Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
b69996c2
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b69996c2
编写于
1月 29, 2019
作者:
Q
Qiyang Min
提交者:
GitHub
1月 29, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #15558 from velconia/imperative_resnet
Refine Batch Norm
上级
65517908
07822fef
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
75 addition
and
35 deletion
+75
-35
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+2
-0
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+13
-4
paddle/fluid/imperative/tracer.cc
paddle/fluid/imperative/tracer.cc
+4
-2
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+10
-2
python/paddle/fluid/imperative/layers.py
python/paddle/fluid/imperative/layers.py
+18
-1
python/paddle/fluid/imperative/nn.py
python/paddle/fluid/imperative/nn.py
+6
-11
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+1
-1
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+3
-0
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
...paddle/fluid/tests/unittests/test_imperative_optimizer.py
+17
-14
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
...on/paddle/fluid/tests/unittests/test_imperative_resnet.py
+1
-0
未找到文件。
paddle/fluid/imperative/layer.cc
浏览文件 @
b69996c2
...
...
@@ -156,6 +156,8 @@ class Autograd {
for
(
auto
it
:
candidate
->
pre_ops_
)
{
for
(
OpBase
*
pre_op
:
it
.
second
)
{
if
(
!
pre_op
)
continue
;
VLOG
(
5
)
<<
"op dep "
<<
candidate
->
op_desc_
->
Type
()
<<
" <---- "
<<
it
.
first
<<
" <---- "
<<
pre_op
->
op_desc_
->
Type
();
if
(
visited
.
find
(
pre_op
)
==
visited
.
end
())
{
visited
.
insert
(
pre_op
);
queue
.
push_back
(
pre_op
);
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
b69996c2
...
...
@@ -28,6 +28,7 @@
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/imperative/type_defs.h"
...
...
@@ -140,16 +141,24 @@ class VarBase {
void
RunBackward
();
void
TrackPreOp
(
OpBase
*
pre_op
,
const
std
::
string
&
pre_op_out_name
,
int
pre_op_out_idx
,
bool
stop_gradient
)
{
int
pre_op_out_idx
,
bool
pre_op_
stop_gradient
)
{
pre_op_
=
pre_op
;
pre_op_out_name_
=
pre_op_out_name
;
pre_op_out_idx_
=
pre_op_out_idx
;
stop_gradient_
=
stop_gradient
;
if
(
pre_op_stop_gradient
)
{
stop_gradient_
=
pre_op_stop_gradient
;
}
}
void
ClearGradient
()
{
delete
grads_
;
grads_
=
new
VarBase
(
true
);
VLOG
(
1
)
<<
"clear gradient of "
<<
var_desc_
->
Name
();
if
(
grads_
&&
grads_
->
var_
&&
grads_
->
var_
->
IsInitialized
())
{
auto
grads_t
=
grads_
->
var_
->
GetMutable
<
framework
::
LoDTensor
>
();
operators
::
math
::
set_constant
(
*
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
grads_
->
var_
->
Get
<
framework
::
LoDTensor
>
().
place
())),
grads_t
,
0.0
);
}
}
framework
::
LoDTensor
&
GradValue
();
...
...
paddle/fluid/imperative/tracer.cc
浏览文件 @
b69996c2
...
...
@@ -84,11 +84,12 @@ void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
op
->
input_vars_
=
inputs
;
for
(
auto
it
:
op
->
input_vars_
)
{
auto
&
invars
=
invars_map
[
it
.
first
];
invars
.
reserve
(
it
.
second
.
size
());
for
(
VarBase
*
inp
:
it
.
second
)
{
PADDLE_ENFORCE_NOT_NULL
(
inp
->
var_
,
"op %s input %s nullptr"
,
op
->
op_desc_
->
Type
(),
inp
->
var_desc_
->
Name
());
invars
.
push
_back
(
inp
->
var_
);
invars
.
emplace
_back
(
inp
->
var_
);
vars
[
inp
->
var_desc_
->
Name
()]
=
inp
;
if
(
inp
->
PreOp
())
{
op
->
pre_ops_
[
it
.
first
].
push_back
(
inp
->
PreOp
());
...
...
@@ -105,9 +106,10 @@ void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
for
(
auto
it
:
op
->
output_vars_
)
{
auto
&
outvars
=
outvars_map
[
it
.
first
];
const
std
::
vector
<
VarBase
*>&
outputs
=
it
.
second
;
outvars
.
reserve
(
outputs
.
size
());
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
++
i
)
{
VarBase
*
out
=
outputs
[
i
];
outvars
.
push
_back
(
out
->
var_
);
outvars
.
emplace
_back
(
out
->
var_
);
vars
[
out
->
var_desc_
->
Name
()]
=
out
;
framework
::
VarDesc
*
var_desc
=
block
->
FindVar
(
out
->
var_desc_
->
Name
());
...
...
python/paddle/fluid/framework.py
浏览文件 @
b69996c2
...
...
@@ -445,11 +445,16 @@ class Variable(object):
@
property
def
_stop_gradient
(
self
):
return
self
.
_ivar
.
stop_gradient
if
_in_imperative_mode
():
return
self
.
_ivar
.
stop_gradient
else
:
return
self
.
stop_gradient
@
_stop_gradient
.
setter
def
_stop_gradient
(
self
,
s
):
self
.
_ivar
.
stop_gradient
=
s
if
_in_imperative_mode
():
self
.
_ivar
.
stop_gradient
=
s
self
.
stop_gradient
=
s
@
property
def
persistable
(
self
):
...
...
@@ -1310,6 +1315,9 @@ class Block(object):
outputs
=
kwargs
.
get
(
"outputs"
,
None
),
attrs
=
kwargs
.
get
(
"attrs"
,
None
))
self
.
ops
.
append
(
op
)
# TODO(minqiyang): add stop_gradient support in static mode too.
# currently, we only support stop_gradient in imperative mode.
self
.
_trace_op
(
op
,
kwargs
.
get
(
"stop_gradient"
,
False
))
return
op
...
...
python/paddle/fluid/imperative/layers.py
浏览文件 @
b69996c2
...
...
@@ -15,6 +15,7 @@
import
contextlib
import
sys
import
numpy
as
np
import
collections
from
paddle.fluid
import
core
from
paddle.fluid
import
framework
...
...
@@ -31,7 +32,23 @@ class Layer(core.Layer):
self
.
_dtype
=
dtype
def
parameters
(
self
):
return
[]
params
=
[]
for
key
in
self
.
__dict__
.
keys
():
value
=
self
.
__dict__
[
key
]
if
isinstance
(
value
,
framework
.
Parameter
):
params
.
append
(
value
)
elif
isinstance
(
value
,
core
.
Layer
):
params
.
extend
(
value
.
parameters
())
elif
isinstance
(
value
,
collections
.
Container
):
if
len
(
value
)
==
0
:
continue
if
isinstance
(
value
[
0
],
framework
.
Parameter
):
params
.
extend
(
value
)
elif
isinstance
(
value
[
0
],
core
.
Layer
):
for
v
in
value
:
params
.
extend
(
v
.
parameters
())
return
params
def
clear_gradients
(
self
):
for
p
in
self
.
parameters
():
...
...
python/paddle/fluid/imperative/nn.py
浏览文件 @
b69996c2
...
...
@@ -332,21 +332,16 @@ class BatchNorm(layers.Layer):
shape
=
param_shape
,
dtype
=
self
.
_dtype
,
default_initializer
=
Constant
(
1.0
))
# TODO(minqiyang): change stop_gradient sign to trainable to align with static graph
# # setting stop_gradient=True to reduce computation
# if use_global_stats and self._helper.param_attr.learning_rate == 0.:
# self._scale.stop_gradient = True
if
use_global_stats
and
self
.
_helper
.
param_attr
.
learning_rate
==
0.
:
self
.
_scale
.
_stop_gradient
=
True
self
.
_bias
=
self
.
_helper
.
create_parameter
(
attr
=
self
.
_helper
.
bias_attr
,
shape
=
param_shape
,
dtype
=
self
.
_dtype
,
is_bias
=
True
)
# TODO(minqiyang): change stop_gradient sign to trainable to align with static graph
# # setting stop_gradient=True to reduce computation
# if use_global_stats and self._helper.bias_attr.learning_rate == 0.:
# self._bias.stop_gradient = True
if
use_global_stats
and
self
.
_helper
.
bias_attr
.
learning_rate
==
0.
:
self
.
_bias
.
_stop_gradient
=
True
self
.
_mean
=
self
.
_helper
.
create_parameter
(
attr
=
ParamAttr
(
...
...
@@ -356,7 +351,7 @@ class BatchNorm(layers.Layer):
do_model_average
=
do_model_average_for_mean_and_var
),
shape
=
param_shape
,
dtype
=
self
.
_dtype
)
self
.
_mean
.
stop_gradient
=
True
self
.
_mean
.
_
stop_gradient
=
True
self
.
_variance
=
self
.
_helper
.
create_parameter
(
attr
=
ParamAttr
(
...
...
@@ -366,7 +361,7 @@ class BatchNorm(layers.Layer):
do_model_average
=
do_model_average_for_mean_and_var
),
shape
=
param_shape
,
dtype
=
self
.
_dtype
)
self
.
_variance
.
stop_gradient
=
True
self
.
_variance
.
_
stop_gradient
=
True
self
.
_in_place
=
in_place
self
.
_momentum
=
momentum
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
b69996c2
...
...
@@ -387,7 +387,7 @@ class Optimizer(object):
params_grads
=
[]
for
param
in
parameters
:
if
param
.
stop_gradient
:
if
param
.
stop_gradient
or
not
param
.
trainable
:
continue
# create gradient variable
grad_var
=
Variable
(
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
b69996c2
...
...
@@ -85,6 +85,7 @@ list(REMOVE_ITEM TEST_OPS test_image_classification_resnet)
list
(
REMOVE_ITEM TEST_OPS test_bilinear_interp_op
)
list
(
REMOVE_ITEM TEST_OPS test_nearest_interp_op
)
list
(
REMOVE_ITEM TEST_OPS test_imperative_resnet
)
list
(
REMOVE_ITEM TEST_OPS test_imperative_optimizer
)
foreach
(
TEST_OP
${
TEST_OPS
}
)
py_test_modules
(
${
TEST_OP
}
MODULES
${
TEST_OP
}
)
endforeach
(
TEST_OP
)
...
...
@@ -94,6 +95,8 @@ py_test_modules(test_bilinear_interp_op MODULES test_bilinear_interp_op SERIAL)
py_test_modules
(
test_nearest_interp_op MODULES test_nearest_interp_op SERIAL
)
py_test_modules
(
test_imperative_resnet MODULES test_imperative_resnet ENVS
FLAGS_cudnn_deterministic=1
)
py_test_modules
(
test_imperative_optimizer MODULES test_imperative_optimizer ENVS
FLAGS_cudnn_deterministic=1
)
if
(
WITH_DISTRIBUTE
)
py_test_modules
(
test_dist_train MODULES test_dist_train SERIAL
)
set_tests_properties
(
test_listen_and_serv_op PROPERTIES TIMEOUT 20
)
...
...
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
浏览文件 @
b69996c2
...
...
@@ -82,13 +82,14 @@ class MNIST(fluid.imperative.Layer):
self
.
_simple_img_conv_pool_2
=
SimpleImgConvPool
(
20
,
50
,
5
,
2
,
2
,
act
=
"relu"
)
pool_2_shape
=
50
*
8
*
8
pool_2_shape
=
50
*
4
*
4
SIZE
=
10
scale
=
(
2.0
/
(
pool_2_shape
**
2
*
SIZE
))
**
0.5
self
.
_fc
=
FC
(
10
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
scale
)))
loc
=
0.0
,
scale
=
scale
)),
act
=
"softmax"
)
def
forward
(
self
,
inputs
):
x
=
self
.
_simple_img_conv_pool_1
(
inputs
)
...
...
@@ -98,9 +99,9 @@ class MNIST(fluid.imperative.Layer):
class
TestImperativeMnist
(
unittest
.
TestCase
):
def
test_mnist_
cpu_
float32
(
self
):
def
test_mnist_float32
(
self
):
seed
=
90
batch_num
=
2
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
...
...
@@ -112,15 +113,15 @@ class TestImperativeMnist(unittest.TestCase):
dy_param_init_value
=
{}
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
batch_id
>=
2
:
if
batch_id
>=
batch_num
:
break
x_data
=
np
.
array
(
dy_
x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
128
,
1
)
img
=
to_variable
(
x_data
)
img
=
to_variable
(
dy_
x_data
)
label
=
to_variable
(
y_data
)
label
.
_stop_gradient
=
True
...
...
@@ -136,6 +137,7 @@ class TestImperativeMnist(unittest.TestCase):
avg_loss
.
_backward
()
sgd
.
minimize
(
avg_loss
)
mnist
.
clear_gradients
()
dy_param_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
...
...
@@ -175,10 +177,10 @@ class TestImperativeMnist(unittest.TestCase):
static_param_init_value
[
static_param_name_list
[
i
]]
=
out
[
i
]
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
batch_id
>=
2
:
if
batch_id
>=
batch_num
:
break
x_data
=
np
.
array
(
static_
x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
[
128
,
1
])
...
...
@@ -186,7 +188,7 @@ class TestImperativeMnist(unittest.TestCase):
fetch_list
=
[
avg_loss
.
name
]
fetch_list
.
extend
(
static_param_name_list
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"pixel"
:
x_data
,
feed
=
{
"pixel"
:
static_
x_data
,
"label"
:
y_data
},
fetch_list
=
fetch_list
)
...
...
@@ -196,11 +198,12 @@ class TestImperativeMnist(unittest.TestCase):
static_param_value
[
static_param_name_list
[
i
-
1
]]
=
out
[
i
]
for
key
,
value
in
six
.
iteritems
(
static_param_init_value
):
self
.
assertTrue
(
np
.
allclose
(
value
.
all
(),
dy_param_init_value
[
key
].
all
()))
self
.
assertTrue
(
np
.
allclose
(
static_out
.
all
(),
dy_out
.
all
()))
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_init_value
[
key
]))
self
.
assertTrue
(
np
.
allclose
(
static_out
,
dy_out
))
for
key
,
value
in
six
.
iteritems
(
static_param_value
):
self
.
assertTrue
(
np
.
allclose
(
value
.
all
(),
dy_param_value
[
key
].
all
()
))
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_value
[
key
]
))
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
浏览文件 @
b69996c2
...
...
@@ -264,6 +264,7 @@ class TestImperativeResnet(unittest.TestCase):
)]
=
np_array
optimizer
.
minimize
(
avg_loss
)
resnet
.
clear_gradients
()
dy_param_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录