Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
b5ab8979
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b5ab8979
编写于
12月 09, 2022
作者:
L
liu zhengxi
提交者:
GitHub
12月 09, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[remove fluid] Remove fluid APIs (#48641)
上级
b01f979b
变更
5
展开全部
隐藏空白更改
内联
并排
Showing
5 changed file
with
11 addition
and
1031 deletion
+11
-1031
python/paddle/fluid/layers/rnn.py
python/paddle/fluid/layers/rnn.py
+0
-692
python/paddle/fluid/tests/unittests/dist_transformer.py
python/paddle/fluid/tests/unittests/dist_transformer.py
+0
-155
python/paddle/fluid/tests/unittests/test_beam_search_decode_op.py
...addle/fluid/tests/unittests/test_beam_search_decode_op.py
+0
-48
python/paddle/fluid/tests/unittests/test_beam_search_op.py
python/paddle/fluid/tests/unittests/test_beam_search_op.py
+0
-117
python/paddle/fluid/tests/unittests/test_rnn_decode_api.py
python/paddle/fluid/tests/unittests/test_rnn_decode_api.py
+11
-19
未找到文件。
python/paddle/fluid/layers/rnn.py
浏览文件 @
b5ab8979
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/unittests/dist_transformer.py
浏览文件 @
b5ab8979
...
@@ -1719,161 +1719,6 @@ def wrap_decoder(
...
@@ -1719,161 +1719,6 @@ def wrap_decoder(
return
predict
return
predict
def
fast_decode
(
src_vocab_size
,
trg_vocab_size
,
max_in_len
,
n_layer
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
,
weight_sharing
,
beam_size
,
max_out_len
,
eos_idx
,
):
"""
Use beam search to decode. Caches will be used to store states of history
steps which can make the decoding faster.
"""
enc_output
=
wrap_encoder
(
src_vocab_size
,
max_in_len
,
n_layer
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
,
weight_sharing
,
)
start_tokens
,
init_scores
,
trg_src_attn_bias
=
make_all_inputs
(
fast_decoder_data_input_fields
)
def
beam_search
():
max_len
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
start_tokens
.
dtype
,
value
=
max_out_len
)
step_idx
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
start_tokens
.
dtype
,
value
=
0
)
cond
=
paddle
.
less_than
(
x
=
step_idx
,
y
=
max_len
)
while_op
=
paddle
.
static
.
nn
.
control_flow
.
While
(
cond
)
# array states will be stored for each step.
ids
=
layers
.
array_write
(
paddle
.
reshape
(
start_tokens
,
(
-
1
,
1
)),
step_idx
)
scores
=
layers
.
array_write
(
init_scores
,
step_idx
)
# cell states will be overwrited at each step.
# caches contains states of history steps to reduce redundant
# computation in decoder.
caches
=
[
{
"k"
:
layers
.
fill_constant_batch_size_like
(
input
=
start_tokens
,
shape
=
[
-
1
,
0
,
d_model
],
dtype
=
enc_output
.
dtype
,
value
=
0
,
),
"v"
:
layers
.
fill_constant_batch_size_like
(
input
=
start_tokens
,
shape
=
[
-
1
,
0
,
d_model
],
dtype
=
enc_output
.
dtype
,
value
=
0
,
),
}
for
i
in
range
(
n_layer
)
]
with
while_op
.
block
():
pre_ids
=
layers
.
array_read
(
array
=
ids
,
i
=
step_idx
)
pre_ids
=
paddle
.
reshape
(
pre_ids
,
(
-
1
,
1
,
1
))
pre_scores
=
layers
.
array_read
(
array
=
scores
,
i
=
step_idx
)
# sequence_expand can gather sequences according to lod thus can be
# used in beam search to sift states corresponding to selected ids.
pre_src_attn_bias
=
layers
.
sequence_expand
(
x
=
trg_src_attn_bias
,
y
=
pre_scores
)
pre_enc_output
=
layers
.
sequence_expand
(
x
=
enc_output
,
y
=
pre_scores
)
pre_caches
=
[
{
"k"
:
layers
.
sequence_expand
(
x
=
cache
[
"k"
],
y
=
pre_scores
),
"v"
:
layers
.
sequence_expand
(
x
=
cache
[
"v"
],
y
=
pre_scores
),
}
for
cache
in
caches
]
pre_pos
=
layers
.
elementwise_mul
(
x
=
layers
.
fill_constant_batch_size_like
(
input
=
pre_enc_output
,
# can't use pre_ids here since it has lod
value
=
1
,
shape
=
[
-
1
,
1
,
1
],
dtype
=
pre_ids
.
dtype
,
),
y
=
layers
.
increment
(
x
=
step_idx
,
value
=
1.0
,
in_place
=
False
),
axis
=
0
,
)
logits
=
wrap_decoder
(
trg_vocab_size
,
max_in_len
,
n_layer
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
,
weight_sharing
,
dec_inputs
=
(
pre_ids
,
pre_pos
,
None
,
pre_src_attn_bias
),
enc_output
=
pre_enc_output
,
caches
=
pre_caches
,
)
logits
=
paddle
.
reshape
(
logits
,
(
-
1
,
trg_vocab_size
))
topk_scores
,
topk_indices
=
paddle
.
topk
(
x
=
paddle
.
nn
.
functional
.
softmax
(
logits
),
k
=
beam_size
)
accu_scores
=
layers
.
elementwise_add
(
x
=
paddle
.
log
(
topk_scores
),
y
=
paddle
.
reshape
(
pre_scores
,
shape
=
[
-
1
]),
axis
=
0
,
)
# beam_search op uses lod to distinguish branches.
topk_indices
=
layers
.
lod_reset
(
topk_indices
,
pre_ids
)
selected_ids
,
selected_scores
=
layers
.
beam_search
(
pre_ids
=
pre_ids
,
pre_scores
=
pre_scores
,
ids
=
topk_indices
,
scores
=
accu_scores
,
beam_size
=
beam_size
,
end_id
=
eos_idx
,
)
layers
.
increment
(
x
=
step_idx
,
value
=
1.0
,
in_place
=
True
)
# update states
layers
.
array_write
(
selected_ids
,
i
=
step_idx
,
array
=
ids
)
layers
.
array_write
(
selected_scores
,
i
=
step_idx
,
array
=
scores
)
layers
.
assign
(
pre_src_attn_bias
,
trg_src_attn_bias
)
layers
.
assign
(
pre_enc_output
,
enc_output
)
for
i
in
range
(
n_layer
):
layers
.
assign
(
pre_caches
[
i
][
"k"
],
caches
[
i
][
"k"
])
layers
.
assign
(
pre_caches
[
i
][
"v"
],
caches
[
i
][
"v"
])
length_cond
=
paddle
.
less_than
(
x
=
step_idx
,
y
=
max_len
)
finish_cond
=
paddle
.
logical_not
(
layers
.
is_empty
(
x
=
selected_ids
))
paddle
.
logical_and
(
x
=
length_cond
,
y
=
finish_cond
,
out
=
cond
)
finished_ids
,
finished_scores
=
layers
.
beam_search_decode
(
ids
,
scores
,
beam_size
=
beam_size
,
end_id
=
eos_idx
)
return
finished_ids
,
finished_scores
finished_ids
,
finished_scores
=
beam_search
()
return
finished_ids
,
finished_scores
def
get_model
(
is_dist
,
is_async
):
def
get_model
(
is_dist
,
is_async
):
sum_cost
,
avg_cost
,
predict
,
token_num
=
transformer
(
sum_cost
,
avg_cost
,
predict
,
token_num
=
transformer
(
ModelHyperParams
.
src_vocab_size
,
ModelHyperParams
.
src_vocab_size
,
...
...
python/paddle/fluid/tests/unittests/test_beam_search_decode_op.py
浏览文件 @
b5ab8979
...
@@ -16,10 +16,7 @@ import unittest
...
@@ -16,10 +16,7 @@ import unittest
import
numpy
as
np
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle.fluid.core
as
core
from
paddle.fluid.framework
import
Program
,
program_guard
from
paddle.fluid.op
import
Operator
from
paddle.fluid.op
import
Operator
...
@@ -118,50 +115,5 @@ class TestBeamSearchDecodeOpGPU(TestBeamSearchDecodeOp):
...
@@ -118,50 +115,5 @@ class TestBeamSearchDecodeOpGPU(TestBeamSearchDecodeOp):
self
.
place
=
core
.
CUDAPlace
(
0
)
self
.
place
=
core
.
CUDAPlace
(
0
)
class
TestBeamSearchDecodeOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
def
test_id_Variable
():
# the input pre_ids must be Variable
test_ids
=
np
.
random
.
randint
(
1
,
5
,
[
5
,
1
]).
astype
(
"int64"
)
scores
=
paddle
.
tensor
.
create_array
(
dtype
=
'float32'
)
fluid
.
layers
.
beam_search_decode
(
test_ids
,
scores
,
beam_size
=
5
,
end_id
=
0
)
self
.
assertRaises
(
TypeError
,
test_id_Variable
)
def
test_score_Variable
():
# the input pre_scores must be Variable
ids
=
paddle
.
tensor
.
create_array
(
dtype
=
'int64'
)
test_scores
=
np
.
random
.
uniform
(
1
,
5
,
[
5
,
1
]).
astype
(
"float32"
)
fluid
.
layers
.
beam_search_decode
(
ids
,
test_scores
,
beam_size
=
5
,
end_id
=
0
)
self
.
assertRaises
(
TypeError
,
test_score_Variable
)
def
test_id_dtype
():
# the dtype of input pre_ids must be int64
type_ids
=
paddle
.
tensor
.
create_array
(
dtype
=
'float32'
)
scores
=
paddle
.
tensor
.
create_array
(
dtype
=
'float32'
)
fluid
.
layers
.
beam_search_decode
(
type_ids
,
scores
,
beam_size
=
5
,
end_id
=
0
)
self
.
assertRaises
(
TypeError
,
test_id_dtype
)
def
test_score_dtype
():
# the dtype of input pre_scores must be float32
ids
=
paddle
.
tensor
.
create_array
(
dtype
=
'int64'
)
type_scores
=
paddle
.
tensor
.
create_array
(
dtype
=
'int64'
)
fluid
.
layers
.
beam_search_decode
(
ids
,
type_scores
,
beam_size
=
5
,
end_id
=
0
)
self
.
assertRaises
(
TypeError
,
test_score_dtype
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_beam_search_op.py
浏览文件 @
b5ab8979
...
@@ -16,10 +16,7 @@ import unittest
...
@@ -16,10 +16,7 @@ import unittest
import
numpy
as
np
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle.fluid.core
as
core
from
paddle.fluid.framework
import
Program
,
program_guard
from
paddle.fluid.op
import
Operator
from
paddle.fluid.op
import
Operator
...
@@ -302,119 +299,5 @@ class BeamSearchOpTester6(BeamSearchOpTester):
...
@@ -302,119 +299,5 @@ class BeamSearchOpTester6(BeamSearchOpTester):
self
.
output_parent_idx
=
np
.
array
([
0
,
1
,
2
,
3
])
self
.
output_parent_idx
=
np
.
array
([
0
,
1
,
2
,
3
])
class
TestBeamSearchOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
pre_ids
=
fluid
.
data
(
name
=
'pre_id'
,
shape
=
[
1
],
lod_level
=
2
,
dtype
=
'int64'
)
pre_scores
=
fluid
.
data
(
name
=
'pre_scores'
,
shape
=
[
1
],
lod_level
=
2
,
dtype
=
'float32'
)
probs
=
fluid
.
data
(
name
=
'probs'
,
shape
=
[
10000
],
dtype
=
'float32'
)
topk_scores
,
topk_indices
=
paddle
.
topk
(
probs
,
k
=
4
)
accu_scores
=
fluid
.
layers
.
elementwise_add
(
x
=
paddle
.
log
(
x
=
topk_scores
),
y
=
paddle
.
reshape
(
pre_scores
,
shape
=
[
-
1
]),
axis
=
0
,
)
def
test_preids_Variable
():
# the input pre_ids must be Variable
preids_data
=
np
.
random
.
randint
(
1
,
5
,
[
5
,
1
]).
astype
(
"int64"
)
fluid
.
layers
.
beam_search
(
pre_ids
=
preids_data
,
pre_scores
=
pre_scores
,
ids
=
topk_indices
,
scores
=
accu_scores
,
beam_size
=
4
,
end_id
=
1
,
)
self
.
assertRaises
(
TypeError
,
test_preids_Variable
)
def
test_prescores_Variable
():
# the input pre_scores must be Variable
prescores_data
=
np
.
random
.
uniform
(
1
,
5
,
[
5
,
1
]).
astype
(
"float32"
)
fluid
.
layers
.
beam_search
(
pre_ids
=
pre_ids
,
pre_scores
=
prescores_data
,
ids
=
topk_indices
,
scores
=
accu_scores
,
beam_size
=
4
,
end_id
=
1
,
)
self
.
assertRaises
(
TypeError
,
test_prescores_Variable
)
def
test_ids_Variable
():
# the input ids must be Variable or None
ids_data
=
np
.
random
.
randint
(
1
,
5
,
[
5
,
1
]).
astype
(
"int64"
)
fluid
.
layers
.
beam_search
(
pre_ids
=
pre_ids
,
pre_scores
=
pre_scores
,
ids
=
ids_data
,
scores
=
accu_scores
,
beam_size
=
4
,
end_id
=
1
,
)
self
.
assertRaises
(
TypeError
,
test_ids_Variable
)
def
test_scores_Variable
():
# the input scores must be Variable
scores_data
=
np
.
random
.
uniform
(
1
,
5
,
[
5
,
1
]).
astype
(
"float32"
)
fluid
.
layers
.
beam_search
(
pre_ids
=
pre_ids
,
pre_scores
=
pre_scores
,
ids
=
topk_indices
,
scores
=
scores_data
,
beam_size
=
4
,
end_id
=
1
,
)
self
.
assertRaises
(
TypeError
,
test_scores_Variable
)
def
test_preids_dtype
():
# the dtype of input pre_ids must be int64
preids_type_data
=
fluid
.
data
(
name
=
'preids_type_data'
,
shape
=
[
1
],
lod_level
=
2
,
dtype
=
'float32'
,
)
fluid
.
layers
.
beam_search
(
pre_ids
=
preids_type_data
,
pre_scores
=
pre_scores
,
ids
=
topk_indices
,
scores
=
accu_scores
,
beam_size
=
4
,
end_id
=
1
,
)
self
.
assertRaises
(
TypeError
,
test_preids_dtype
)
def
test_prescores_dtype
():
# the dtype of input pre_scores must be float32
prescores_type_data
=
fluid
.
data
(
name
=
'prescores_type_data'
,
shape
=
[
1
],
lod_level
=
2
,
dtype
=
'int64'
,
)
fluid
.
layers
.
beam_search
(
pre_ids
=
pre_ids
,
pre_scores
=
prescores_type_data
,
ids
=
topk_indices
,
scores
=
accu_scores
,
beam_size
=
4
,
end_id
=
1
,
)
self
.
assertRaises
(
TypeError
,
test_prescores_dtype
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_rnn_decode_api.py
浏览文件 @
b5ab8979
...
@@ -141,25 +141,17 @@ class Decoder:
...
@@ -141,25 +141,17 @@ class Decoder:
**
kwargs
**
kwargs
):
):
output_layer
=
kwargs
.
pop
(
"output_layer"
,
None
)
output_layer
=
kwargs
.
pop
(
"output_layer"
,
None
)
if
self
.
decoding_strategy
==
"train_greedy"
:
# for teach-forcing MLE pre-training
beam_size
=
kwargs
.
get
(
"beam_size"
,
4
)
helper
=
layers
.
TrainingHelper
(
**
kwargs
)
encoder_output
=
BeamSearchDecoder
.
tile_beam_merge_with_batch
(
elif
self
.
decoding_strategy
==
"infer_sample"
:
encoder_output
,
beam_size
helper
=
layers
.
SampleEmbeddingHelper
(
**
kwargs
)
)
elif
self
.
decoding_strategy
==
"infer_greedy"
:
encoder_padding_mask
=
BeamSearchDecoder
.
tile_beam_merge_with_batch
(
helper
=
layers
.
GreedyEmbeddingHelper
(
**
kwargs
)
encoder_padding_mask
,
beam_size
)
if
self
.
decoding_strategy
==
"beam_search"
:
decoder
=
BeamSearchDecoder
(
beam_size
=
kwargs
.
get
(
"beam_size"
,
4
)
cell
=
self
.
decoder_cell
,
output_fn
=
output_layer
,
**
kwargs
encoder_output
=
BeamSearchDecoder
.
tile_beam_merge_with_batch
(
)
encoder_output
,
beam_size
)
encoder_padding_mask
=
BeamSearchDecoder
.
tile_beam_merge_with_batch
(
encoder_padding_mask
,
beam_size
)
decoder
=
BeamSearchDecoder
(
cell
=
self
.
decoder_cell
,
output_fn
=
output_layer
,
**
kwargs
)
(
(
decoder_output
,
decoder_output
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录