Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
c153c520
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c153c520
编写于
3月 20, 2017
作者:
T
Travis CI
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Deploy to GitHub Pages:
24b00ac6
上级
aa789fc3
变更
6
展开全部
隐藏空白更改
内联
并排
Showing
6 changed file
with
58 addition
and
10 deletion
+58
-10
develop/doc/api/v1/trainer_config_helpers/layers.html
develop/doc/api/v1/trainer_config_helpers/layers.html
+23
-3
develop/doc/api/v2/config/layer.html
develop/doc/api/v2/config/layer.html
+5
-1
develop/doc/searchindex.js
develop/doc/searchindex.js
+1
-1
develop/doc_cn/api/v1/trainer_config_helpers/layers.html
develop/doc_cn/api/v1/trainer_config_helpers/layers.html
+23
-3
develop/doc_cn/api/v2/config/layer.html
develop/doc_cn/api/v2/config/layer.html
+5
-1
develop/doc_cn/searchindex.js
develop/doc_cn/searchindex.js
+1
-1
未找到文件。
develop/doc/api/v1/trainer_config_helpers/layers.html
浏览文件 @
c153c520
...
...
@@ -388,6 +388,12 @@ reasons.</p>
</tr>
</tbody>
</table>
<dl
class=
"method"
>
<dt>
<code
class=
"descname"
>
set_input
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
Set the input for a memory layer. Can only be used for memory layer
</p>
</dd></dl>
</dd></dl>
</div>
...
...
@@ -1269,7 +1275,7 @@ will get a warning.</li>
<h3>
memory
<a
class=
"headerlink"
href=
"#memory"
title=
"Permalink to this headline"
>
¶
</a></h3>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.trainer_config_helpers.layers.
</code><code
class=
"descname"
>
memory
</code><span
class=
"sig-paren"
>
(
</span><em>
name
</em>
,
<em>
size
</em>
,
<em>
is_seq=False
</em>
,
<em>
boot_layer=None
</em>
,
<em>
boot_bias=None
</em>
,
<em>
boot_bias_active_type=None
</em>
,
<em>
boot_with_const_id=None
</em><span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.trainer_config_helpers.layers.
</code><code
class=
"descname"
>
memory
</code><span
class=
"sig-paren"
>
(
</span><em>
*args
</em>
,
<em>
**kwargs
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
The memory layers is a layer cross each time step. Reference this output
as previous time step layer
<code
class=
"code docutils literal"
><span
class=
"pre"
>
name
</span></code>
‘
s output.
</p>
<p>
The default memory is zero in first time step, previous time step
’
s
...
...
@@ -1282,13 +1288,23 @@ Arguments.ids()[0] is this <code class="code docutils literal"><span class="pre"
Set
<code
class=
"code docutils literal"
><span
class=
"pre"
>
is_seq
</span></code>
is true boot layer is sequence.
</p>
<p>
The same name layer in recurrent group will set memory on each time
step.
</p>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"n"
>
mem
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
memory
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
256
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s1"
>
'
state
'
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
state
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
fc_layer
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
mem
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
256
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s1"
>
'
state
'
</span><span
class=
"p"
>
)
</span>
</pre></div>
</div>
<p>
If you do not want to specify the name, you can equivalently use set_input()
to specify the layer needs to be remembered as the following:
</p>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
<tbody
valign=
"top"
>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
Parameters:
</th><td
class=
"field-body"
><ul
class=
"first simple"
>
<li><strong>
name
</strong>
(
<em>
basestring
</em>
)
–
memory
’
s name.
</li>
<li><strong>
name
</strong>
(
<em>
basestring
</em>
)
–
the name of the layer which this memory remembers.
If name is None, user should call set_input() to specify the
name of the layer which this memory remembers.
</li>
<li><strong>
size
</strong>
(
<em>
int
</em>
)
–
size of memory.
</li>
<li><strong>
memory_name
</strong>
(
<em>
basestring
</em>
)
–
the name of the memory.
It is ignored when name is provided.
</li>
<li><strong>
is_seq
</strong>
(
<em>
bool
</em>
)
–
is sequence for boot_layer
</li>
<li><strong>
boot_layer
</strong>
(
<em>
LayerOutput|None
</em>
)
–
boot layer of memory.
</li>
<li><strong>
boot_bias
</strong>
(
<em>
ParameterAttribute|None
</em>
)
–
boot layer
’
s bias
</li>
...
...
@@ -2950,7 +2966,11 @@ in width dimension.</p>
<li><strong>
input
</strong>
(
<em>
LayerOutput.
</em>
)
–
The first input layer.
</li>
<li><strong>
label
</strong>
–
The input label.
</li>
<li><strong>
name
</strong>
(
<em>
None|basestring.
</em>
)
–
The name of this layers. It is not necessary.
</li>
<li><strong>
coeff
</strong>
(
<em>
float.
</em>
)
–
The coefficient affects the gradient in the backward.
</li>
<li><strong>
coeff
</strong>
(
<em>
float.
</em>
)
–
The cost is multiplied with coeff.
The coefficient affects the gradient in the backward.
</li>
<li><strong>
weight
</strong>
(
<em>
LayerOutout
</em>
)
–
The cost of each sample is multiplied with each weight.
The weight should be a layer with size=1. Note that gradient
will not be calculated for weight.
</li>
<li><strong>
layer_attr
</strong>
(
<a
class=
"reference internal"
href=
"attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"
title=
"paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"
><em>
ExtraLayerAttribute
</em></a>
)
–
Extra Layer Attribute.
</li>
</ul>
</td>
...
...
develop/doc/api/v2/config/layer.html
浏览文件 @
c153c520
...
...
@@ -3458,7 +3458,11 @@ the way how to configure a neural network topology in Paddle Python code.</p>
<li><strong>
input
</strong>
(
<em>
paddle.v2.config_base.Layer.
</em>
)
–
The first input layer.
</li>
<li><strong>
label
</strong>
–
The input label.
</li>
<li><strong>
name
</strong>
(
<em>
None|basestring.
</em>
)
–
The name of this layers. It is not necessary.
</li>
<li><strong>
coeff
</strong>
(
<em>
float.
</em>
)
–
The coefficient affects the gradient in the backward.
</li>
<li><strong>
coeff
</strong>
(
<em>
float.
</em>
)
–
The cost is multiplied with coeff.
The coefficient affects the gradient in the backward.
</li>
<li><strong>
weight
</strong>
(
<em>
LayerOutout
</em>
)
–
The cost of each sample is multiplied with each weight.
The weight should be a layer with size=1. Note that gradient
will not be calculated for weight.
</li>
<li><strong>
layer_attr
</strong>
(
<em>
paddle.v2.attr.ExtraAttribute
</em>
)
–
Extra Layer Attribute.
</li>
</ul>
</td>
...
...
develop/doc/searchindex.js
浏览文件 @
c153c520
此差异已折叠。
点击以展开。
develop/doc_cn/api/v1/trainer_config_helpers/layers.html
浏览文件 @
c153c520
...
...
@@ -395,6 +395,12 @@ reasons.</p>
</tr>
</tbody>
</table>
<dl
class=
"method"
>
<dt>
<code
class=
"descname"
>
set_input
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
Set the input for a memory layer. Can only be used for memory layer
</p>
</dd></dl>
</dd></dl>
</div>
...
...
@@ -1276,7 +1282,7 @@ will get a warning.</li>
<h3>
memory
<a
class=
"headerlink"
href=
"#memory"
title=
"永久链接至标题"
>
¶
</a></h3>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.trainer_config_helpers.layers.
</code><code
class=
"descname"
>
memory
</code><span
class=
"sig-paren"
>
(
</span><em>
name
</em>
,
<em>
size
</em>
,
<em>
is_seq=False
</em>
,
<em>
boot_layer=None
</em>
,
<em>
boot_bias=None
</em>
,
<em>
boot_bias_active_type=None
</em>
,
<em>
boot_with_const_id=None
</em><span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.trainer_config_helpers.layers.
</code><code
class=
"descname"
>
memory
</code><span
class=
"sig-paren"
>
(
</span><em>
*args
</em>
,
<em>
**kwargs
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
The memory layers is a layer cross each time step. Reference this output
as previous time step layer
<code
class=
"code docutils literal"
><span
class=
"pre"
>
name
</span></code>
‘
s output.
</p>
<p>
The default memory is zero in first time step, previous time step
’
s
...
...
@@ -1289,13 +1295,23 @@ Arguments.ids()[0] is this <code class="code docutils literal"><span class="pre"
Set
<code
class=
"code docutils literal"
><span
class=
"pre"
>
is_seq
</span></code>
is true boot layer is sequence.
</p>
<p>
The same name layer in recurrent group will set memory on each time
step.
</p>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"n"
>
mem
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
memory
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
256
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s1"
>
'
state
'
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
state
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
fc_layer
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
mem
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
256
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s1"
>
'
state
'
</span><span
class=
"p"
>
)
</span>
</pre></div>
</div>
<p>
If you do not want to specify the name, you can equivalently use set_input()
to specify the layer needs to be remembered as the following:
</p>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
<tbody
valign=
"top"
>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
参数:
</th><td
class=
"field-body"
><ul
class=
"first simple"
>
<li><strong>
name
</strong>
(
<em>
basestring
</em>
)
–
memory
’
s name.
</li>
<li><strong>
name
</strong>
(
<em>
basestring
</em>
)
–
the name of the layer which this memory remembers.
If name is None, user should call set_input() to specify the
name of the layer which this memory remembers.
</li>
<li><strong>
size
</strong>
(
<em>
int
</em>
)
–
size of memory.
</li>
<li><strong>
memory_name
</strong>
(
<em>
basestring
</em>
)
–
the name of the memory.
It is ignored when name is provided.
</li>
<li><strong>
is_seq
</strong>
(
<em>
bool
</em>
)
–
is sequence for boot_layer
</li>
<li><strong>
boot_layer
</strong>
(
<em>
LayerOutput|None
</em>
)
–
boot layer of memory.
</li>
<li><strong>
boot_bias
</strong>
(
<em>
ParameterAttribute|None
</em>
)
–
boot layer
’
s bias
</li>
...
...
@@ -2957,7 +2973,11 @@ in width dimension.</p>
<li><strong>
input
</strong>
(
<em>
LayerOutput.
</em>
)
–
The first input layer.
</li>
<li><strong>
label
</strong>
–
The input label.
</li>
<li><strong>
name
</strong>
(
<em>
None|basestring.
</em>
)
–
The name of this layers. It is not necessary.
</li>
<li><strong>
coeff
</strong>
(
<em>
float.
</em>
)
–
The coefficient affects the gradient in the backward.
</li>
<li><strong>
coeff
</strong>
(
<em>
float.
</em>
)
–
The cost is multiplied with coeff.
The coefficient affects the gradient in the backward.
</li>
<li><strong>
weight
</strong>
(
<em>
LayerOutout
</em>
)
–
The cost of each sample is multiplied with each weight.
The weight should be a layer with size=1. Note that gradient
will not be calculated for weight.
</li>
<li><strong>
layer_attr
</strong>
(
<a
class=
"reference internal"
href=
"attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"
title=
"paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"
><em>
ExtraLayerAttribute
</em></a>
)
–
Extra Layer Attribute.
</li>
</ul>
</td>
...
...
develop/doc_cn/api/v2/config/layer.html
浏览文件 @
c153c520
...
...
@@ -3465,7 +3465,11 @@ the way how to configure a neural network topology in Paddle Python code.</p>
<li><strong>
input
</strong>
(
<em>
paddle.v2.config_base.Layer.
</em>
)
–
The first input layer.
</li>
<li><strong>
label
</strong>
–
The input label.
</li>
<li><strong>
name
</strong>
(
<em>
None|basestring.
</em>
)
–
The name of this layers. It is not necessary.
</li>
<li><strong>
coeff
</strong>
(
<em>
float.
</em>
)
–
The coefficient affects the gradient in the backward.
</li>
<li><strong>
coeff
</strong>
(
<em>
float.
</em>
)
–
The cost is multiplied with coeff.
The coefficient affects the gradient in the backward.
</li>
<li><strong>
weight
</strong>
(
<em>
LayerOutout
</em>
)
–
The cost of each sample is multiplied with each weight.
The weight should be a layer with size=1. Note that gradient
will not be calculated for weight.
</li>
<li><strong>
layer_attr
</strong>
(
<em>
paddle.v2.attr.ExtraAttribute
</em>
)
–
Extra Layer Attribute.
</li>
</ul>
</td>
...
...
develop/doc_cn/searchindex.js
浏览文件 @
c153c520
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录