Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
b4d931e8
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b4d931e8
编写于
3月 02, 2022
作者:
Q
qipengh
提交者:
GitHub
3月 02, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU] adapt matmul op (#39727)
* [MLU] adapt matmul op * [MLU] fix phi namespace
上级
9070d5c5
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
671 addition
and
1 deletion
+671
-1
paddle/fluid/imperative/CMakeLists.txt
paddle/fluid/imperative/CMakeLists.txt
+5
-1
paddle/fluid/operators/matmul_op_mlu.cc
paddle/fluid/operators/matmul_op_mlu.cc
+337
-0
python/paddle/fluid/tests/unittests/mlu/test_matmul_op_mlu.py
...on/paddle/fluid/tests/unittests/mlu/test_matmul_op_mlu.py
+329
-0
未找到文件。
paddle/fluid/imperative/CMakeLists.txt
浏览文件 @
b4d931e8
...
@@ -46,8 +46,12 @@ if(WITH_GLOO)
...
@@ -46,8 +46,12 @@ if(WITH_GLOO)
endif
()
endif
()
endif
()
endif
()
if
(
WITH_MLU
)
SET
(
MLU_DEPS mlu_baseop
)
endif
()
if
(
NOT WITH_ASCEND_CL
)
if
(
NOT WITH_ASCEND_CL
)
cc_library
(
gradient_accumulator SRCS gradient_accumulator.cc DEPS blas operator lod_tensor selected_rows_utils selected_rows_functor var_type_traits layer math_function phi_tensor
)
cc_library
(
gradient_accumulator SRCS gradient_accumulator.cc DEPS blas operator lod_tensor selected_rows_utils selected_rows_functor var_type_traits layer math_function phi_tensor
${
MLU_DEPS
}
)
else
()
else
()
cc_library
(
gradient_accumulator SRCS gradient_accumulator.cc DEPS blas operator lod_tensor selected_rows_utils selected_rows_functor var_type_traits layer math_function npu_op_runner phi_tensor
)
cc_library
(
gradient_accumulator SRCS gradient_accumulator.cc DEPS blas operator lod_tensor selected_rows_utils selected_rows_functor var_type_traits layer math_function npu_op_runner phi_tensor
)
endif
()
endif
()
...
...
paddle/fluid/operators/matmul_op_mlu.cc
0 → 100644
浏览文件 @
b4d931e8
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
static
void
Mul
(
const
framework
::
ExecutionContext
&
ctx
,
const
Tensor
&
X
,
const
Tensor
&
Y
,
Tensor
*
Out
,
const
float
alpha
)
{
Out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
x_desc
(
X
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
y_desc
(
Y
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
out_desc
(
*
Out
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
<
T
>
());
MLUCnnlOpTensorDesc
mul_op_desc
(
CNNL_OP_TENSOR_MUL
,
ToCnnlDataType
<
T
>
(),
CNNL_NOT_PROPAGATE_NAN
);
MLUCnnl
::
OpTensor
(
ctx
,
mul_op_desc
.
get
(),
x_desc
.
get
(),
GetBasePtr
(
&
X
),
y_desc
.
get
(),
GetBasePtr
(
&
Y
),
out_desc
.
get
(),
GetBasePtr
(
Out
),
ToCnnlDataType
<
T
>
(),
alpha
);
}
template
<
typename
T
>
static
void
MatMul2D
(
const
framework
::
ExecutionContext
&
ctx
,
const
Tensor
&
X
,
const
Tensor
&
Y
,
Tensor
*
Out
,
const
bool
trans_x
,
const
bool
trans_y
,
const
float
alpha
)
{
Out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
PADDLE_ENFORCE_LT
(
fabs
(
alpha
-
1.0
),
std
::
numeric_limits
<
float
>::
epsilon
(),
platform
::
errors
::
InvalidArgument
(
"MLU(matmul): alpha should be equal to 1.0! "
"Other values are not supported yet."
"But received alpha is %d."
,
alpha
));
MLUCnnlTensorDesc
x_desc
(
X
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
y_desc
(
Y
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
out_desc
(
*
Out
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
<
T
>
());
MLUCnnl
::
Matmul
(
ctx
,
trans_x
,
trans_y
,
x_desc
.
get
(),
GetBasePtr
(
&
X
),
y_desc
.
get
(),
GetBasePtr
(
&
Y
),
out_desc
.
get
(),
GetBasePtr
(
Out
));
}
template
<
typename
T
>
static
void
MatMulND
(
const
framework
::
ExecutionContext
&
ctx
,
const
Tensor
&
X
,
const
Tensor
&
Y
,
Tensor
*
Out
,
const
bool
trans_x
,
const
bool
trans_y
,
const
float
alpha
)
{
if
(
!
Out
->
initialized
())
{
Out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
PADDLE_ENFORCE_LT
(
fabs
(
alpha
-
1.0
),
std
::
numeric_limits
<
float
>::
epsilon
(),
platform
::
errors
::
InvalidArgument
(
"MLU(matmul): alpha should be equal to 1.0! "
"Other values are not supported yet."
"But received alpha is %d."
,
alpha
));
MLUCnnlTensorDesc
x_desc
(
X
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
y_desc
(
Y
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
out_desc
(
*
Out
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
<
T
>
());
MLUCnnl
::
BatchMatmul
(
ctx
,
trans_x
,
trans_y
,
x_desc
.
get
(),
GetBasePtr
(
&
X
),
y_desc
.
get
(),
GetBasePtr
(
&
Y
),
out_desc
.
get
(),
GetBasePtr
(
Out
));
}
template
<
typename
T
>
static
void
ReduceDims
(
const
framework
::
ExecutionContext
&
ctx
,
const
std
::
vector
<
int64_t
>&
dims
,
const
std
::
vector
<
int64_t
>&
bcast_dims
,
const
Tensor
&
in
,
Tensor
*
out
)
{
std
::
vector
<
int64_t
>
axes
;
int64_t
size
=
bcast_dims
.
size
();
int64_t
diff
=
bcast_dims
.
size
()
-
dims
.
size
();
for
(
int64_t
i
=
0
;
i
<
size
;
++
i
)
{
if
(
i
<
diff
)
{
axes
.
push_back
(
i
);
continue
;
}
if
(
bcast_dims
[
i
]
>
dims
[
i
-
diff
])
{
axes
.
push_back
(
i
);
}
}
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
in_desc
(
in
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
out_desc
(
*
out
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
<
T
>
());
std
::
vector
<
int
>
reduce_dims
(
axes
.
begin
(),
axes
.
end
());
MLUCnnlReduceDesc
reduce_desc
(
reduce_dims
,
CNNL_REDUCE_ADD
,
ToCnnlDataType
<
T
>
(),
CNNL_NOT_PROPAGATE_NAN
,
CNNL_REDUCE_NO_INDICES
,
CNNL_32BIT_INDICES
);
MLUCnnl
::
Reduce
(
ctx
,
true
/*need_workspace*/
,
reduce_desc
.
get
(),
nullptr
,
in_desc
.
get
(),
GetBasePtr
(
&
in
),
0
/*indices_size*/
,
nullptr
,
nullptr
,
out_desc
.
get
(),
GetBasePtr
(
out
));
}
template
<
typename
T
>
class
MatMulMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
X
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
Y
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
*
Out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
bool
transpose_x
=
ctx
.
Attr
<
bool
>
(
"transpose_X"
);
bool
transpose_y
=
ctx
.
Attr
<
bool
>
(
"transpose_Y"
);
float
alpha
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"alpha"
));
std
::
vector
<
int64_t
>
x_dims
=
phi
::
vectorize
(
X
->
dims
());
std
::
vector
<
int64_t
>
y_dims
=
phi
::
vectorize
(
Y
->
dims
());
std
::
vector
<
int64_t
>
out_dims
=
phi
::
vectorize
(
Out
->
dims
());
int
x_ndim
=
x_dims
.
size
();
int
y_ndim
=
y_dims
.
size
();
// Case 1: [K] x [K] = [1]
// Equal: [1, K] x [K, 1] = [1, 1] => [1]
const
bool
all_one_dim
=
(
x_ndim
==
1
&&
y_ndim
==
1
);
if
(
all_one_dim
)
{
Out
->
Resize
({
1
,
1
});
}
// Resize dim 1 to 2
Tensor
x_temp
,
y_temp
;
x_temp
.
ShareDataWith
(
*
X
);
y_temp
.
ShareDataWith
(
*
Y
);
if
(
x_ndim
==
1
)
{
x_dims
.
insert
(
x_dims
.
begin
(),
1
);
x_temp
.
Resize
(
phi
::
make_ddim
(
x_dims
));
x_ndim
=
2
;
// matmul op of mlu needs `std::max(x->dim, y->dim) == out->dim`
if
(
out_dims
.
size
()
<
y_dims
.
size
())
{
std
::
vector
<
int64_t
>
temp_out_dims
(
out_dims
.
begin
(),
out_dims
.
end
());
temp_out_dims
.
insert
(
temp_out_dims
.
end
()
-
1
,
1
);
Out
->
Resize
(
phi
::
make_ddim
(
temp_out_dims
));
}
}
if
(
y_ndim
==
1
)
{
y_dims
.
push_back
(
1
);
y_temp
.
Resize
(
phi
::
make_ddim
(
y_dims
));
y_ndim
=
2
;
// matmul op of mlu needs `std::max(x->dim, y->dim) == out->dim`
if
(
out_dims
.
size
()
<
x_dims
.
size
())
{
std
::
vector
<
int64_t
>
temp_out_dims
(
out_dims
.
begin
(),
out_dims
.
end
());
temp_out_dims
.
push_back
(
1
);
Out
->
Resize
(
phi
::
make_ddim
(
temp_out_dims
));
}
}
const
int
K
=
transpose_x
?
x_dims
[
x_ndim
-
2
]
:
x_dims
[
x_ndim
-
1
];
if
(
transpose_y
)
{
PADDLE_ENFORCE_EQ
(
y_dims
[
y_ndim
-
1
],
K
,
platform
::
errors
::
InvalidArgument
(
"Input(Y) has error dim."
"Y'dims[%d] must be equal to %d"
"But received Y'dims[%d] is %d"
,
y_ndim
-
1
,
K
,
y_ndim
-
1
,
y_dims
[
y_ndim
-
1
]));
}
else
{
PADDLE_ENFORCE_EQ
(
y_dims
[
y_ndim
-
2
],
K
,
platform
::
errors
::
InvalidArgument
(
"Input(Y) has error dim."
"Y'dims[%d] must be equal to %d"
"But received Y'dims[%d] is %d"
,
y_ndim
-
2
,
K
,
y_ndim
-
2
,
y_dims
[
y_ndim
-
2
]));
}
if
(
x_ndim
==
2
&&
y_ndim
==
2
)
{
// Case 2: [M, K] x [K, N] = [M, N]
MatMul2D
<
T
>
(
ctx
,
x_temp
,
y_temp
,
Out
,
transpose_x
,
transpose_y
,
alpha
);
}
else
{
// Case 3: [B, M, K] x [K, N] = [B, M, N]
// Case 4: [B, M, K] x [B, K, N] = [B, M, N]
MatMulND
<
T
>
(
ctx
,
x_temp
,
y_temp
,
Out
,
transpose_x
,
transpose_y
,
alpha
);
}
if
(
phi
::
vectorize
(
Out
->
dims
())
!=
out_dims
)
{
Out
->
Resize
(
phi
::
make_ddim
(
out_dims
));
}
}
};
template
<
typename
T
>
class
MatMulGradMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
X
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
Y
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
*
dOut
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dX
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dY
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
bool
transpose_x
=
ctx
.
Attr
<
bool
>
(
"transpose_X"
);
bool
transpose_y
=
ctx
.
Attr
<
bool
>
(
"transpose_Y"
);
float
alpha
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"alpha"
));
std
::
vector
<
int64_t
>
x_dims
=
phi
::
vectorize
(
X
->
dims
());
std
::
vector
<
int64_t
>
y_dims
=
phi
::
vectorize
(
Y
->
dims
());
std
::
vector
<
int64_t
>
out_dims
=
phi
::
vectorize
(
dOut
->
dims
());
int
x_ndim
=
x_dims
.
size
();
int
y_ndim
=
y_dims
.
size
();
int
out_ndim
=
out_dims
.
size
();
// Case 1: [K] x [K] = [1]
if
(
x_ndim
==
1
&&
y_ndim
==
1
)
{
if
(
dX
)
{
Mul
<
T
>
(
ctx
,
*
dOut
,
*
Y
,
dX
,
alpha
);
}
if
(
dY
)
{
Mul
<
T
>
(
ctx
,
*
dOut
,
*
X
,
dY
,
alpha
);
}
return
;
}
// Resize dim 1 to 2
Tensor
x_temp
,
y_temp
,
dout_temp
;
x_temp
.
ShareDataWith
(
*
X
);
y_temp
.
ShareDataWith
(
*
Y
);
dout_temp
.
ShareDataWith
(
*
dOut
);
if
(
x_ndim
==
1
)
{
x_dims
.
insert
(
x_dims
.
begin
(),
1
);
out_dims
.
insert
(
out_dims
.
end
()
-
1
,
1
);
x_temp
.
Resize
(
phi
::
make_ddim
(
x_dims
));
dout_temp
.
Resize
(
phi
::
make_ddim
(
out_dims
));
x_ndim
=
2
;
out_ndim
+=
1
;
}
if
(
y_ndim
==
1
)
{
y_dims
.
push_back
(
1
);
out_dims
.
push_back
(
1
);
y_temp
.
Resize
(
phi
::
make_ddim
(
y_dims
));
dout_temp
.
Resize
(
phi
::
make_ddim
(
out_dims
));
y_ndim
=
2
;
out_ndim
+=
1
;
}
// Case 2: [M, K] x [K, N] = [M, N]
if
(
out_ndim
==
2
)
{
if
(
dX
)
{
dX
->
Resize
(
phi
::
make_ddim
(
x_dims
));
if
(
transpose_x
)
{
MatMul2D
<
T
>
(
ctx
,
y_temp
,
dout_temp
,
dX
,
transpose_y
,
true
,
alpha
);
}
else
{
MatMul2D
<
T
>
(
ctx
,
dout_temp
,
y_temp
,
dX
,
false
,
!
transpose_y
,
alpha
);
}
dX
->
Resize
(
X
->
dims
());
}
if
(
dY
)
{
dY
->
Resize
(
phi
::
make_ddim
(
y_dims
));
if
(
transpose_y
)
{
MatMul2D
<
T
>
(
ctx
,
dout_temp
,
x_temp
,
dY
,
true
,
transpose_x
,
alpha
);
}
else
{
MatMul2D
<
T
>
(
ctx
,
x_temp
,
dout_temp
,
dY
,
!
transpose_x
,
false
,
alpha
);
}
dY
->
Resize
(
Y
->
dims
());
}
return
;
}
// Case 3: [B, M, K] x [K, N] = [B, M, N]
// Case 4: [B, M, K] x [B, K, N] = [B, M, N]
std
::
vector
<
int64_t
>
x_bcast_dims
(
out_ndim
,
1
);
std
::
vector
<
int64_t
>
y_bcast_dims
(
out_ndim
,
1
);
std
::
copy
(
out_dims
.
begin
(),
out_dims
.
end
()
-
2
,
x_bcast_dims
.
begin
());
std
::
copy
(
out_dims
.
begin
(),
out_dims
.
end
()
-
2
,
y_bcast_dims
.
begin
());
std
::
copy
(
x_dims
.
end
()
-
2
,
x_dims
.
end
(),
x_bcast_dims
.
end
()
-
2
);
std
::
copy
(
y_dims
.
end
()
-
2
,
y_dims
.
end
(),
y_bcast_dims
.
end
()
-
2
);
if
(
dX
)
{
Tensor
dx_temp
(
X
->
type
());
if
(
x_dims
!=
x_bcast_dims
)
{
dx_temp
.
Resize
(
phi
::
make_ddim
(
x_bcast_dims
));
}
else
{
dX
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
dx_temp
.
ShareDataWith
(
*
dX
);
}
if
(
transpose_x
)
{
MatMulND
<
T
>
(
ctx
,
y_temp
,
dout_temp
,
&
dx_temp
,
transpose_y
,
true
,
alpha
);
}
else
{
MatMulND
<
T
>
(
ctx
,
dout_temp
,
y_temp
,
&
dx_temp
,
false
,
!
transpose_y
,
alpha
);
}
if
(
x_dims
!=
x_bcast_dims
)
{
ReduceDims
<
T
>
(
ctx
,
x_dims
,
x_bcast_dims
,
dx_temp
,
dX
);
}
}
if
(
dY
)
{
Tensor
dy_temp
(
Y
->
type
());
if
(
y_dims
!=
y_bcast_dims
)
{
dy_temp
.
Resize
(
phi
::
make_ddim
(
y_bcast_dims
));
}
else
{
dY
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
dy_temp
.
ShareDataWith
(
*
dY
);
}
if
(
transpose_y
)
{
MatMulND
<
T
>
(
ctx
,
dout_temp
,
x_temp
,
&
dy_temp
,
true
,
transpose_x
,
alpha
);
}
else
{
MatMulND
<
T
>
(
ctx
,
x_temp
,
dout_temp
,
&
dy_temp
,
!
transpose_x
,
false
,
alpha
);
}
if
(
y_dims
!=
y_bcast_dims
)
{
ReduceDims
<
T
>
(
ctx
,
y_dims
,
y_bcast_dims
,
dy_temp
,
dY
);
}
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
matmul
,
ops
::
MatMulMLUKernel
<
float
>
,
ops
::
MatMulMLUKernel
<
plat
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
matmul_grad
,
ops
::
MatMulGradMLUKernel
<
float
>
,
ops
::
MatMulGradMLUKernel
<
plat
::
float16
>
);
python/paddle/fluid/tests/unittests/mlu/test_matmul_op_mlu.py
0 → 100644
浏览文件 @
b4d931e8
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
paddle
.
enable_static
()
SEED
=
2022
def
reference_matmul
(
X
,
Y
,
transpose_X
=
False
,
transpose_Y
=
False
,
scale
=
1.0
):
"""Reference forward implementation using np.matmul."""
# np.matmul does not support the transpose flags, so we manually
# transpose X and Y appropriately.
if
transpose_X
:
if
X
.
ndim
==
1
:
X
=
X
.
reshape
((
X
.
size
,
))
elif
X
.
ndim
==
2
:
X
=
X
.
T
else
:
dim
=
[
i
for
i
in
range
(
len
(
X
.
shape
))]
dim
[
-
1
],
dim
[
len
(
X
.
shape
)
-
2
]
=
dim
[
len
(
X
.
shape
)
-
2
],
dim
[
-
1
]
X
=
np
.
transpose
(
X
,
tuple
(
dim
))
if
transpose_Y
:
if
Y
.
ndim
==
1
:
Y
=
Y
.
reshape
((
Y
.
size
,
))
else
:
dim
=
[
i
for
i
in
range
(
len
(
Y
.
shape
))]
dim
[
-
1
],
dim
[
len
(
Y
.
shape
)
-
2
]
=
dim
[
len
(
Y
.
shape
)
-
2
],
dim
[
-
1
]
Y
=
np
.
transpose
(
Y
,
tuple
(
dim
))
Out
=
np
.
matmul
(
X
,
Y
)
if
not
Out
.
shape
:
# We do not support 0-dimensional Tensors (scalars). So where
# np.matmul outputs a scalar, we must convert to a Tensor of
# shape (1, ) instead.
# Everywhere else, we are compatible with np.matmul.
Out
=
np
.
array
([
Out
],
dtype
=
"float64"
)
if
abs
(
scale
-
1.0
)
>
1e-09
:
Out
=
Out
*
scale
return
Out
class
TestMatMulOp
(
OpTest
):
"""
basic case
"""
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"matmul"
self
.
init_dtype
()
self
.
init_alpha
()
self
.
config
()
X
=
np
.
random
.
random
(
self
.
x_shape
).
astype
(
self
.
dtype
)
Y
=
np
.
random
.
random
(
self
.
y_shape
).
astype
(
self
.
dtype
)
# -0.1 ~ 0.1
X
=
-
0.1
+
0.2
*
X
Y
=
-
0.1
+
0.2
*
Y
Out
=
reference_matmul
(
X
,
Y
,
self
.
transpose_X
,
self
.
transpose_Y
,
self
.
alpha
)
Out
=
Out
.
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
X
,
'Y'
:
Y
}
self
.
attrs
=
{
'transpose_X'
:
self
.
transpose_X
,
'transpose_Y'
:
self
.
transpose_Y
,
'alpha'
:
self
.
alpha
}
self
.
outputs
=
{
'Out'
:
Out
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
def
config
(
self
):
self
.
x_shape
=
(
100
,
)
self
.
y_shape
=
(
100
,
)
self
.
transpose_X
=
False
self
.
transpose_Y
=
False
def
init_alpha
(
self
):
self
.
alpha
=
1.0
def
init_dtype
(
self
):
self
.
dtype
=
"float32"
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-7
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
,
'Y'
],
'Out'
)
class
TestMatMulOp1
(
TestMatMulOp
):
"""
case x_ndim == 1, y_ndim != 1
"""
def
config
(
self
):
self
.
x_shape
=
(
100
,
)
self
.
y_shape
=
(
1
,
3
,
2
,
100
)
self
.
transpose_X
=
False
self
.
transpose_Y
=
True
class
TestMatMulOp2
(
TestMatMulOp
):
"""
case x_ndim != 1, y_ndim == 1
"""
def
config
(
self
):
self
.
x_shape
=
(
1
,
2
,
100
,
1
)
self
.
y_shape
=
(
100
,
)
self
.
transpose_X
=
True
self
.
transpose_Y
=
False
class
TestMatMulOp3
(
TestMatMulOp
):
"""
case [M, K] x [K, N] = [M, N]
"""
def
config
(
self
):
self
.
x_shape
=
(
2
,
100
)
self
.
y_shape
=
(
100
,
2
)
self
.
transpose_X
=
False
self
.
transpose_Y
=
False
class
TestMatMulOp4
(
TestMatMulOp
):
"""
case [M, K] x [K, N] = [M, N]
"""
def
config
(
self
):
self
.
x_shape
=
(
2
,
100
)
self
.
y_shape
=
(
2
,
100
)
self
.
transpose_X
=
False
self
.
transpose_Y
=
True
class
TestMatMulOp5
(
TestMatMulOp
):
"""
case [M, K] x [K, N] = [M, N]
"""
def
config
(
self
):
self
.
x_shape
=
(
100
,
2
)
self
.
y_shape
=
(
100
,
2
)
self
.
transpose_X
=
True
self
.
transpose_Y
=
False
class
TestMatMulOp6
(
TestMatMulOp
):
"""
case [B, M, K] x [K, N] = [B, M, N]
"""
def
config
(
self
):
self
.
x_shape
=
(
2
,
2
,
25
)
self
.
y_shape
=
(
25
,
4
)
self
.
transpose_X
=
False
self
.
transpose_Y
=
False
class
TestMatMulOp7
(
TestMatMulOp
):
"""
case [B, M, K] x [K, N] = [B, M, N]
"""
def
config
(
self
):
self
.
x_shape
=
(
1
,
2
,
25
)
self
.
y_shape
=
(
4
,
25
)
self
.
transpose_X
=
False
self
.
transpose_Y
=
True
class
TestMatMulOp8
(
TestMatMulOp
):
"""
case [B, M, K] x [K, N] = [B, M, N]
"""
def
config
(
self
):
self
.
x_shape
=
(
1
,
25
,
4
)
self
.
y_shape
=
(
25
,
4
)
self
.
transpose_X
=
True
self
.
transpose_Y
=
False
class
TestMatMulOp9
(
TestMatMulOp
):
"""
case [B, M, K] x [B, K, N] = [B, M, N]
"""
def
config
(
self
):
self
.
x_shape
=
(
2
,
5
,
10
)
self
.
y_shape
=
(
2
,
10
,
5
)
self
.
transpose_X
=
False
self
.
transpose_Y
=
False
class
TestMatMulOp10
(
TestMatMulOp
):
"""
case [B, M, K] x [B, K, N] = [B, M, N]
"""
def
config
(
self
):
self
.
x_shape
=
(
2
,
10
,
5
)
self
.
y_shape
=
(
2
,
10
,
5
)
self
.
transpose_X
=
True
self
.
transpose_Y
=
False
class
TestMatMulOp11
(
TestMatMulOp
):
"""
case [B, M, K] x [B, K, N] = [B, M, N]
"""
def
config
(
self
):
self
.
x_shape
=
(
2
,
5
,
10
)
self
.
y_shape
=
(
2
,
5
,
10
)
self
.
transpose_X
=
False
self
.
transpose_Y
=
True
class
TestMatMulOp12
(
TestMatMulOp
):
"""
case to check the gradient for special case
"""
def
config
(
self
):
self
.
x_shape
=
(
100
)
self
.
y_shape
=
(
1
,
2
,
2
,
100
,
2
)
self
.
transpose_X
=
False
self
.
transpose_Y
=
False
class
TestMatMulOp13
(
TestMatMulOp
):
"""
case to check the gradient for special case
"""
def
config
(
self
):
self
.
x_shape
=
(
2
,
1
,
100
)
self
.
y_shape
=
(
100
)
self
.
transpose_X
=
False
self
.
transpose_Y
=
False
# TODO(mlu): alpha will be supported in next version
#--------------------test matmul alpha--------------------
# def create_test_alpha_class(parent):
# class TestMatMulOpAlphaCase(parent):
# def init_alpha(self):
# self.alpha = 0.125
# cls_name = "{0}_{1}".format(parent.__name__, "Alpha")
# TestMatMulOpAlphaCase.__name__ = cls_name
# globals()[cls_name] = TestMatMulOpAlphaCase
# create_test_alpha_class(TestMatMulOp)
# create_test_alpha_class(TestMatMulOp1)
# create_test_alpha_class(TestMatMulOp2)
# create_test_alpha_class(TestMatMulOp3)
# create_test_alpha_class(TestMatMulOp4)
# create_test_alpha_class(TestMatMulOp5)
# create_test_alpha_class(TestMatMulOp6)
# create_test_alpha_class(TestMatMulOp9)
# create_test_alpha_class(TestMatMulOp10)
# create_test_alpha_class(TestMatMulOp11)
# create_test_alpha_class(TestMatMulOp12)
# create_test_alpha_class(TestMatMulOp13)
#--------------------test matmul fp16--------------------
def
create_test_fp16_class
(
parent
,
atol
=
0.001
,
max_relative_error
=
2.5
):
class
TestMatMulOpFp16Case
(
parent
):
def
init_kernel_type
(
self
):
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
atol
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
max_relative_error
)
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"Fp16"
)
TestMatMulOpFp16Case
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestMatMulOpFp16Case
create_test_fp16_class
(
TestMatMulOp
)
create_test_fp16_class
(
TestMatMulOp1
)
create_test_fp16_class
(
TestMatMulOp2
)
create_test_fp16_class
(
TestMatMulOp3
)
create_test_fp16_class
(
TestMatMulOp4
)
create_test_fp16_class
(
TestMatMulOp5
)
create_test_fp16_class
(
TestMatMulOp6
)
create_test_fp16_class
(
TestMatMulOp9
)
create_test_fp16_class
(
TestMatMulOp10
)
create_test_fp16_class
(
TestMatMulOp11
)
create_test_fp16_class
(
TestMatMulOp12
)
create_test_fp16_class
(
TestMatMulOp13
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录