx
,
*
src
,
*
index
,
output
);
delete
cpu_place
;
cpu_place
=
NULL
;
for
(
int
i
=
0
;
i
<
4
;
++
i
)
EXPECT_EQ
(
p_output
[
i
],
i
+
4
);
for
(
int
i
=
4
;
i
<
8
;
++
i
)
EXPECT_EQ
(
p_output
[
i
],
i
-
4
);
...
...
paddle/fluid/operators/linear_chain_crf_op.cc
浏览文件 @
c2a00f01
...
...
@@ -67,8 +67,6 @@ class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker {
"mini-batch. Note: S is equal to the sequence number in a mini-batch. "
"The output is no longer a LoDTensor."
);
AddComment
(
R"DOC(
LinearChainCRF Operator.
Conditional Random Field defines an undirected probabilistic graph with nodes
denoting random variables and edges denoting dependencies between these
variables. CRF learns the conditional probability $P(Y|X)$, where
...
...
paddle/fluid/operators/listen_and_serv_op.cc
浏览文件 @
c2a00f01
...
...
@@ -146,7 +146,9 @@ void ListenAndServOp::RunSyncLoop(framework::Executor *executor,
rpc_service_
->
SetCond
(
detail
::
kRequestGet
);
rpc_service_
->
WaitBarrier
(
detail
::
kRequestGet
);
rpc_service_
->
ResetBarrierCounter
();
rpc_service_
->
ResetSparseVarsRecorder
();
// reset received sparse vars to avoid reuse it in the next mini-batch
dynamic_cast
<
detail
::
RequestSendHandler
*>
(
request_send_handler_
.
get
())
->
ResetSparseVarRecorder
();
}
// while(true)
}
...
...
paddle/fluid/operators/load_op.cc
浏览文件 @
c2a00f01
...
...
@@ -74,25 +74,18 @@ class LoadOp : public framework::OperatorBase {
class
LoadOpProtoMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddOutput
(
"Out"
,
"
(Tensor)
The tensor need to be loaded"
);
AddOutput
(
"Out"
,
"The tensor need to be loaded"
);
AddAttr
<
bool
>
(
"load_as_fp16"
,
"(boolean, default false)"
"If true, the tensor will be first loaded and then "
"converted to float16 data type. Otherwise, the tensor will be "
"directly loaded without data type conversion."
)
"directly loaded without data type conversion.
Default is false.
"
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"file_path"
,
"(string) "
"Variable will be loaded from
\"
file_path
\"
."
)
R"(Variable will be loaded from "file_path")"
)
.
AddCustomChecker
(
[](
const
std
::
string
&
path
)
{
return
!
path
.
empty
();
});
AddComment
(
R"DOC(
Load Operator.
Load operator will load a tensor variable from disk file.
)DOC"
);
AddComment
(
"Load operator will load a tensor variable from disk file."
);
}
};
}
// namespace operators
...
...
paddle/fluid/operators/math/math_function_test.cc
浏览文件 @
c2a00f01
...
...
@@ -77,6 +77,8 @@ TEST(math_function, gemm_trans_clbas) {
paddle
::
platform
::
CPUDeviceContext
context
(
*
cpu_place
);
GetBlas
<
float
>
(
context
).
GEMM
(
false
,
true
,
m
,
n
,
k
,
1
,
input1_ptr
,
3
,
input2_ptr
+
3
,
3
,
1
,
input3_ptr
+
1
,
4
);
delete
cpu_place
;
cpu_place
=
NULL
;
EXPECT_EQ
(
input3_ptr
[
0
],
0
);
EXPECT_EQ
(
input3_ptr
[
1
],
24
);
...
...
paddle/fluid/operators/max_sequence_len_op.cc
浏览文件 @
c2a00f01
...
...
@@ -42,10 +42,15 @@ class MaxSeqenceLenOp : public framework::OperatorBase {
class
MaxSeqenceLenOpProtoMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"RankTable"
,
"The lod_rank_table."
);
AddOutput
(
"Out"
,
"The max sequence length."
);
AddComment
(
R"DOC(Calculate the max sequence length through lod_rank_table.)DOC"
);
AddInput
(
"RankTable"
,
"Input variable which is a LoDRankTable object"
);
AddOutput
(
"Out"
,
"The max sequence length"
);
AddComment
(
R"DOC(
Given a LoDRankTable object, this layer returns the max length of
a batch of sequences. In fact, a LoDRankTable object contains a list of
tuples(<sequence index, sequence length>) and the list is already sorted by
sequence length in descending order, so the operator just returns the
sequence length of the first tuple element
)DOC"
);
}
};
...
...
paddle/testing/paddle_gtest_main.cc
浏览文件 @
c2a00f01
...
...
@@ -30,7 +30,7 @@ int main(int argc, char** argv) {
new_argv
.
push_back
(
strdup
(
"--tryfromenv=fraction_of_gpu_memory_to_use,use_pinned_memory"
));
#else
new_argv
.
push_back
(
strdup
(
"--tryfromenv=use_pinned_memory"
));
new_argv
.
push_back
(
strdup
(
"--tryfromenv=use_pinned_memory
,use_mkldnn
"
));
#endif
int
new_argc
=
static_cast
<
int
>
(
new_argv
.
size
());
char
**
new_argv_address
=
new_argv
.
data
();
...
...
python/paddle/fluid/__init__.py
浏览文件 @
c2a00f01
...
...
@@ -26,6 +26,7 @@ from trainer import BeginEpochEvent
from
trainer
import
EndEpochEvent
from
trainer
import
BeginStepEvent
from
trainer
import
EndStepEvent
from
trainer
import
CheckpointConfig
import
inferencer
from
inferencer
import
Inferencer
...
...
@@ -116,7 +117,7 @@ def __bootstrap__():
read_env_flags
=
[
'use_pinned_memory'
,
'check_nan_inf'
,
'benchmark'
,
'warpctc_dir'
,
'eager_delete_scope'
'eager_delete_scope'
,
'use_mkldnn'
]
if
core
.
is_compiled_with_cuda
():
read_env_flags
+=
[
...
...
python/paddle/fluid/inferencer.py
浏览文件 @
c2a00f01
...
...
@@ -56,6 +56,8 @@ class Inferencer(object):
else
:
self
.
exe
=
executor
.
Executor
(
self
.
place
)
self
.
inference_program
=
self
.
inference_program
.
clone
(
for_test
=
True
)
def
infer
(
self
,
inputs
,
return_numpy
=
True
):
"""
:param inputs: a map of {"input_name": input_var} that will be feed into the inference program
...
...
python/paddle/fluid/io.py
浏览文件 @
c2a00f01
...
...
@@ -24,7 +24,8 @@ __all__ = [
'save_vars'
,
'save_params'
,
'save_persistables'
,
'load_vars'
,
'load_params'
,
'load_persistables'
,
'save_inference_model'
,
'load_inference_model'
,
'get_inference_program'
,
'save_checkpoint'
,
'load_checkpoint'
,
'clean_checkpoint'
'clean_checkpoint'
,
'load_persist_vars_without_grad'
,
'save_persist_vars_without_grad'
,
'get_latest_checkpoint_serial'
]
...
...
@@ -457,95 +458,161 @@ def get_parameter_value_by_name(name, executor, program=None):
SUCCESS_MARK_FILENAME
=
"_SUCCESS"
CHECKPOINT_PREFIX
=
"checkpoint"
MODEL_DIR
=
"__model__"
TRAINER_PREFIX
=
"trainer"
CHECKPOINT_SEPARATOR
=
"_"
def
save_checkpoint
(
executor
,
checkpoint_dir
=
None
,
max_num_checkpoints
=
3
,
save_interval_secs
=
600
,
main_program
=
None
):
checkpoint_dir
,
trainer_id
,
trainer_args
=
None
,
main_program
=
None
,
max_num_checkpoints
=
3
):
"""
Save Checkpoint will save persistable LodTensor variables from main_program in checkpoint directory,
the directory named by serial number from 0 to (n -1), save_checkpoint use LRU strategy
to keep numbers of checkpoint directory, the numbers of checkpoint directory are max_num_checkpoints at most,
The interval between two saved checkpoints must greater than save_interval_secs.
:param executor
:param checkpoint_dir
:param
max_num_checkpoints
:param
save_interval_secs
:param ma
in_program
:param executor
executor for save the value
:param checkpoint_dir
the checkpoint directory
:param
trainer_id currect trainer id, if id is equal to 0, the trainer is chief
:param
main_program will save all variables in program
:param ma
x_num_checkpoints will keep numbers of checkpoint serials not bigger than max_num_checkpoints
"""
if
checkpoint_dir
is
None
:
checkpoint_dir
=
os
.
getcwd
()
raise
ValueError
(
"'checkpoint_dir' should not be None"
)
if
trainer_args
:
assert
isinstance
(
trainer_args
,
dict
)
if
not
os
.
path
.
isdir
(
checkpoint_dir
):
os
.
makedirs
(
checkpoint_dir
)
serial
=
_get_lastest_checkpoint_dir
(
checkpoint_dir
)
if
serial
>=
0
and
not
_interval_secs_exceed
(
_get_serial_dir
(
serial
,
checkpoint_dir
),
save_interval_secs
):
return
serial
=
get_latest_checkpoint_serial
(
checkpoint_dir
)
+
1
cur_dir
=
_get_serial_dir
(
checkpoint_dir
,
serial
)
serial
+=
1
cur_dir
=
_get_serial_dir
(
serial
,
checkpoint_dir
)
save_trainer_args
(
cur_dir
,
trainer_id
,
trainer_args
)
save_vars
(
executor
,
dirname
=
cur_dir
,
main_program
=
main_program
,
vars
=
None
,
predicate
=
_is_checkpoint_var
,
filename
=
None
)
_write_success
(
cur_dir
)
_lru_delete
(
checkpoint_dir
,
max_num_checkpoints
)
if
trainer_id
==
0
:
save_persist_vars_without_grad
(
executor
,
cur_dir
,
main_program
)
_scroll_delete
(
checkpoint_dir
,
max_num_checkpoints
)
def
load_checkpoint
(
executor
,
checkpoint_dir
=
None
,
main_program
=
None
):
def
load_checkpoint
(
executor
,
checkpoint_dir
,
serial
,
main_program
):
"""
Load checkpoint from a directory by executor,
it will find the most recent saved checkpoint file and load it auto.
:param executor
:param checkpoint_dir
:param main_program
:param executor executor for load the value
:param checkpoint_dir the checkpoint directory
:param serial the serial folder in checkpoint directory will be load
:param main_program will load all variables in program
"""
if
checkpoint_dir
is
None
:
checkpoint_dir
=
os
.
getcwd
(
)
raise
ValueError
(
"'checkpoint_dir' should not be None"
)
serial
=
_get_lastest_checkpoint_dir
(
checkpoint_dir
)
if
serial
is
None
or
serial
<
0
:
raise
ValueError
(
"'serial' should not be None or <0 "
)
if
serial
<
0
:
r
eturn
if
main_program
is
None
:
r
aise
ValueError
(
'main_program should not be None.'
)
cur_dir
=
_get_serial_dir
(
serial
,
checkpoint_dir
)
load_vars
(
executor
,
dirname
=
cur_dir
,
main_program
=
main_program
,
predicate
=
_is_checkpoint_var
,
filename
=
None
)
cur_dir
=
_get_serial_dir
(
checkpoint_dir
,
serial
)
load_persist_vars_without_grad
(
executor
,
cur_dir
,
main_program
,
True
)
def
clean_checkpoint
(
checkpoint_dir
,
delete_dir
=
False
):
"""
clean the checkpoint dir, when the train exits normally, the trainer will call clean_checkpoint to delete checkpoint directory saved before.
delete_dir only works when the directory is empty, otherwise, OSError is raised.
:param checkpoint_dir
:param delete_dir
"""
if
checkpoint_dir
is
None
:
checkpoint_dir
=
os
.
getcwd
(
)
_
lru
_delete
(
checkpoint_dir
,
max_num_checkpoints
=
0
)
raise
ValueError
(
"'checkpoint_dir' should not be None"
)
_
scroll
_delete
(
checkpoint_dir
,
max_num_checkpoints
=
0
)
if
delete_dir
and
not
os
.
listdir
(
checkpoint_dir
):
os
.
rmdir
(
checkpoint_dir
)
def
_get_serial_dir
(
serial
,
checkpoint_dir
):
serial_folder
=
CHECKPOINT_PREFIX
+
CHECKPOINT_SEPARATOR
+
str
(
serial
)
return
os
.
path
.
join
(
checkpoint_dir
,
serial_folder
)
def
load_persist_vars_without_grad
(
executor
,
dirname
,
program
,
has_model_dir
=
False
):
"""
load_persist_vars_without_grad will load variables from a directory by an executor,
the variable named end with "@GRAD" will not be loaded.
:param executor executor for load the value
:param dirname the checkpoint directory
:param program will load all variables in program
:param has_model_dir if has_model_dir is True, will load variables from sub directory named __model__
"""
if
has_model_dir
:
dirname
=
_get_model_dir
(
dirname
)
load_vars
(
executor
,
dirname
=
dirname
,
main_program
=
program
,
predicate
=
_is_checkpoint_var
,
filename
=
None
)
def
save_persist_vars_without_grad
(
executor
,
dirname
,
program
):
"""
save_persist_vars_without_grad will save variables to a directory by an executor,
the variable named end with "@GRAD" will not be saved.
:param executor executor for load the value
:param dirname the checkpoint directory
:param program will load all variables in program
"""
cur_dir
=
_get_model_dir
(
dirname
)
save_vars
(
executor
,
dirname
=
cur_dir
,
main_program
=
program
,
vars
=
None
,
predicate
=
_is_checkpoint_var
,
filename
=
None
)
_write_success
(
cur_dir
)
def
save_trainer_args
(
dirname
,
trainer_id
,
trainer_args
):
assert
isinstance
(
trainer_args
,
dict
)
cur_dir
=
_get_trainer_dir
(
dirname
,
trainer_id
)
for
name
,
value
in
trainer_args
.
iteritems
():
args_file
=
os
.
path
.
join
(
cur_dir
,
name
)
with
open
(
args_file
,
'w'
)
as
f
:
f
.
write
(
str
(
value
))
_write_success
(
cur_dir
)
def
load_trainer_args
(
checkpoint_dir
,
serial
,
trainer_id
,
trainer_args
):
assert
isinstance
(
trainer_args
,
list
)
cur_dir
=
_get_serial_dir
(
checkpoint_dir
,
serial
)
cur_dir
=
_get_trainer_dir
(
cur_dir
,
trainer_id
)
ret_values
=
[]
for
arg
in
trainer_args
:
cur_file
=
os
.
path
.
join
(
cur_dir
,
arg
)
with
open
(
cur_file
,
'r'
)
as
f
:
contents
=
f
.
read
()
ret_values
.
append
(
contents
.
strip
())
return
ret_values
def
_is_checkpoint_var
(
var
):
...
...
@@ -559,36 +626,74 @@ def _is_checkpoint_var(var):
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
FETCH_LIST
or
\
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
RAW
:
return
False
# @GRAD are named for gradient variables, checkpoint will not save it.
if
"@GRAD"
in
var
.
name
:
return
False
# .trainer_ are named for distribute train variables, checkpoint will not save it.
if
".trainer_"
in
var
.
name
:
return
False
if
var
.
name
.
endswith
(
"@GRAD"
):
# .block is named for distribute train variables, checkpoint will not save it.
if
".block"
in
var
.
name
:
return
False
return
var
.
persistable
def
_interval_secs_exceed
(
dirname
,
save_interval_secs
):
dir_time
=
os
.
path
.
getmtime
(
dirname
)
if
save_interval_secs
>
(
time
.
time
()
-
dir_time
):
return
False
return
True
def
_get_dir_serial
(
dirname
):
_
,
serial
=
dirname
.
split
(
CHECKPOINT_SEPARATOR
)
try
:
serial_num
=
int
(
serial
)
except
ValueError
:
serial_num
=
-
1
return
serial_num
def
_get_serial_dir
(
dirname
,
serial
):
serial_folder
=
CHECKPOINT_PREFIX
+
CHECKPOINT_SEPARATOR
+
str
(
serial
)
serial_dir
=
os
.
path
.
join
(
dirname
,
serial_folder
)
if
not
os
.
path
.
isdir
(
serial_dir
):
os
.
makedirs
(
serial_dir
)
return
serial_dir
def
_get_model_dir
(
dirname
):
model_dir
=
os
.
path
.
join
(
dirname
,
MODEL_DIR
)
def
_lru_delete
(
dirname
,
max_num_checkpoints
=
3
):
if
not
os
.
path
.
isdir
(
model_dir
):
os
.
makedirs
(
model_dir
)
return
model_dir
def
_get_trainer_dir
(
dirname
,
trainer_id
):
trainer_folder
=
TRAINER_PREFIX
+
CHECKPOINT_SEPARATOR
+
str
(
trainer_id
)
trainer_dir
=
os
.
path
.
join
(
dirname
,
trainer_folder
)
if
not
os
.
path
.
isdir
(
trainer_dir
):
os
.
makedirs
(
trainer_dir
)
return
trainer_dir
def
_scroll_delete
(
dirname
,
max_num_checkpoints
=
3
):
dirs
=
os
.
listdir
(
dirname
)
serial
s
=
[]
serial
_map
=
{}
for
serial
in
dirs
:
try
:
serials
.
append
(
int
(
serial
))
except
ValueError
:
continue
serial_num
=
_get_dir_serial
(
serial
)
serial_map
[
serial_num
]
=
serial
if
len
(
serial
s
)
<=
max_num_checkpoints
:
if
len
(
serial
_map
.
keys
()
)
<=
max_num_checkpoints
:
return
serials
=
serial_map
.
keys
()
serials
.
sort
(
reverse
=
True
)
serials
=
serials
[
max_num_checkpoints
:]
for
serial
in
serials
:
cur_dir
=
os
.
path
.
join
(
dirname
,
str
(
serial
)
)
cur_dir
=
_get_serial_dir
(
dirname
,
serial
)
shutil
.
rmtree
(
cur_dir
)
...
...
@@ -604,33 +709,30 @@ def _write_success(dirname):
f
.
write
(
now
)
def
_get_lastest_checkpoint_dir
(
checkpoint_dir
):
def
get_latest_checkpoint_serial
(
checkpoint_dir
):
"""
get the latest file in checkpoint directory, the _SUCCESS file must exist in the directory
:param checkpoint_dir
"""
if
not
checkpoint_dir
.
strip
()
:
if
not
checkpoint_dir
:
return
-
1
def
has_success
(
checkpoint_dir
,
cur_dir
):
"""
is _SUCCESS in this dir
"""
_
,
serial
=
cur_dir
.
split
(
CHECKPOINT_SEPARATOR
)
try
:
int
(
serial
)
except
ValueError
:
return
-
1
if
not
os
.
path
.
isdir
(
os
.
path
.
join
(
checkpoint_dir
,
cur_dir
)):
serial
=
_get_dir_serial
(
cur_dir
)
if
serial
==
-
1
or
not
os
.
path
.
isdir
(
os
.
path
.
join
(
checkpoint_dir
,
cur_dir
)):
return
-
1
success_path
=
os
.
path
.
join
(
_get_serial_dir
(
serial
,
checkpoint_dir
),
SUCCESS_MARK_FILENAME
)
_get_serial_dir
(
checkpoint_dir
,
serial
),
MODEL_DIR
,
SUCCESS_MARK_FILENAME
)
if
os
.
path
.
isfile
(
success_path
):
return
int
(
serial
)
return
serial
if
not
os
.
path
.
isdir
(
checkpoint_dir
):
return
-
1
...
...
python/paddle/fluid/layers/control_flow.py
浏览文件 @
c2a00f01
...
...
@@ -13,7 +13,7 @@
# limitations under the License.
import
contextlib
from
layer_function_generator
import
autodoc
from
layer_function_generator
import
autodoc
,
templatedoc
from
tensor
import
assign
,
fill_constant
from
..
import
core
from
..framework
import
Program
,
Variable
,
Operator
...
...
@@ -721,26 +721,22 @@ def lod_rank_table(x, level=0):
return
table
@
templatedoc
()
def
max_sequence_len
(
rank_table
):
"""Max Sequence Len Operator. Given a LoDRankTable object, this layer
returns the max length of a batch of sequences. In fact, a LoDRankTable
object contains a list of tuples(<sequence index, sequence length>) and
the list is already sorted by sequence length in descending order, so the
operator just returns the sequence length of the first tuple element.
"""
${comment}
>>> import paddle.fluid as fluid
>>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
>>> lod_level=1)
>>> rank_table = layers.lod_rank_table(x=x, level=0)
>>> max_seq_len = layers.max_sequence_len(rank_table)
Args:
rank_table
(Variable): Input variable which is a LoDRankTable object
.
rank_table
(${rank_table_type}): ${rank_table_comment}
.
Returns:
Variable: The max length of sequence.
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[10],
dtype='float32', lod_level=1)
rank_table = layers.lod_rank_table(x=x, level=0)
max_seq_len = layers.max_sequence_len(rank_table)
${out_comment}.
"""
helper
=
LayerHelper
(
"max_seqence_len"
,
**
locals
())
res
=
helper
.
create_tmp_variable
(
dtype
=
"int64"
)
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
c2a00f01
...
...
@@ -19,11 +19,12 @@ from ..unique_name import generate as unique_name
from
control_flow
import
BlockGuard
from
..layer_helper
import
LayerHelper
from
..executor
import
global_scope
from
layer_function_generator
import
generate_layer_fn
,
templatedoc
__all__
=
[
'data'
,
'BlockGuardServ'
,
'ListenAndServ'
,
'Send'
,
'open_recordio_file'
,
'open_files'
,
'read_file'
,
'shuffle'
,
'batch'
,
'double_buffer'
,
'random_data_generator'
,
'Preprocessor'
'random_data_generator'
,
'Preprocessor'
,
'load'
]
...
...
@@ -662,3 +663,29 @@ class Preprocessor(object):
"sink_var_names"
:
self
.
sink_var_names
})
return
monkey_patch_reader_methods
(
self
.
reader
)
@
templatedoc
()
def
load
(
out
,
file_path
,
load_as_fp16
=
None
):
"""
${comment}
>>> import paddle.fluid as fluid
>>> tmp_tensor = fluid.layers.create_tensor(dtype='float32')
>>> fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")
Args:
out(${out_type}): ${out_comment}.
file_path(${file_path_type}): ${file_path_comment}.
load_as_fp16(${load_as_fp16_type}): ${load_as_fp16_comment}.
Returns:
None
"""
helper
=
LayerHelper
(
"load"
,
**
locals
())
attrs
=
{
"file_path"
:
file_path
}
if
load_as_fp16
is
not
None
:
attrs
[
'load_as_fp16'
]
=
load_as_fp16
helper
.
append_op
(
type
=
"load"
,
inputs
=
{},
output
=
{
"Out"
:
out
},
args
=
attrs
)
python/paddle/fluid/layers/layer_function_generator.py
浏览文件 @
c2a00f01
...
...
@@ -224,7 +224,10 @@ def autodoc(comment=""):
return
__impl__
def
templatedoc
():
_inline_math_single_dollar
=
re
.
compile
(
r
"\$([^\$]+)\$"
)
def
templatedoc
(
op_type
=
None
):
"""
Decorator of layer function. It will use the docstring from the layer
function as the template. The template arguments are:
...
...
@@ -238,32 +241,47 @@ def templatedoc():
Decorated function.
"""
def
trim_ending_dot
(
msg
):
return
msg
.
rstrip
(
'.'
)
def
escape_inline_math
(
msg
):
return
_inline_math_single_dollar
.
sub
(
repl
=
r
':math:`\1`'
,
string
=
msg
)
def
__impl__
(
func
):
op_proto
=
OpProtoHolder
.
instance
().
get_op_proto
(
func
.
__name__
)
if
op_type
is
None
:
op_type_name
=
func
.
__name__
else
:
op_type_name
=
op_type
op_proto
=
OpProtoHolder
.
instance
().
get_op_proto
(
op_type_name
)
tmpl
=
string
.
Template
(
func
.
__doc__
)
comment_lines
=
op_proto
.
comment
.
split
(
"
\n
"
)
comment
=
""
for
line
in
comment_lines
:
line
=
line
.
lstrip
()
comment
+=
line
comment
+=
"
\n
"
args
=
{
"comment"
:
comment
}
line
=
line
.
strip
()
if
len
(
line
)
!=
0
:
comment
+=
escape_inline_math
(
line
)
comment
+=
" "
elif
len
(
comment
)
!=
0
:
comment
+=
"
\n
\n
"
args
=
{
"comment"
:
trim_ending_dot
(
comment
)}
for
each_input
in
op_proto
.
inputs
:
input_name
=
_convert_
(
each_input
.
name
)
args
[
"{0}_comment"
.
format
(
input_name
)]
=
each_input
.
comment
args
[
"{0}_comment"
.
format
(
input_name
)]
=
trim_ending_dot
(
each_input
.
comment
)
args
[
"{0}_type"
.
format
(
input_name
)]
=
"Variable"
for
each_attr
in
op_proto
.
attrs
:
input_name
=
_convert_
(
each_attr
.
name
)
args
[
"{0}_comment"
.
format
(
input_name
)]
=
each_attr
.
comment
args
[
"{0}_comment"
.
format
(
input_name
)]
=
trim_ending_dot
(
each_attr
.
comment
)
args
[
"{0}_type"
.
format
(
input_name
)]
=
_type_to_str_
(
each_attr
.
type
)
for
each_opt
in
op_proto
.
outputs
:
output_name
=
_convert_
(
each_opt
.
name
)
args
[
"{0}_comment"
.
format
(
output_name
)]
=
each_opt
.
comment
args
[
"{0}_comment"
.
format
(
output_name
)]
=
trim_ending_dot
(
each_opt
.
comment
)
args
[
"{0}_type"
.
format
(
output_name
)]
=
"Variable"
func
.
__doc__
=
tmpl
.
substitute
(
args
)
return
func
...
...
python/paddle/fluid/layers/learning_rate_scheduler.py
浏览文件 @
c2a00f01
...
...
@@ -11,6 +11,14 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
When training a model, it's often useful to decay the
learning rate during training process, this is called
learning_rate_decay. There are many strategies to do
this, this module will provide some classical method.
User can also implement their own learning_rate_decay
strategy according to this module.
"""
import
control_flow
import
nn
...
...
@@ -22,14 +30,6 @@ __all__ = [
'exponential_decay'
,
'natural_exp_decay'
,
'inverse_time_decay'
,
'polynomial_decay'
,
'piecewise_decay'
,
'noam_decay'
]
"""
When training a model, it's often useful to decay the
learning rate during training process, this is called
learning_rate_decay. There are many strategies to do
this, this module will provide some classical method.
User can also implement their own learning_rate_decay
strategy according to this module.
"""
def
_decay_step_counter
(
begin
=
0
):
...
...
@@ -41,18 +41,20 @@ def _decay_step_counter(begin=0):
def
noam_decay
(
d_model
,
warmup_steps
):
"""Apply decay to learning rate.
```python
lr_value = np.power(d_model, -0.5) * np.min([
np.power(current_steps, -0.5),
np.power(warmup_steps, -1.5) * current_steps
])
```
"""
Noam decay method. The numpy implementation of noam decay as follows.
>>> import numpy as np
>>> lr_value = np.power(d_model, -0.5) * np.min([
>>> np.power(current_steps, -0.5),
>>> np.power(warmup_steps, -1.5) * current_steps])
Please reference `attention is all you need
<https://arxiv.org/pdf/1706.03762.pdf>`_.
Args:
d_model(Variable): The dimensionality of input and output of model.
Reference: attention is all you need
https://arxiv.org/pdf/1706.03762.pdf
warmup_steps(Variable): A super parameter.
Returns:
...
...
python/paddle/fluid/layers/metric.py
浏览文件 @
c2a00f01
...
...
@@ -64,10 +64,6 @@ def auc(input, label, curve='ROC', num_thresholds=200):
topk_indices
=
helper
.
create_tmp_variable
(
dtype
=
"int64"
)
topk_out
,
topk_indices
=
nn
.
topk
(
input
,
k
=
k
)
auc_out
=
helper
.
create_tmp_variable
(
dtype
=
"float32"
)
if
correct
is
None
:
correct
=
helper
.
create_tmp_variable
(
dtype
=
"int64"
)
if
total
is
None
:
total
=
helper
.
create_tmp_variable
(
dtype
=
"int64"
)
helper
.
append_op
(
type
=
"accuracy"
,
inputs
=
{
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
c2a00f01
...
...
@@ -4037,18 +4037,25 @@ def image_resize(input,
return
out
@
templatedoc
(
op_type
=
"bilinear_interp"
)
def
resize_bilinear
(
input
,
out_shape
=
None
,
scale
=
None
,
name
=
None
):
"""
This is an alias of layer 'image_resize' with bilinear interpolation.
${comment}
Args:
input(${x_type}): ${x_comment}.
out_shape(${out_size_type}): ${out_size_comment}.
The mathematical meaning of resize bilinear layer is
Bilinear interpolation.
Bilinear interpolation is an extension of linear interpolation for
interpolating functions of two variables (e.g. H-direction and
W-direction in this layer) on a rectilinear 2D grid.
scale(float|None): The multiplier for the input height or width. At
least one of out_shape or scale must be set. And out_shape has
a higher priority than scale. Default: None.
name(str|None): The output variable name.
Returns:
For details, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Bilinear_interpolation
${out_comment}.
"""
return
image_resize
(
input
,
out_shape
,
scale
,
name
,
'BILINEAR'
)
...
...
python/paddle/fluid/layers/ops.py
浏览文件 @
c2a00f01
...
...
@@ -73,6 +73,7 @@ __all__ = [
'sum'
,
'polygon_box_transform'
,
'shape'
,
'maxout'
,
]
+
__activations__
for
_OP
in
set
(
__all__
):
...
...
python/paddle/fluid/layers/tensor.py
浏览文件 @
c2a00f01
...
...
@@ -18,6 +18,7 @@ from ..framework import convert_np_dtype_to_dtype_
from
..framework
import
Variable
from
..initializer
import
Constant
,
force_init_on_cpu
from
..core
import
VarDesc
from
layer_function_generator
import
templatedoc
import
numpy
__all__
=
[
...
...
@@ -268,6 +269,7 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
return
out
@
templatedoc
()
def
fill_constant_batch_size_like
(
input
,
shape
,
dtype
,
...
...
@@ -275,30 +277,28 @@ def fill_constant_batch_size_like(input,
input_dim_idx
=
0
,
output_dim_idx
=
0
):
"""
**fill_constant_batch_size_like**
This function creates a tensor of specified *shape*, *dtype* and batch size,
and initializes this with a constant supplied in *value*. The batch size is
obtained from the `input` tensor.
${comment}
It also sets *stop_gradient* to True.
>>> data = fluid.layers.fill_constant_batch_size_like(
>>> input=like, shape=[1], value=0, dtype='int64')
Args:
input(Variable): Tensor whose dimensions will be used to get batch size
shape(tuple|list|None): Shape of output tensor
dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
value(float): Constant value to initialize the output tensor
input_dim_idx(int): Index of input's batch size dimension
output_dim_idx(int): Index of output's batch size dimension
input(${input_type}): ${input_comment}.
Returns:
Variable: The tensor variable storing the output
shape(${shape_type}): ${shape_comment}.
Examples:
.. code-block:: python
dtype(${dtype_type}): ${dtype_comment}.
value(${value_type}): ${value_comment}.
data = fluid.layers.fill_constant_batch_size_like(
input=like, shape=[1], value=0, dtype='int64')
input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.
output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.
Returns:
${out_comment}.
"""
helper
=
LayerHelper
(
"fill_constant_batch_size_like"
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
dtype
)
...
...
@@ -501,22 +501,6 @@ def save_combine(x, file_path, overwrite=True):
"overwrite"
:
overwrite
})
def
load
(
out
,
file_path
):
"""
Loads a variable from a given file.
Args:
out(variable): The variable to be read from the disk file.
file_path(str): The path of the disk file.
"""
helper
=
LayerHelper
(
"load"
,
**
locals
())
helper
.
append_op
(
type
=
"load"
,
inputs
=
{},
output
=
{
"Out"
:
out
},
args
=
{
"file_path"
:
file_path
})
def
load_combine
(
out
,
file_path
):
"""
Loads a list of vairables from a single file.
...
...
python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py
浏览文件 @
c2a00f01
...
...
@@ -38,7 +38,7 @@ def inference_program():
return
y_predict
def
linear
():
def
train_program
():
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'float32'
)
y_predict
=
inference_program
()
...
...
@@ -104,7 +104,7 @@ def main(use_cuda):
# Directory for saving the trained model
params_dirname
=
"fit_a_line.inference.model"
train
(
use_cuda
,
linear
,
params_dirname
)
train
(
use_cuda
,
train_program
,
params_dirname
)
infer
(
use_cuda
,
inference_program
,
params_dirname
)
...
...
python/paddle/fluid/tests/unittests/test_checkpoint.py
0 → 100644
浏览文件 @
c2a00f01
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.fluid
as
fluid
import
unittest
import
os
import
tempfile
class
TestCheckpoint
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
dirname
=
tempfile
.
mktemp
()
self
.
max_num_checkpoints
=
3
self
.
epoch_interval
=
1
self
.
step_interval
=
1
self
.
trainer_id
=
0
self
.
chief
=
self
.
trainer_id
==
0
self
.
place
=
fluid
.
CPUPlace
()
self
.
epoch_id
=
100
self
.
step_id
=
20
def
test_checkpoint
(
self
):
self
.
save_checkpoint
()
serial
=
fluid
.
io
.
get_latest_checkpoint_serial
(
self
.
dirname
)
self
.
assertTrue
(
serial
>=
0
)
trainer_args
=
[
"epoch_id"
,
"step_id"
]
epoch_id
,
step_id
=
fluid
.
io
.
load_trainer_args
(
self
.
dirname
,
serial
,
self
.
trainer_id
,
trainer_args
)
self
.
assertEqual
(
self
.
step_id
,
int
(
step_id
))
self
.
assertEqual
(
self
.
epoch_id
,
int
(
epoch_id
))
program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
program
):
exe
=
fluid
.
Executor
(
self
.
place
)
fluid
.
io
.
load_checkpoint
(
exe
,
self
.
dirname
,
serial
,
program
)
fluid
.
io
.
clean_checkpoint
(
self
.
dirname
,
delete_dir
=
True
)
self
.
assertFalse
(
os
.
path
.
isdir
(
self
.
dirname
))
def
save_checkpoint
(
self
):
config
=
fluid
.
CheckpointConfig
(
self
.
dirname
,
self
.
max_num_checkpoints
,
self
.
epoch_interval
,
self
.
step_interval
)
trainer_args
=
{}
trainer_args
[
"epoch_id"
]
=
self
.
epoch_id
trainer_args
[
"step_id"
]
=
self
.
step_id
program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
program
):
program
.
global_block
().
create_var
(
name
=
"scale_0"
,
psersistable
=
True
,
dtype
=
"float32"
,
shape
=
[
32
,
32
])
exe
=
fluid
.
Executor
(
self
.
place
)
for
i
in
xrange
(
10
):
fluid
.
io
.
save_checkpoint
(
exe
,
config
.
checkpoint_dir
,
self
.
trainer_id
,
trainer_args
,
program
,
config
.
max_num_checkpoints
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_dynrnn_gradient_check.py
浏览文件 @
c2a00f01
...
...
@@ -30,9 +30,6 @@ class Memory(object):
assert
val
.
dtype
==
self
.
ex
.
dtype
self
.
cur
=
val
def
ex
(
self
):
return
self
.
ex
def
next
(
self
):
self
.
ex
=
self
.
cur
self
.
cur
=
None
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
c2a00f01
...
...
@@ -387,6 +387,14 @@ class TestBook(unittest.TestCase):
self
.
assertIsNotNone
(
output
)
print
(
str
(
program
))
def
test_maxout
(
self
):
program
=
Program
()
with
program_guard
(
program
):
data
=
layers
.
data
(
name
=
'x'
,
shape
=
[
8
,
6
,
6
],
dtype
=
"float32"
)
output
=
layers
.
maxout
(
x
=
data
,
groups
=
2
)
self
.
assertIsNotNone
(
output
)
print
(
str
(
program
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/trainer.py
浏览文件 @
c2a00f01
...
...
@@ -27,11 +27,8 @@ import parallel_executor
from
transpiler
import
distribute_transpiler
__all__
=
[
'Trainer'
,
'BeginEpochEvent'
,
'EndEpochEvent'
,
'BeginStepEvent'
,
'EndStepEvent'
,
'Trainer'
,
'BeginEpochEvent'
,
'EndEpochEvent'
,
'BeginStepEvent'
,
'EndStepEvent'
,
'CheckpointConfig'
]
...
...
@@ -59,6 +56,35 @@ class EndStepEvent(object):
self
.
metrics
=
metrics
class
CheckpointConfig
(
object
):
def
__init__
(
self
,
checkpoint_dir
=
None
,
max_num_checkpoints
=
3
,
epoch_interval
=
1
,
step_interval
=
10
):
if
checkpoint_dir
is
None
:
self
.
checkpoint_dir
=
os
.
getcwd
()
else
:
self
.
checkpoint_dir
=
checkpoint_dir
self
.
max_num_checkpoints
=
max_num_checkpoints
if
epoch_interval
<
1
:
self
.
epoch_interval
=
1
else
:
self
.
epoch_interval
=
epoch_interval
if
step_interval
<
1
:
self
.
step_interval
=
10
else
:
self
.
step_interval
=
step_interval
self
.
epoch_id
=
0
self
.
step_id
=
0
self
.
load_serial
=
None
self
.
is_pserver
=
False
def
check_and_get_place
(
place
):
"""
Check the type of place or get the default place
...
...
@@ -99,13 +125,24 @@ class Trainer(object):
optimizer_func
,
param_path
=
None
,
place
=
None
,
parallel
=
False
):
parallel
=
False
,
checkpoint_config
=
None
):
self
.
__stop
=
False
self
.
parallel
=
parallel
# 1. we need to generate a framework.Program by calling
# program_func. Reference: fluid.program_guard in
# test_word2vec.py
# config for checkpoint
# only chief worker will save variables
self
.
trainer_id
=
0
self
.
checkpoint_cfg
=
checkpoint_config
if
self
.
checkpoint_cfg
:
assert
isinstance
(
self
.
checkpoint_cfg
,
CheckpointConfig
)
serial
=
io
.
get_latest_checkpoint_serial
(
self
.
checkpoint_cfg
.
checkpoint_dir
)
self
.
checkpoint_cfg
.
load_serial
=
serial
if
serial
>=
0
else
None
self
.
scope
=
core
.
Scope
()
self
.
startup_program
=
framework
.
Program
()
...
...
@@ -115,9 +152,9 @@ class Trainer(object):
program_func_outs
=
train_func
()
self
.
train_func_outputs
=
program_func_outs
if
isinstance
(
program_func_outs
,
list
)
else
[
program_func_outs
]
self
.
test_program
=
self
.
train_program
.
clone
()
self
.
test_program
=
self
.
train_program
.
clone
(
for_test
=
True
)
# The fi
sr
t element of program_func_outs is loss.
# The fi
rs
t element of program_func_outs is loss.
loss
=
self
.
train_func_outputs
[
0
]
optimizer
=
optimizer_func
()
...
...
@@ -137,9 +174,25 @@ class Trainer(object):
exe
=
executor
.
Executor
(
place
)
exe
.
run
(
self
.
startup_program
)
if
param_path
:
if
self
.
checkpoint_cfg
and
self
.
checkpoint_cfg
.
load_serial
:
with
self
.
_prog_and_scope_guard
():
exe
=
executor
.
Executor
(
place
)
io
.
load_checkpoint
(
exe
,
self
.
checkpoint_cfg
.
checkpoint_dir
,
self
.
checkpoint_cfg
.
load_serial
,
self
.
startup_program
)
if
not
self
.
checkpoint_cfg
.
is_pserver
:
epoch_id
,
step_id
=
io
.
load_trainer_args
(
self
.
checkpoint_cfg
.
checkpoint_dir
,
self
.
checkpoint_cfg
.
load_serial
,
self
.
trainer_id
,
self
.
_get_checkpoint_load_args
())
self
.
checkpoint_cfg
.
epoch_id
=
int
(
epoch_id
)
self
.
checkpoint_cfg
.
step_id
=
int
(
step_id
)
if
param_path
and
os
.
path
.
isdir
(
param_path
):
# load params from param_path into scope
io
.
load_persistables
(
exe
,
dirname
=
param_path
)
io
.
load_persist_vars_without_grad
(
exe
,
dirname
=
param_path
,
program
=
self
.
startup_program
)
def
_transpile_nccl2_dist
(
self
):
# PADDLE_TRAINER_IPS
...
...
@@ -194,14 +247,18 @@ class Trainer(object):
current_endpoint
=
os
.
getenv
(
"PADDLE_CURRENT_IP"
,
""
)
+
":"
+
port
# the unique trainer id, starting from 0, needed by trainer
# only
trainer_id
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
,
"0"
))
self
.
trainer_id
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
,
"0"
))
# the role, should be either PSERVER or TRAINER
training_role
=
os
.
getenv
(
"PADDLE_TRAINING_ROLE"
)
with
self
.
_prog_and_scope_guard
():
t
=
distribute_transpiler
.
DistributeTranspiler
()
t
.
transpile
(
trainer_id
,
pservers
=
pserver_endpoints
,
trainers
=
trainers
)
self
.
trainer_id
,
pservers
=
pserver_endpoints
,
trainers
=
trainers
)
if
training_role
==
"PSERVER"
:
if
self
.
checkpoint_cfg
:
self
.
is_pserver
=
True
self
.
train_program
=
t
.
get_pserver_program
(
current_endpoint
)
self
.
startup_program
=
t
.
get_startup_program
(
current_endpoint
,
self
.
train_program
)
...
...
@@ -294,11 +351,26 @@ class Trainer(object):
self
.
_train_by_any_executor
(
event_handler
,
exe
,
num_epochs
,
reader
)
def
_train_by_any_executor
(
self
,
event_handler
,
exe
,
num_epochs
,
reader
):
for
epoch_id
in
range
(
num_epochs
):
if
self
.
checkpoint_cfg
:
epochs
=
[
epoch_id
for
epoch_id
in
range
(
num_epochs
)
if
epoch_id
>=
self
.
checkpoint_cfg
.
epoch_id
]
else
:
epochs
=
[
epoch_id
for
epoch_id
in
range
(
num_epochs
)]
for
epoch_id
in
epochs
:
event_handler
(
BeginEpochEvent
(
epoch_id
))
for
step_id
,
data
in
enumerate
(
reader
()):
if
self
.
__stop
:
if
self
.
checkpoint_cfg
:
self
.
_clean_checkpoint
()
return
if
self
.
checkpoint_cfg
and
self
.
checkpoint_cfg
.
load_serial
\
and
self
.
checkpoint_cfg
.
step_id
>=
step_id
and
self
.
checkpoint_cfg
.
epoch_id
==
epoch_id
:
continue
begin_event
=
BeginStepEvent
(
epoch_id
,
step_id
)
event_handler
(
begin_event
)
if
begin_event
.
fetch_metrics
:
...
...
@@ -309,8 +381,13 @@ class Trainer(object):
])
else
:
metrics
=
exe
.
run
(
feed
=
data
,
fetch_list
=
[])
if
self
.
checkpoint_cfg
:
self
.
_save_checkpoint
(
epoch_id
,
step_id
)
event_handler
(
EndStepEvent
(
epoch_id
,
step_id
,
metrics
))
event_handler
(
EndEpochEvent
(
epoch_id
))
if
self
.
checkpoint_cfg
:
self
.
_clean_checkpoint
()
def
_test_by_executor
(
self
,
reader
,
feed_order
,
fetch_list
):
with
executor
.
scope_guard
(
self
.
scope
):
...
...
@@ -349,6 +426,38 @@ class Trainer(object):
loss_name
=
self
.
train_func_outputs
[
0
].
name
)
return
self
.
_get_parallel_executor
()
def
_clean_checkpoint
(
self
):
assert
self
.
checkpoint_cfg
io
.
clean_checkpoint
(
checkpoint_dir
=
self
.
checkpoint_cfg
.
checkpoint_dir
)
def
_get_checkpoint_load_args
(
self
):
"""
epoch_id and step_id are runtime arguments, they are not variables, will load them independently.
"""
return
[
"epoch_id"
,
"step_id"
]
def
_get_checkpoint_save_args
(
self
,
epoch_id
,
step_id
):
"""
epoch_id and step_id are runtime arguments, they are not variables, will save them independently.
"""
trainer_args
=
{}
trainer_args
[
"epoch_id"
]
=
epoch_id
trainer_args
[
"step_id"
]
=
step_id
return
trainer_args
def
_save_checkpoint
(
self
,
epoch_id
,
step_id
):
assert
self
.
checkpoint_cfg
if
epoch_id
%
self
.
checkpoint_cfg
.
epoch_interval
==
0
and
step_id
%
self
.
checkpoint_cfg
.
step_interval
==
0
:
exe
=
executor
.
Executor
(
self
.
place
)
io
.
save_checkpoint
(
executor
=
exe
,
checkpoint_dir
=
self
.
checkpoint_cfg
.
checkpoint_dir
,
trainer_id
=
self
.
trainer_id
,
trainer_args
=
self
.
_get_checkpoint_save_args
(
epoch_id
,
step_id
),
main_program
=
self
.
train_program
,
max_num_checkpoints
=
self
.
checkpoint_cfg
.
max_num_checkpoints
)
def
build_feed_var_list
(
program
,
feed_order
):
if
not
isinstance
(
program
,
framework
.
Program
):
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
c2a00f01
...
...
@@ -177,6 +177,7 @@ class DistributeTranspiler:
dtype
=
table_grad_var
.
dtype
)
for
index
in
range
(
len
(
self
.
pserver_endpoints
))
]
return
param_list
,
grad_list
def
_init_splited_vars
(
self
,
slice_var_up
):
# update these mappings for further transpile:
...
...
@@ -199,8 +200,8 @@ class DistributeTranspiler:
grad_list
.
append
(
g
)
param_grad_set
.
add
(
g
.
name
)
self
.
_update_dist_lookup_table_vars
(
param_list
,
grad_list
,
self
.
params_grads
)
param_list
,
grad_list
=
self
.
_update_dist_lookup_table_vars
(
param_list
,
grad_list
,
self
.
params_grads
)
if
slice_var_up
:
# when we slice var up into blocks, we will slice the var according to
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录