Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
ba39e688
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ba39e688
编写于
2月 28, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into srl_api_v2
上级
da754d85
ce325996
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
272 addition
and
210 deletion
+272
-210
python/paddle/trainer_config_helpers/default_decorators.py
python/paddle/trainer_config_helpers/default_decorators.py
+4
-0
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+6
-0
python/paddle/v2/dataset/cifar.py
python/paddle/v2/dataset/cifar.py
+32
-53
python/paddle/v2/dataset/common.py
python/paddle/v2/dataset/common.py
+34
-0
python/paddle/v2/dataset/config.py
python/paddle/v2/dataset/config.py
+0
-36
python/paddle/v2/dataset/mnist.py
python/paddle/v2/dataset/mnist.py
+49
-22
python/paddle/v2/dataset/movielens.py
python/paddle/v2/dataset/movielens.py
+1
-1
python/paddle/v2/dataset/tests/cifar_test.py
python/paddle/v2/dataset/tests/cifar_test.py
+42
-0
python/paddle/v2/dataset/tests/common_test.py
python/paddle/v2/dataset/tests/common_test.py
+23
-0
python/paddle/v2/dataset/tests/mnist_test.py
python/paddle/v2/dataset/tests/mnist_test.py
+30
-0
python/paddle/v2/layer.py
python/paddle/v2/layer.py
+50
-93
python/paddle/v2/tests/test_layer.py
python/paddle/v2/tests/test_layer.py
+1
-5
未找到文件。
python/paddle/trainer_config_helpers/default_decorators.py
浏览文件 @
ba39e688
...
...
@@ -52,6 +52,10 @@ def wrap_param_default(param_names=None,
kwargs
[
name
]
=
default_factory
(
func
)
return
func
(
*
args
,
**
kwargs
)
if
hasattr
(
func
,
'argspec'
):
__wrapper__
.
argspec
=
func
.
argspec
else
:
__wrapper__
.
argspec
=
inspect
.
getargspec
(
func
)
return
__wrapper__
return
__impl__
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
ba39e688
...
...
@@ -14,6 +14,7 @@
import
functools
import
collections
import
inspect
from
paddle.trainer.config_parser
import
*
from
.activations
import
LinearActivation
,
SigmoidActivation
,
TanhActivation
,
\
...
...
@@ -316,6 +317,11 @@ def layer_support(*attrs):
val
.
check
(
method
.
__name__
)
return
method
(
*
args
,
**
kwargs
)
if
hasattr
(
method
,
'argspec'
):
wrapper
.
argspec
=
method
.
argspec
else
:
wrapper
.
argspec
=
inspect
.
getargspec
(
method
)
return
wrapper
return
decorator
...
...
python/paddle/v2/dataset/cifar.py
浏览文件 @
ba39e688
"""
CIFAR Dataset.
URL: https://www.cs.toronto.edu/~kriz/cifar.html
the default train_creator, test_creator used for CIFAR-10 dataset.
CIFAR dataset: https://www.cs.toronto.edu/~kriz/cifar.html
"""
import
cPickle
import
itertools
import
tarfile
import
numpy
import
paddle.v2.dataset.common
import
tarfile
from
config
import
download
__all__
=
[
'cifar_100_train_creator'
,
'cifar_100_test_creator'
,
'train_creator'
,
'test_creator'
]
__all__
=
[
'train100'
,
'test100'
,
'train10'
,
'test10'
]
CIFAR10_URL
=
'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
URL_PREFIX
=
'https://www.cs.toronto.edu/~kriz/'
CIFAR10_URL
=
URL_PREFIX
+
'cifar-10-python.tar.gz'
CIFAR10_MD5
=
'c58f30108f718f92721af3b95e74349a'
CIFAR100_URL
=
'https://www.cs.toronto.edu/~kriz/
cifar-100-python.tar.gz'
CIFAR100_URL
=
URL_PREFIX
+
'
cifar-100-python.tar.gz'
CIFAR100_MD5
=
'eb9058c3a382ffc7106e4002c42a8d85'
def
__read_batch__
(
filename
,
sub_name
):
def
reader
():
def
__read_one_batch_impl__
(
batch
):
data
=
batch
[
'data'
]
labels
=
batch
.
get
(
'labels'
,
batch
.
get
(
'fine_labels'
,
None
))
assert
labels
is
not
None
for
sample
,
label
in
itertools
.
izip
(
data
,
labels
):
yield
(
sample
/
255.0
).
astype
(
numpy
.
float32
),
int
(
label
)
def
reader_creator
(
filename
,
sub_name
):
def
read_batch
(
batch
):
data
=
batch
[
'data'
]
labels
=
batch
.
get
(
'labels'
,
batch
.
get
(
'fine_labels'
,
None
))
assert
labels
is
not
None
for
sample
,
label
in
itertools
.
izip
(
data
,
labels
):
yield
(
sample
/
255.0
).
astype
(
numpy
.
float32
),
int
(
label
)
def
reader
():
with
tarfile
.
open
(
filename
,
mode
=
'r'
)
as
f
:
names
=
(
each_item
.
name
for
each_item
in
f
if
sub_name
in
each_item
.
name
)
for
name
in
names
:
batch
=
cPickle
.
load
(
f
.
extractfile
(
name
))
for
item
in
__read_one_batch_impl__
(
batch
):
for
item
in
read_batch
(
batch
):
yield
item
return
reader
def
cifar_100_train_creator
():
fn
=
download
(
url
=
CIFAR100_URL
,
md5
=
CIFAR100_MD5
)
return
__read_batch__
(
fn
,
'train'
)
def
cifar_100_test_creator
():
fn
=
download
(
url
=
CIFAR100_URL
,
md5
=
CIFAR100_MD5
)
return
__read_batch__
(
fn
,
'test'
)
def
train_creator
():
"""
Default train reader creator. Use CIFAR-10 dataset.
"""
fn
=
download
(
url
=
CIFAR10_URL
,
md5
=
CIFAR10_MD5
)
return
__read_batch__
(
fn
,
'data_batch'
)
def
train100
():
return
reader_creator
(
paddle
.
v2
.
dataset
.
common
.
download
(
CIFAR100_URL
,
'cifar'
,
CIFAR100_MD5
),
'train'
)
def
test_creator
():
"""
Default test reader creator. Use CIFAR-10 dataset.
"""
fn
=
download
(
url
=
CIFAR10_URL
,
md5
=
CIFAR10_MD5
)
return
__read_batch__
(
fn
,
'test_batch'
)
def
test100
():
return
reader_creator
(
paddle
.
v2
.
dataset
.
common
.
download
(
CIFAR100_URL
,
'cifar'
,
CIFAR100_MD5
),
'test'
)
def
unittest
():
for
_
in
train_creator
()():
pass
for
_
in
test_creator
()():
pass
def
train10
():
return
reader_creator
(
paddle
.
v2
.
dataset
.
common
.
download
(
CIFAR10_URL
,
'cifar'
,
CIFAR10_MD5
),
'data_batch'
)
if
__name__
==
'__main__'
:
unittest
()
def
test10
():
return
reader_creator
(
paddle
.
v2
.
dataset
.
common
.
download
(
CIFAR10_URL
,
'cifar'
,
CIFAR10_MD5
),
'test_batch'
)
python/paddle/v2/dataset/common.py
0 → 100644
浏览文件 @
ba39e688
import
requests
import
hashlib
import
os
import
shutil
__all__
=
[
'DATA_HOME'
,
'download'
,
'md5file'
]
DATA_HOME
=
os
.
path
.
expanduser
(
'~/.cache/paddle/dataset'
)
if
not
os
.
path
.
exists
(
DATA_HOME
):
os
.
makedirs
(
DATA_HOME
)
def
md5file
(
fname
):
hash_md5
=
hashlib
.
md5
()
f
=
open
(
fname
,
"rb"
)
for
chunk
in
iter
(
lambda
:
f
.
read
(
4096
),
b
""
):
hash_md5
.
update
(
chunk
)
f
.
close
()
return
hash_md5
.
hexdigest
()
def
download
(
url
,
module_name
,
md5sum
):
dirname
=
os
.
path
.
join
(
DATA_HOME
,
module_name
)
if
not
os
.
path
.
exists
(
dirname
):
os
.
makedirs
(
dirname
)
filename
=
os
.
path
.
join
(
dirname
,
url
.
split
(
'/'
)[
-
1
])
if
not
(
os
.
path
.
exists
(
filename
)
and
md5file
(
filename
)
==
md5sum
):
r
=
requests
.
get
(
url
,
stream
=
True
)
with
open
(
filename
,
'w'
)
as
f
:
shutil
.
copyfileobj
(
r
.
raw
,
f
)
return
filename
python/paddle/v2/dataset/config.py
已删除
100644 → 0
浏览文件 @
da754d85
import
hashlib
import
os
import
shutil
import
urllib2
__all__
=
[
'DATA_HOME'
,
'download'
]
DATA_HOME
=
os
.
path
.
expanduser
(
'~/.cache/paddle_data_set'
)
if
not
os
.
path
.
exists
(
DATA_HOME
):
os
.
makedirs
(
DATA_HOME
)
def
download
(
url
,
md5
):
filename
=
os
.
path
.
split
(
url
)[
-
1
]
assert
DATA_HOME
is
not
None
filepath
=
os
.
path
.
join
(
DATA_HOME
,
md5
)
if
not
os
.
path
.
exists
(
filepath
):
os
.
makedirs
(
filepath
)
__full_file__
=
os
.
path
.
join
(
filepath
,
filename
)
def
__file_ok__
():
if
not
os
.
path
.
exists
(
__full_file__
):
return
False
md5_hash
=
hashlib
.
md5
()
with
open
(
__full_file__
,
'rb'
)
as
f
:
for
chunk
in
iter
(
lambda
:
f
.
read
(
4096
),
b
""
):
md5_hash
.
update
(
chunk
)
return
md5_hash
.
hexdigest
()
==
md5
while
not
__file_ok__
():
response
=
urllib2
.
urlopen
(
url
)
with
open
(
__full_file__
,
mode
=
'wb'
)
as
of
:
shutil
.
copyfileobj
(
fsrc
=
response
,
fdst
=
of
)
return
__full_file__
python/paddle/v2/dataset/mnist.py
浏览文件 @
ba39e688
import
sklearn.datasets.mldata
import
sklearn.model_selection
"""
MNIST dataset.
"""
import
numpy
from
config
import
DATA_HOME
import
paddle.v2.dataset.common
import
subprocess
__all__
=
[
'train
_creator'
,
'test_creator
'
]
__all__
=
[
'train
'
,
'test
'
]
URL_PREFIX
=
'http://yann.lecun.com/exdb/mnist/'
TEST_IMAGE_URL
=
URL_PREFIX
+
't10k-images-idx3-ubyte.gz'
TEST_IMAGE_MD5
=
'25e3cc63507ef6e98d5dc541e8672bb6'
TEST_LABEL_URL
=
URL_PREFIX
+
't10k-labels-idx1-ubyte.gz'
TEST_LABEL_MD5
=
'4e9511fe019b2189026bd0421ba7b688'
TRAIN_IMAGE_URL
=
URL_PREFIX
+
'train-images-idx3-ubyte.gz'
TRAIN_IMAGE_MD5
=
'f68b3c2dcbeaaa9fbdd348bbdeb94873'
TRAIN_LABEL_URL
=
URL_PREFIX
+
'train-labels-idx1-ubyte.gz'
TRAIN_LABEL_MD5
=
'd53e105ee54ea40749a09fcbcd1e9432'
def
__mnist_reader_creator__
(
data
,
target
):
def
reader_creator
(
image_filename
,
label_filename
,
buffer_size
):
def
reader
():
n_samples
=
data
.
shape
[
0
]
for
i
in
xrange
(
n_samples
):
yield
(
data
[
i
]
/
255.0
).
astype
(
numpy
.
float32
),
int
(
target
[
i
])
# According to http://stackoverflow.com/a/38061619/724872, we
# cannot use standard package gzip here.
m
=
subprocess
.
Popen
([
"zcat"
,
image_filename
],
stdout
=
subprocess
.
PIPE
)
m
.
stdout
.
read
(
16
)
# skip some magic bytes
return
reader
l
=
subprocess
.
Popen
([
"zcat"
,
label_filename
],
stdout
=
subprocess
.
PIPE
)
l
.
stdout
.
read
(
8
)
# skip some magic bytes
while
True
:
labels
=
numpy
.
fromfile
(
l
.
stdout
,
'ubyte'
,
count
=
buffer_size
).
astype
(
"int"
)
TEST_SIZE
=
10000
if
labels
.
size
!=
buffer_size
:
break
# numpy.fromfile returns empty slice after EOF.
data
=
sklearn
.
datasets
.
mldata
.
fetch_mldata
(
"MNIST original"
,
data_home
=
DATA_HOME
)
X_train
,
X_test
,
y_train
,
y_test
=
sklearn
.
model_selection
.
train_test_split
(
data
.
data
,
data
.
target
,
test_size
=
TEST_SIZE
,
random_state
=
0
)
images
=
numpy
.
fromfile
(
m
.
stdout
,
'ubyte'
,
count
=
buffer_size
*
28
*
28
).
reshape
(
(
buffer_size
,
28
*
28
)).
astype
(
'float32'
)
images
=
images
/
255.0
*
2.0
-
1.0
def
train_creator
(
):
return
__mnist_reader_creator__
(
X_train
,
y_train
)
for
i
in
xrange
(
buffer_size
):
yield
images
[
i
,
:],
int
(
labels
[
i
]
)
m
.
terminate
()
l
.
terminate
()
def
test_creator
():
return
__mnist_reader_creator__
(
X_test
,
y_test
)
return
reader
def
unittest
():
assert
len
(
list
(
test_creator
()()))
==
TEST_SIZE
def
train
():
return
reader_creator
(
paddle
.
v2
.
dataset
.
common
.
download
(
TRAIN_IMAGE_URL
,
'mnist'
,
TRAIN_IMAGE_MD5
),
paddle
.
v2
.
dataset
.
common
.
download
(
TRAIN_LABEL_URL
,
'mnist'
,
TRAIN_LABEL_MD5
),
100
)
if
__name__
==
'__main__'
:
unittest
()
def
test
():
return
reader_creator
(
paddle
.
v2
.
dataset
.
common
.
download
(
TEST_IMAGE_URL
,
'mnist'
,
TEST_IMAGE_MD5
),
paddle
.
v2
.
dataset
.
common
.
download
(
TEST_LABEL_URL
,
'mnist'
,
TEST_LABEL_MD5
),
100
)
python/paddle/v2/dataset/movielens.py
浏览文件 @
ba39e688
import
zipfile
from
co
nfig
import
download
from
co
mmon
import
download
import
re
import
random
import
functools
...
...
python/paddle/v2/dataset/tests/cifar_test.py
0 → 100644
浏览文件 @
ba39e688
import
paddle.v2.dataset.cifar
import
unittest
class
TestCIFAR
(
unittest
.
TestCase
):
def
check_reader
(
self
,
reader
):
sum
=
0
label
=
0
for
l
in
reader
():
self
.
assertEqual
(
l
[
0
].
size
,
3072
)
if
l
[
1
]
>
label
:
label
=
l
[
1
]
sum
+=
1
return
sum
,
label
def
test_test10
(
self
):
instances
,
max_label_value
=
self
.
check_reader
(
paddle
.
v2
.
dataset
.
cifar
.
test10
())
self
.
assertEqual
(
instances
,
10000
)
self
.
assertEqual
(
max_label_value
,
9
)
def
test_train10
(
self
):
instances
,
max_label_value
=
self
.
check_reader
(
paddle
.
v2
.
dataset
.
cifar
.
train10
())
self
.
assertEqual
(
instances
,
50000
)
self
.
assertEqual
(
max_label_value
,
9
)
def
test_test100
(
self
):
instances
,
max_label_value
=
self
.
check_reader
(
paddle
.
v2
.
dataset
.
cifar
.
test100
())
self
.
assertEqual
(
instances
,
10000
)
self
.
assertEqual
(
max_label_value
,
99
)
def
test_train100
(
self
):
instances
,
max_label_value
=
self
.
check_reader
(
paddle
.
v2
.
dataset
.
cifar
.
train100
())
self
.
assertEqual
(
instances
,
50000
)
self
.
assertEqual
(
max_label_value
,
99
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/dataset/tests/common_test.py
0 → 100644
浏览文件 @
ba39e688
import
paddle.v2.dataset.common
import
unittest
import
tempfile
class
TestCommon
(
unittest
.
TestCase
):
def
test_md5file
(
self
):
_
,
temp_path
=
tempfile
.
mkstemp
()
with
open
(
temp_path
,
'w'
)
as
f
:
f
.
write
(
"Hello
\n
"
)
self
.
assertEqual
(
'09f7e02f1290be211da707a266f153b3'
,
paddle
.
v2
.
dataset
.
common
.
md5file
(
temp_path
))
def
test_download
(
self
):
yi_avatar
=
'https://avatars0.githubusercontent.com/u/1548775?v=3&s=460'
self
.
assertEqual
(
paddle
.
v2
.
dataset
.
common
.
DATA_HOME
+
'/test/1548775?v=3&s=460'
,
paddle
.
v2
.
dataset
.
common
.
download
(
yi_avatar
,
'test'
,
'f75287202d6622414c706c36c16f8e0d'
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/dataset/tests/mnist_test.py
0 → 100644
浏览文件 @
ba39e688
import
paddle.v2.dataset.mnist
import
unittest
class
TestMNIST
(
unittest
.
TestCase
):
def
check_reader
(
self
,
reader
):
sum
=
0
label
=
0
for
l
in
reader
():
self
.
assertEqual
(
l
[
0
].
size
,
784
)
if
l
[
1
]
>
label
:
label
=
l
[
1
]
sum
+=
1
return
sum
,
label
def
test_train
(
self
):
instances
,
max_label_value
=
self
.
check_reader
(
paddle
.
v2
.
dataset
.
mnist
.
train
())
self
.
assertEqual
(
instances
,
60000
)
self
.
assertEqual
(
max_label_value
,
9
)
def
test_test
(
self
):
instances
,
max_label_value
=
self
.
check_reader
(
paddle
.
v2
.
dataset
.
mnist
.
test
())
self
.
assertEqual
(
instances
,
10000
)
self
.
assertEqual
(
max_label_value
,
9
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/layer.py
浏览文件 @
ba39e688
...
...
@@ -67,6 +67,7 @@ paddle.v2.parameters.create, no longer exposed to users.
"""
import
collections
import
inspect
import
paddle.trainer_config_helpers
as
conf_helps
from
paddle.trainer_config_helpers.config_parser_utils
import
\
...
...
@@ -74,26 +75,14 @@ from paddle.trainer_config_helpers.config_parser_utils import \
from
paddle.trainer_config_helpers.default_decorators
import
wrap_name_default
from
paddle.trainer_config_helpers.default_decorators
import
wrap_act_default
from
paddle.trainer_config_helpers.default_decorators
import
wrap_bias_attr_default
from
paddle.trainer_config_helpers.default_decorators
import
\
wrap_bias_attr_default
from
paddle.trainer_config_helpers.layers
import
layer_support
import
data_type
import
activation
import
attr
__all__
=
[
'parse_network'
,
'data'
,
'fc'
,
'conv_shift'
,
'img_conv'
,
'img_pool'
,
'spp'
,
'maxout'
,
'img_cmrnorm'
,
'batch_norm'
,
'sum_to_one_norm'
,
'recurrent'
,
'lstmemory'
,
'grumemory'
,
'pool'
,
'last_seq'
,
'first_seq'
,
'concat'
,
'seq_concat'
,
'block_expand'
,
'expand'
,
'repeat'
,
'seq_reshape'
,
'addto'
,
'linear_comb'
,
'interpolation'
,
'bilinear_interp'
,
'power'
,
'scaling'
,
'slope_intercept'
,
'tensor'
,
'cos_sim'
,
'trans'
,
'max_id'
,
'sampling_id'
,
'pad'
,
'classification_cost'
,
'cross_entropy_cost'
,
'cross_entropy_with_selfnorm_cost'
,
'regression_cost'
,
'multi_binary_label_cross_entropy_cost'
,
'rank_cost'
,
'lambda_cost'
,
'sum_cost'
,
'huber_cost'
,
'crf'
,
'crf_decoding'
,
'ctc'
,
'warp_ctc'
,
'nce'
,
'hsigmoid'
,
'eos'
]
__all__
=
[
'parse_network'
,
'data'
]
__projection_names__
=
filter
(
lambda
x
:
x
.
endswith
(
'_projection'
),
dir
(
conf_helps
))
...
...
@@ -289,83 +278,51 @@ data = DataLayerV2
AggregateLevel
=
conf_helps
.
layers
.
AggregateLevel
ExpandLevel
=
conf_helps
.
layers
.
ExpandLevel
layer_list
=
[
# [V2LayerImpl, V1_method_name, parent_names]
# fully connected layers
[
'fc'
,
'fc_layer'
,
[
'input'
]],
# conv layers
[
'conv_shift'
,
'conv_shift_layer'
,
[
'a'
,
'b'
]],
[
'img_conv'
,
'img_conv_layer'
,
[
'input'
]],
# image pooling layers
[
'img_pool'
,
'img_pool_layer'
,
[
'input'
]],
[
'spp'
,
'spp_layer'
,
[
'input'
]],
[
'maxout'
,
'maxout_layer'
,
[
'input'
]],
# norm layers
[
'img_cmrnorm'
,
'img_cmrnorm_layer'
,
[
'input'
]],
[
'batch_norm'
,
'batch_norm_layer'
,
[
'input'
]],
[
'sum_to_one_norm'
,
'sum_to_one_norm_layer'
,
[
'input'
]],
# recurrent layers
[
'recurrent'
,
'recurrent_layer'
,
[
'input'
]],
[
'lstmemory'
,
'lstmemory'
,
[
'input'
]],
[
'grumemory'
,
'grumemory'
,
[
'input'
]],
# aggregate layers
[
'pool'
,
'pooling_layer'
,
[
'input'
]],
[
'last_seq'
,
'last_seq'
,
[
'input'
]],
[
'first_seq'
,
'first_seq'
,
[
'input'
]],
[
'concat'
,
'concat_layer'
,
[
'input'
]],
[
'seq_concat'
,
'seq_concat_layer'
,
[
'a'
,
'b'
]],
# reshaping layers
[
'block_expand'
,
'block_expand_layer'
,
[
'input'
]],
[
'expand'
,
'expand_layer'
,
[
'input'
,
'expand_as'
]],
[
'repeat'
,
'repeat_layer'
,
[
'input'
]],
[
'rotate'
,
'rotate_layer'
,
[
'input'
]],
[
'seq_reshape'
,
'seq_reshape_layer'
,
[
'input'
]],
# math layers
[
'addto'
,
'addto_layer'
,
[
'input'
]],
[
'linear_comb'
,
'linear_comb_layer'
,
[
'weights'
,
'vectors'
]],
[
'interpolation'
,
'interpolation_layer'
,
[
'input'
,
'weight'
]],
[
'bilinear_interp'
,
'bilinear_interp_layer'
,
[
'input'
]],
[
'power'
,
'power_layer'
,
[
'input'
,
'weight'
]],
[
'scaling'
,
'scaling_layer'
,
[
'input'
,
'weight'
]],
[
'slope_intercept'
,
'slope_intercept_layer'
,
[
'input'
]],
[
'tensor'
,
'tensor_layer'
,
[
'a'
,
'b'
]],
[
'cos_sim'
,
'cos_sim'
,
[
'a'
,
'b'
]],
[
'trans'
,
'trans_layer'
,
[
'input'
]],
# sampling layers
[
'max_id'
,
'maxid_layer'
,
[
'input'
]],
[
'sampling_id'
,
'sampling_id_layer'
,
[
'input'
]],
# slicing and joining layers
[
'pad'
,
'pad_layer'
,
[
'input'
]],
# cost layers
[
'classification_cost'
,
'classification_cost'
,
[
'input'
,
'label'
,
'weight'
]
],
[
'regression_cost'
,
'regression_cost'
,
[
'input'
,
'label'
,
'weight'
]],
[
'cross_entropy_cost'
,
'cross_entropy'
,
[
'input'
,
'label'
]],
[
'cross_entropy_with_selfnorm_cost'
,
'cross_entropy_with_selfnorm'
,
[
'input'
,
'label'
]
],
[
'multi_binary_label_cross_entropy_cost'
,
'multi_binary_label_cross_entropy'
,
[
'input'
,
'label'
]
],
[
'rank_cost'
,
'rank_cost'
,
[
'left'
,
'right'
,
'label'
,
'weight'
]],
[
'lambda_cost'
,
'lambda_cost'
,
[
'input'
,
'score'
]],
[
'sum_cost'
,
'sum_cost'
,
[
'input'
]],
[
'huber_cost'
,
'huber_cost'
,
[
'input'
,
'label'
]],
[
'crf'
,
'crf_layer'
,
[
'input'
,
'label'
]],
[
'crf_decoding'
,
'crf_decoding_layer'
,
[
'input'
]],
[
'ctc'
,
'ctc_layer'
,
[
'input'
,
'label'
]],
[
'warp_ctc'
,
'warp_ctc_layer'
,
[
'input'
,
'label'
]],
[
'nce'
,
'nce_layer'
,
[
'input'
,
'label'
]],
[
'hsigmoid'
,
'hsigmoid'
,
[
'input'
,
'label'
]],
# check layers
[
'eos'
,
'eos_layer'
,
[
'input'
]]
]
for
l
in
layer_list
:
globals
()[
l
[
0
]]
=
__convert_to_v2__
(
l
[
1
],
l
[
2
])
def
__layer_name_mapping__
(
inname
):
if
inname
in
[
'data_layer'
,
'memory'
,
'mixed_layer'
]:
# Do Not handle these layers
return
elif
inname
==
'maxid_layer'
:
return
'max_id'
elif
inname
.
endswith
(
'memory'
)
or
inname
.
endswith
(
'_seq'
)
or
inname
.
endswith
(
'_sim'
)
or
inname
==
'hsigmoid'
:
return
inname
elif
inname
in
[
'cross_entropy'
,
'multi_binary_label_cross_entropy'
,
'cross_entropy_with_selfnorm'
]:
return
inname
+
"_cost"
elif
inname
.
endswith
(
'_cost'
):
return
inname
elif
inname
.
endswith
(
"_layer"
):
return
inname
[:
-
len
(
"_layer"
)]
def
__layer_name_mapping_parent_names__
(
inname
):
all_args
=
getattr
(
conf_helps
,
inname
).
argspec
.
args
return
filter
(
lambda
x
:
x
in
[
'input1'
,
'input2'
,
'label'
,
'input'
,
'a'
,
'b'
,
'expand_as'
,
'weights'
,
'vectors'
,
'weight'
,
'score'
,
'left'
,
'right'
],
all_args
)
def
__convert_layer__
(
_new_name_
,
_old_name_
,
_parent_names_
):
global
__all__
__all__
.
append
(
_new_name_
)
globals
()[
new_name
]
=
__convert_to_v2__
(
_old_name_
,
_parent_names_
)
for
each_layer_name
in
dir
(
conf_helps
):
new_name
=
__layer_name_mapping__
(
each_layer_name
)
if
new_name
is
not
None
:
parent_names
=
__layer_name_mapping_parent_names__
(
each_layer_name
)
assert
len
(
parent_names
)
!=
0
,
each_layer_name
__convert_layer__
(
new_name
,
each_layer_name
,
parent_names
)
del
parent_names
del
new_name
del
each_layer_name
# convert projection
for
prj
in
__projection_names__
:
...
...
python/paddle/v2/tests/test_layer.py
浏览文件 @
ba39e688
...
...
@@ -11,17 +11,13 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
difflib
import
unittest
import
paddle.trainer_config_helpers
as
conf_helps
import
paddle.v2.activation
as
activation
import
paddle.v2.attr
as
attr
import
paddle.v2.data_type
as
data_type
import
paddle.v2.layer
as
layer
import
paddle.v2.pooling
as
pooling
from
paddle.trainer_config_helpers.config_parser_utils
import
\
parse_network_config
as
parse_network
pixel
=
layer
.
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
128
))
label
=
layer
.
data
(
name
=
'label'
,
type
=
data_type
.
integer_value
(
10
))
...
...
@@ -70,7 +66,7 @@ class ImageLayerTest(unittest.TestCase):
class
AggregateLayerTest
(
unittest
.
TestCase
):
def
test_aggregate_layer
(
self
):
pool
=
layer
.
pool
(
pool
=
layer
.
pool
ing
(
input
=
pixel
,
pooling_type
=
pooling
.
Avg
(),
agg_level
=
layer
.
AggregateLevel
.
EACH_SEQUENCE
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录