Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
b4adbe5c
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b4adbe5c
编写于
4月 19, 2022
作者:
Y
Yiqun Liu
提交者:
GitHub
4月 19, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Cherry-pick 2.3] Autotune the workspace and kernel choosing of conv (#41833)
Cherry-pick #40338 #41741 #41313
上级
a9d8b947
变更
28
展开全部
隐藏空白更改
内联
并排
Showing
28 changed file
with
1178 addition
and
839 deletion
+1178
-839
paddle/fluid/eager/CMakeLists.txt
paddle/fluid/eager/CMakeLists.txt
+1
-1
paddle/fluid/framework/conv_search_cache.h
paddle/fluid/framework/conv_search_cache.h
+0
-1
paddle/fluid/imperative/CMakeLists.txt
paddle/fluid/imperative/CMakeLists.txt
+2
-2
paddle/fluid/operators/conv_base_helper.h
paddle/fluid/operators/conv_base_helper.h
+113
-0
paddle/fluid/operators/conv_cudnn_helper.h
paddle/fluid/operators/conv_cudnn_helper.h
+594
-443
paddle/fluid/operators/conv_cudnn_op_cache.h
paddle/fluid/operators/conv_cudnn_op_cache.h
+1
-1
paddle/fluid/operators/conv_miopen_helper.h
paddle/fluid/operators/conv_miopen_helper.h
+3
-69
paddle/fluid/operators/fused/fusion_conv_inception_op.cu
paddle/fluid/operators/fused/fusion_conv_inception_op.cu
+0
-2
paddle/fluid/platform/device/gpu/gpu_info.cc
paddle/fluid/platform/device/gpu/gpu_info.cc
+4
-0
paddle/fluid/platform/device_context.cc
paddle/fluid/platform/device_context.cc
+4
-3
paddle/fluid/platform/flags.cc
paddle/fluid/platform/flags.cc
+12
-4
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+2
-4
paddle/phi/backends/gpu/gpu_context.cc
paddle/phi/backends/gpu/gpu_context.cc
+37
-3
paddle/phi/backends/gpu/gpu_context.h
paddle/phi/backends/gpu/gpu_context.h
+8
-8
paddle/phi/kernels/CMakeLists.txt
paddle/phi/kernels/CMakeLists.txt
+9
-5
paddle/phi/kernels/autotune/CMakeLists.txt
paddle/phi/kernels/autotune/CMakeLists.txt
+5
-4
paddle/phi/kernels/autotune/cache.cc
paddle/phi/kernels/autotune/cache.cc
+37
-0
paddle/phi/kernels/autotune/cache.h
paddle/phi/kernels/autotune/cache.h
+56
-40
paddle/phi/kernels/autotune/cache_test.cc
paddle/phi/kernels/autotune/cache_test.cc
+1
-1
paddle/phi/kernels/autotune/switch_autotune.cc
paddle/phi/kernels/autotune/switch_autotune.cc
+74
-0
paddle/phi/kernels/autotune/switch_autotune.h
paddle/phi/kernels/autotune/switch_autotune.h
+32
-62
paddle/phi/kernels/gpudnn/conv_grad_grad_kernel.cu
paddle/phi/kernels/gpudnn/conv_grad_grad_kernel.cu
+34
-37
paddle/phi/kernels/gpudnn/conv_grad_kernel.cu
paddle/phi/kernels/gpudnn/conv_grad_kernel.cu
+22
-21
paddle/phi/kernels/gpudnn/conv_kernel.cu
paddle/phi/kernels/gpudnn/conv_kernel.cu
+8
-10
paddle/phi/kernels/gpudnn/conv_transpose_grad_kernel.cu
paddle/phi/kernels/gpudnn/conv_transpose_grad_kernel.cu
+51
-56
paddle/phi/kernels/gpudnn/conv_transpose_kernel.cu
paddle/phi/kernels/gpudnn/conv_transpose_kernel.cu
+8
-5
paddle/phi/kernels/impl/conv_cudnn_impl.h
paddle/phi/kernels/impl/conv_cudnn_impl.h
+1
-1
python/paddle/fluid/tests/unittests/test_switch_autotune.py
python/paddle/fluid/tests/unittests/test_switch_autotune.py
+59
-56
未找到文件。
paddle/fluid/eager/CMakeLists.txt
浏览文件 @
b4adbe5c
...
...
@@ -15,7 +15,7 @@ if(NOT ((NOT WITH_PYTHON) AND ON_INFER))
add_subdirectory
(
pylayer
)
cc_library
(
grad_tensor_holder SRCS grad_tensor_holder.cc DEPS grad_node_info gradient_accumulator
)
add_dependencies
(
grad_tensor_holder eager_final_state_codegen
)
cc_library
(
backward SRCS backward.cc DEPS grad_tensor_holder utils autograd_meta grad_node_info
)
cc_library
(
backward SRCS backward.cc DEPS grad_tensor_holder utils autograd_meta grad_node_info
switch_autotune
)
endif
()
cc_library
(
grad_node_info SRCS grad_node_info.cc DEPS phi_api phi_tensor
)
...
...
paddle/fluid/framework/conv_search_cache.h
浏览文件 @
b4adbe5c
...
...
@@ -16,7 +16,6 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator_kernel_configs.h"
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
namespace
paddle
{
...
...
paddle/fluid/imperative/CMakeLists.txt
浏览文件 @
b4adbe5c
...
...
@@ -9,8 +9,8 @@ cc_library(layer SRCS layer.cc DEPS prepared_operator math_function imperative_f
add_subdirectory
(
jit
)
cc_library
(
amp SRCS amp_auto_cast.cc DEPS layer var_helper
)
cc_library
(
tracer SRCS tracer.cc DEPS layer engine program_desc_tracer amp denormal garbage_collector var_helper
)
cc_library
(
basic_engine SRCS basic_engine.cc DEPS layer gradient_accumulator
)
cc_library
(
engine SRCS basic_engine.cc partial_grad_engine.cc DEPS layer gradient_accumulator
)
cc_library
(
basic_engine SRCS basic_engine.cc DEPS layer gradient_accumulator
switch_autotune
)
cc_library
(
engine SRCS basic_engine.cc partial_grad_engine.cc DEPS layer gradient_accumulator
switch_autotune
)
cc_library
(
imperative_profiler SRCS profiler.cc DEPS flags
)
if
(
NOT WIN32
)
if
(
WITH_NCCL OR WITH_RCCL
)
...
...
paddle/fluid/operators/conv_base_helper.h
0 → 100644
浏览文件 @
b4adbe5c
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <array>
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/conv_search_cache.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/kernels/autotune/cache.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
DataLayout
=
platform
::
DataLayout
;
using
framework
::
AlgorithmsCache
;
using
framework
::
ConvSearchCache
;
template
<
typename
T
>
using
ScalingParamType
=
typename
platform
::
CudnnDataType
<
T
>::
ScalingParamType
;
// As the basic for SearchAlgorithm struct.
template
<
typename
PerfT
>
struct
SearchAlgorithm
{};
// As the container of searchAlgorithm::Find() result.
template
<
typename
AlgoT
>
struct
SearchResult
{
SearchResult
()
{}
explicit
SearchResult
(
AlgoT
a
)
:
algo
(
a
)
{}
AlgoT
algo
=
static_cast
<
AlgoT
>
(
0
);
float
time
=
-
1.
f
;
size_t
workspace_size
=
0
;
};
template
<
typename
T
>
static
std
::
ostream
&
operator
<<
(
std
::
ostream
&
out
,
const
std
::
vector
<
T
>&
v
)
{
out
<<
"["
;
for
(
auto
const
&
tmp
:
v
)
out
<<
tmp
<<
","
;
out
<<
"]"
;
return
out
;
}
// As the container of conv relevant descriptors.
template
<
typename
HandleT
,
typename
DataT
>
struct
ConvArgsBase
{
HandleT
handle
;
platform
::
TensorDescriptor
idesc
,
odesc
;
platform
::
FilterDescriptor
wdesc
;
platform
::
ConvolutionDescriptor
cdesc
;
const
framework
::
Tensor
*
x
,
*
w
,
*
o
;
DataT
cudnn_dtype
;
// strides
std
::
vector
<
int
>
s
;
// paddings
std
::
vector
<
int
>
p
;
// dilations
std
::
vector
<
int
>
d
;
ConvArgsBase
(
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
w
,
const
framework
::
Tensor
*
o
,
const
std
::
vector
<
int
>
s
,
const
std
::
vector
<
int
>
p
,
const
std
::
vector
<
int
>
d
,
DataT
dtype
)
:
x
(
x
),
w
(
w
),
o
(
o
),
s
(
s
),
p
(
p
),
d
(
d
),
cudnn_dtype
(
dtype
)
{}
template
<
typename
T
>
size_t
GetCacheKey
()
const
{
auto
x_shape
=
phi
::
vectorize
(
x
->
dims
());
auto
w_shape
=
phi
::
vectorize
(
w
->
dims
());
VLOG
(
10
)
<<
"[ConvArgs] x_dims="
<<
x_shape
<<
", w_dims="
<<
w_shape
<<
", strides="
<<
s
<<
", paddings="
<<
p
<<
", dilations="
<<
d
;
return
phi
::
autotune
::
ConvKey
(
x_shape
,
w_shape
,
p
,
s
,
d
,
paddle
::
experimental
::
CppTypeToDataType
<
T
>::
Type
());
}
};
static
inline
void
GetNCDHW
(
const
framework
::
DDim
&
dims
,
const
DataLayout
&
layout
,
int
*
N
,
int
*
C
,
int
*
D
,
int
*
H
,
int
*
W
)
{
*
N
=
dims
[
0
];
*
C
=
layout
==
DataLayout
::
kNCHW
?
dims
[
1
]
:
dims
[
dims
.
size
()
-
1
];
int
i
=
layout
==
DataLayout
::
kNCHW
?
0
:
1
;
if
(
dims
.
size
()
==
5
)
{
*
D
=
dims
[
2
-
i
];
*
H
=
dims
[
3
-
i
];
*
W
=
dims
[
4
-
i
];
}
else
{
*
D
=
1
;
*
H
=
dims
[
2
-
i
];
*
W
=
dims
[
3
-
i
];
}
}
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/conv_cudnn_helper.h
浏览文件 @
b4adbe5c
此差异已折叠。
点击以展开。
paddle/fluid/operators/conv_cudnn_op_cache.h
浏览文件 @
b4adbe5c
...
...
@@ -20,7 +20,7 @@ limitations under the License. */
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
DECLARE_
u
int64
(
conv_workspace_size_limit
);
DECLARE_int64
(
conv_workspace_size_limit
);
DECLARE_bool
(
cudnn_exhaustive_search
);
DECLARE_int64
(
cudnn_exhaustive_search_times
);
...
...
paddle/fluid/operators/conv_miopen_helper.h
浏览文件 @
b4adbe5c
...
...
@@ -14,42 +14,12 @@ limitations under the License. */
#pragma once
#include <algorithm>
#include <array>
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/conv_search_cache.h"
#include "paddle/fluid/framework/operator_kernel_configs.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/fluid/operators/conv_base_helper.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
DataLayout
=
platform
::
DataLayout
;
template
<
typename
T
>
using
ScalingParamType
=
typename
platform
::
CudnnDataType
<
T
>::
ScalingParamType
;
using
framework
::
AlgorithmsCache
;
static
inline
void
GetNCDHW
(
const
framework
::
DDim
&
dims
,
const
DataLayout
&
layout
,
int
*
N
,
int
*
C
,
int
*
D
,
int
*
H
,
int
*
W
)
{
*
N
=
dims
[
0
];
*
C
=
layout
==
DataLayout
::
kNCHW
?
dims
[
1
]
:
dims
[
dims
.
size
()
-
1
];
int
i
=
layout
==
DataLayout
::
kNCHW
?
0
:
1
;
if
(
dims
.
size
()
==
5
)
{
*
D
=
dims
[
2
-
i
];
*
H
=
dims
[
3
-
i
];
*
W
=
dims
[
4
-
i
];
}
else
{
*
D
=
1
;
*
H
=
dims
[
2
-
i
];
*
W
=
dims
[
3
-
i
];
}
}
using
ConvArgs
=
ConvArgsBase
<
miopenHandle_t
,
miopenDataType_t
>
;
template
<
typename
DeviceContext
,
typename
T
,
size_t
D
>
static
void
RemovePaddingSlice
(
const
phi
::
GPUContext
&
context
,
...
...
@@ -66,9 +36,8 @@ static void RemovePaddingSlice(const phi::GPUContext& context,
extents
[
i
]
=
new_out_dims
[
i
];
}
int
start
;
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
++
i
)
{
start
=
starts
[
i
];
int
start
=
starts
[
i
];
if
(
start
<
0
)
{
start
=
(
start
+
in_dims
[
axes
[
i
]]);
}
...
...
@@ -85,41 +54,6 @@ static void RemovePaddingSlice(const phi::GPUContext& context,
out_t
.
device
(
place
)
=
in_t
.
slice
(
offsets
,
extents
);
}
template
<
typename
T
>
std
::
ostream
&
operator
<<
(
std
::
ostream
&
out
,
const
std
::
vector
<
T
>&
v
)
{
out
<<
"["
;
for
(
auto
const
&
tmp
:
v
)
out
<<
tmp
<<
","
;
out
<<
"]"
;
return
out
;
}
using
framework
::
ConvSearchCache
;
struct
ConvArgs
{
miopenHandle_t
handle
;
platform
::
TensorDescriptor
idesc
,
odesc
;
platform
::
FilterDescriptor
wdesc
;
platform
::
ConvolutionDescriptor
cdesc
;
const
framework
::
Tensor
*
x
,
*
w
,
*
o
;
miopenDataType_t
cudnn_dtype
;
// strides
std
::
vector
<
int
>
s
;
// paddings
std
::
vector
<
int
>
p
;
// dilations
std
::
vector
<
int
>
d
;
ConvArgs
(
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
w
,
const
framework
::
Tensor
*
o
,
const
std
::
vector
<
int
>
s
,
const
std
::
vector
<
int
>
p
,
const
std
::
vector
<
int
>
d
,
miopenDataType_t
dtype
)
:
x
(
x
),
w
(
w
),
o
(
o
),
s
(
s
),
p
(
p
),
d
(
d
),
cudnn_dtype
(
dtype
)
{}
};
template
<
typename
algo_t
>
struct
SearchAlgorithm
{};
template
<
>
struct
SearchAlgorithm
<
miopenConvFwdAlgorithm_t
>
{
using
perf_t
=
miopenConvAlgoPerf_t
;
...
...
paddle/fluid/operators/fused/fusion_conv_inception_op.cu
浏览文件 @
b4adbe5c
...
...
@@ -16,8 +16,6 @@ limitations under the License. */
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
DECLARE_uint64
(
conv_workspace_size_limit
);
namespace
paddle
{
namespace
operators
{
...
...
paddle/fluid/platform/device/gpu/gpu_info.cc
浏览文件 @
b4adbe5c
...
...
@@ -188,6 +188,8 @@ class RecordedGpuMallocHelper {
if
(
UNLIKELY
(
malloc_managed_memory
))
{
result
=
cudaMallocManaged
(
ptr
,
size
);
}
else
{
VLOG
(
10
)
<<
"[cudaMalloc] size="
<<
static_cast
<
double
>
(
size
)
/
(
1
<<
20
)
<<
" MB"
;
result
=
cudaMalloc
(
ptr
,
size
);
}
#endif
...
...
@@ -226,6 +228,8 @@ class RecordedGpuMallocHelper {
if
(
err
!=
hipErrorDeinitialized
)
{
#else
auto
err
=
cudaFree
(
ptr
);
VLOG
(
10
)
<<
"[cudaFree] size="
<<
static_cast
<
double
>
(
size
)
/
(
1
<<
20
)
<<
" MB"
;
if
(
err
!=
cudaErrorCudartUnloading
)
{
#endif
PADDLE_ENFORCE_GPU_SUCCESS
(
err
);
...
...
paddle/fluid/platform/device_context.cc
浏览文件 @
b4adbe5c
...
...
@@ -522,8 +522,8 @@ CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : phi::GPUContext(place) {
cuda_stream_
.
reset
(
new
stream
::
CUDAStream
(
phi
::
GPUContext
::
stream
(),
place
));
auto
&
instance
=
memory
::
allocation
::
AllocatorFacade
::
Instance
();
instance
.
SetDefaultStream
(
place
,
phi
::
GPUContext
::
stream
());
workspace_
.
reset
(
new
phi
::
DnnWorkspaceHandle
(
instance
.
GetAllocator
(
place
).
get
()));
workspace_
.
reset
(
new
phi
::
DnnWorkspaceHandle
(
instance
.
GetAllocator
(
place
).
get
(),
stream
()));
}
CUDADeviceContext
::~
CUDADeviceContext
()
=
default
;
...
...
@@ -623,7 +623,8 @@ phi::DnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
return
phi
::
DnnWorkspaceHandle
(
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
GetPlace
())
.
get
());
.
get
(),
stream
());
}
return
phi
::
GPUContext
::
cudnn_workspace_handle
();
}
...
...
paddle/fluid/platform/flags.cc
浏览文件 @
b4adbe5c
...
...
@@ -158,10 +158,9 @@ PADDLE_DEFINE_EXPORTED_bool(
* increased.
* Users need to balance memory and speed.
*/
PADDLE_DEFINE_EXPORTED_uint64
(
conv_workspace_size_limit
,
paddle
::
platform
::
kDefaultConvWorkspaceSizeLimitMB
,
"cuDNN convolution workspace limit in MB unit."
);
PADDLE_DEFINE_EXPORTED_int64
(
conv_workspace_size_limit
,
paddle
::
platform
::
kDefaultConvWorkspaceSizeLimitMB
,
"cuDNN convolution workspace limit in MB unit."
);
/**
* CUDNN related FLAG
...
...
@@ -800,3 +799,12 @@ DEFINE_bool(enable_ins_parser_file, false,
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PADDLE_DEFINE_EXPORTED_bool
(
nccl_blocking_wait
,
false
,
"nccl blocking wait"
);
#endif
/**
* Autotune related FLAG
* Name: FLAGS_use_autotune
* Since Version: 2.3.0
* Value Range: bool, default=false
* Example:
*/
PADDLE_DEFINE_EXPORTED_bool
(
use_autotune
,
false
,
"Whether enable autotune."
);
paddle/fluid/pybind/pybind.cc
浏览文件 @
b4adbe5c
...
...
@@ -4430,7 +4430,7 @@ All parameter, weight, gradient are variables in Paddle.
return
phi
::
autotune
::
AutoTuneStatus
::
Instance
().
DisableAutoTune
();
});
m
.
def
(
"autotune_range"
,
[](
int64_t
start
,
int64_t
stop
)
{
m
.
def
(
"
set_
autotune_range"
,
[](
int64_t
start
,
int64_t
stop
)
{
return
phi
::
autotune
::
AutoTuneStatus
::
Instance
().
SetAutoTuneRange
(
start
,
stop
);
});
...
...
@@ -4439,10 +4439,8 @@ All parameter, weight, gradient are variables in Paddle.
[]
{
return
phi
::
autotune
::
AutoTuneStatus
::
Instance
().
Update
();
});
m
.
def
(
"autotune_status"
,
[]
{
phi
::
autotune
::
AutoTuneCache
::
Instance
().
UpdateStatus
();
py
::
dict
res
;
res
[
"use_autotune"
]
=
phi
::
autotune
::
AutoTuneStatus
::
Instance
().
UseAutoTune
();
phi
::
autotune
::
AutoTuneCache
::
Instance
().
UpdateStatus
();
res
[
"step_id"
]
=
phi
::
autotune
::
AutoTuneStatus
::
Instance
().
StepID
();
res
[
"cache_size"
]
=
phi
::
autotune
::
AutoTuneCache
::
Instance
().
Size
();
res
[
"cache_hit_rate"
]
=
...
...
paddle/phi/backends/gpu/gpu_context.cc
浏览文件 @
b4adbe5c
...
...
@@ -12,6 +12,7 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/backends/gpu/gpu_context.h"
#include <algorithm>
#include <array>
...
...
@@ -155,6 +156,39 @@ static void StreamCallbackFunc(gpuStream_t stream,
}
// namespace internal
void
DnnWorkspaceHandle
::
RunFuncSync
(
const
std
::
function
<
void
(
void
*
)
>&
cudnn_func
,
size_t
required_workspace_bytes
,
bool
use_cached_allocation
)
{
bool
need_realloc
=
required_workspace_bytes
>
WorkspaceSize
();
if
(
need_realloc
&&
!
use_cached_allocation
)
{
void
*
workspace_ptr
=
nullptr
;
size_t
size
=
((
required_workspace_bytes
+
255
)
>>
8
)
<<
8
;
std
::
lock_guard
<
std
::
mutex
>
guard
(
*
mtx_
);
#ifdef PADDLE_WITH_HIP
auto
status
=
hipMalloc
(
&
workspace_ptr
,
size
);
#else
auto
status
=
cudaMalloc
(
&
workspace_ptr
,
size
);
#endif
if
(
status
==
gpuSuccess
)
{
cudnn_func
(
workspace_ptr
);
phi
::
backends
::
gpu
::
GpuStreamSync
(
stream_
);
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_GPU_SUCCESS
(
hipFree
(
workspace_ptr
));
#else
PADDLE_ENFORCE_GPU_SUCCESS
(
cudaFree
(
workspace_ptr
));
#endif
return
;
}
}
RunFunc
(
cudnn_func
,
required_workspace_bytes
);
if
(
need_realloc
)
{
// Release the workspace allocated in this running.
ResetWorkspace
();
}
}
void
DnnWorkspaceHandle
::
ResetWorkspace
()
{
allocation_
=
nullptr
;
}
void
DnnWorkspaceHandle
::
ReallocWorkspace
(
size_t
required_workspace_bytes
)
{
...
...
@@ -295,13 +329,13 @@ struct GPUContext::Impl {
void
InitDnnWorkspace
()
{
PD_CHECK
(
allocator_
!=
nullptr
,
"the device allocator for gpu context is nullptr."
);
workspace_
=
new
DnnWorkspaceHandle
(
allocator_
);
workspace_
=
new
DnnWorkspaceHandle
(
allocator_
,
stream_
);
}
void
DestoryInternalWorkspace
()
{
if
(
owned_
&&
workspace_
!=
nullptr
)
{
delete
workspace_
;
stream
_
=
nullptr
;
workspace
_
=
nullptr
;
}
}
...
...
@@ -313,7 +347,7 @@ struct GPUContext::Impl {
DnnWorkspaceHandle
GetDnnWorkspace
()
{
PD_CHECK
(
allocator_
!=
nullptr
,
"the device allocator for gpu context is nullptr."
);
return
DnnWorkspaceHandle
(
allocator_
);
return
DnnWorkspaceHandle
(
allocator_
,
stream_
);
}
void
InitStream
()
{
...
...
paddle/phi/backends/gpu/gpu_context.h
浏览文件 @
b4adbe5c
...
...
@@ -21,6 +21,7 @@ limitations under the License. */
#include "paddle/phi/backends/gpu/forwards.h"
#include "paddle/phi/backends/gpu/gpu_decls.h"
#include "paddle/phi/backends/gpu/gpu_helper.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/device_context.h"
...
...
@@ -28,8 +29,8 @@ namespace phi {
class
DnnWorkspaceHandle
{
public:
explicit
inline
DnnWorkspaceHandle
(
Allocator
*
allocator
)
:
allocator_
(
allocator
)
{
inline
DnnWorkspaceHandle
(
Allocator
*
allocator
,
gpuStream_t
stream
)
:
allocator_
(
allocator
)
,
stream_
(
stream
)
{
mtx_
.
reset
(
new
std
::
mutex
());
}
...
...
@@ -48,11 +49,9 @@ class DnnWorkspaceHandle {
* running the function. Currently this function is only used when cudnn
* exhaustive searching and callers have to guarantee that the input function
* is host blocking */
inline
void
RunFuncSync
(
const
std
::
function
<
void
(
void
*
)
>&
cudnn_func
,
size_t
required_workspace_bytes
)
{
RunFunc
(
cudnn_func
,
required_workspace_bytes
);
ResetWorkspace
();
}
void
RunFuncSync
(
const
std
::
function
<
void
(
void
*
)
>&
cudnn_func
,
size_t
required_workspace_bytes
,
bool
use_cached_allocation
=
true
);
inline
size_t
WorkspaceSize
()
{
if
(
allocation_
==
nullptr
)
{
...
...
@@ -70,7 +69,8 @@ class DnnWorkspaceHandle {
private:
Allocator
::
AllocationPtr
allocation_
{
nullptr
};
Allocator
*
allocator_
{
nullptr
};
Allocator
*
allocator_
{
nullptr
};
// Not owned
gpuStream_t
stream_
{
nullptr
};
// Not owned
std
::
unique_ptr
<
std
::
mutex
>
mtx_
;
};
...
...
paddle/phi/kernels/CMakeLists.txt
浏览文件 @
b4adbe5c
...
...
@@ -6,12 +6,15 @@ file(APPEND ${kernel_declare_file} "#include \"paddle/phi/core/kernel_registry.h
# phi functors and functions called by kernels
add_subdirectory
(
funcs
)
# kernel autotune
add_subdirectory
(
autotune
)
# phi depends all phi kernel targets
set_property
(
GLOBAL PROPERTY PHI_KERNELS
""
)
# [ 1. Common kernel compilation dependencies ]
set
(
COMMON_KERNEL_DEPS dense_tensor sparse_coo_tensor sparse_csr_tensor kernel_context kernel_factory arg_map_context convert_utils lod_utils custom_kernel
)
set
(
COMMON_KERNEL_DEPS
${
COMMON_KERNEL_DEPS
}
eigen_function blas math_function im2col vol2col concat_and_split_functor selected_rows_functor
)
set
(
COMMON_KERNEL_DEPS
${
COMMON_KERNEL_DEPS
}
eigen_function blas math_function im2col vol2col concat_and_split_functor selected_rows_functor
)
# remove this dep after removing fluid deps on tensor creation
set
(
COMMON_KERNEL_DEPS
${
COMMON_KERNEL_DEPS
}
phi_api_utils
)
set
(
COMMON_KERNEL_DEPS
${
COMMON_KERNEL_DEPS
}
infermeta
)
...
...
@@ -27,13 +30,17 @@ kernel_library(full_kernel DEPS ${COMMON_KERNEL_DEPS} empty_kernel)
# Some kernels depend on some targets that are not commonly used.
# These targets are not suitable for common dependencies.
# In this case, you need to manually generate them here.
set
(
MANUAL_BUILD_KERNELS cross_entropy_kernel deformable_conv_kernel deformable_conv_grad_kernel eigh_kernel
set
(
AUTOTUNE_KERNELS conv_kernel conv_grad_kernel conv_grad_grad_kernel conv_transpose_kernel conv_transpose_grad_kernel
)
set
(
MANUAL_BUILD_KERNELS
${
AUTOTUNE_KERNELS
}
cross_entropy_kernel deformable_conv_kernel deformable_conv_grad_kernel eigh_kernel
gumbel_softmax_kernel gumbel_softmax_grad_kernel hierarchical_sigmoid_kernel hierarchical_sigmoid_grad_kernel
matrix_power_kernel matrix_power_grad_kernel maxout_kernel maxout_grad_kernel pool_kernel
put_along_axis_kernel put_along_axis_grad_kernel segment_pool_kernel segment_pool_grad_kernel
softmax_kernel softmax_grad_kernel take_along_axis_kernel take_along_axis_grad_kernel
triangular_solve_grad_kernel determinant_grad_kernel reduce_sum_kernel rnn_kernel rnn_grad_kernel warpctc_kernel warpctc_grad_kernel
)
foreach
(
src
${
AUTOTUNE_KERNELS
}
)
kernel_library
(
${
src
}
DEPS
${
COMMON_KERNEL_DEPS
}
switch_autotune
)
endforeach
()
kernel_library
(
cross_entropy_kernel DEPS
${
COMMON_KERNEL_DEPS
}
softmax cross_entropy
)
kernel_library
(
deformable_conv_kernel DEPS
${
COMMON_KERNEL_DEPS
}
deformable_conv_functor
)
kernel_library
(
deformable_conv_grad_kernel DEPS
${
COMMON_KERNEL_DEPS
}
deformable_conv_functor
)
...
...
@@ -74,6 +81,3 @@ add_subdirectory(selected_rows)
copy_if_different
(
${
kernel_declare_file
}
${
kernel_declare_file_final
}
)
# For strings kernels
add_subdirectory
(
strings
)
# 5. kernel autotune
add_subdirectory
(
autotune
)
paddle/phi/kernels/autotune/CMakeLists.txt
浏览文件 @
b4adbe5c
if
(
WITH_GPU
)
nv_test
(
gpu_timer_test SRCS gpu_timer_test.cu DEPS gtest
)
nv_test
(
auto_tune_test SRCS auto_tune_test.cu DEPS gtest
)
nv_test
(
gpu_timer_test SRCS gpu_timer_test.cu DEPS gtest
)
nv_test
(
auto_tune_test SRCS auto_tune_test.cu DEPS gtest
)
elseif
(
WITH_ROCM
)
hip_test
(
gpu_timer_test SRCS gpu_timer_test.cu DEPS gtest
)
hip_test
(
auto_tune_test SRCS auto_tune_test.cu DEPS gtest
)
hip_test
(
gpu_timer_test SRCS gpu_timer_test.cu DEPS gtest
)
hip_test
(
auto_tune_test SRCS auto_tune_test.cu DEPS gtest
)
endif
()
cc_library
(
cache SRCS cache.cc DEPS boost
)
cc_library
(
switch_autotune SRCS switch_autotune.cc DEPS cache flags
)
cc_test
(
cache_test SRCS cache_test.cc DEPS gtest cache
)
paddle/phi/kernels/autotune/cache.cc
浏览文件 @
b4adbe5c
...
...
@@ -13,6 +13,8 @@
// limitations under the License.
#include "paddle/phi/kernels/autotune/cache.h"
#include <iomanip>
#include "glog/logging.h"
namespace
phi
{
namespace
autotune
{
...
...
@@ -32,5 +34,40 @@ size_t ConvKey(const std::vector<int64_t>& x_dims,
static_cast
<
int64_t
>
(
dtype
));
}
std
::
string
AlgorithmTypeString
(
int64_t
algo_type
)
{
if
(
algo_type
==
static_cast
<
int64_t
>
(
AlgorithmType
::
kConvForward
))
{
return
"conv_forward"
;
}
else
if
(
algo_type
==
static_cast
<
int64_t
>
(
AlgorithmType
::
kConvBackwardData
))
{
return
"conv_backward_data"
;
}
else
if
(
algo_type
==
static_cast
<
int64_t
>
(
AlgorithmType
::
kConvBackwardFilter
))
{
return
"conv_backward_filter"
;
}
return
std
::
to_string
(
algo_type
);
}
void
AutoTuneCache
::
UpdateStatus
()
{
int64_t
size
=
0
;
int64_t
cache_hits
=
0
;
int64_t
cache_misses
=
0
;
int
name_width
=
24
;
std
::
cout
.
setf
(
std
::
ios
::
left
);
for
(
auto
&
v
:
auto_tune_map_
)
{
VLOG
(
4
)
<<
"AlgoType: "
<<
std
::
setfill
(
' '
)
<<
std
::
setw
(
name_width
)
<<
AlgorithmTypeString
(
v
.
first
)
<<
" Cache Size: "
<<
v
.
second
.
Size
()
<<
" Hits: "
<<
v
.
second
.
CacheHits
()
<<
" Misses: "
<<
v
.
second
.
CacheMisses
()
<<
" Hit Rate: "
<<
v
.
second
.
CacheHitRate
();
size
+=
v
.
second
.
Size
();
cache_hits
+=
v
.
second
.
CacheHits
();
cache_misses
+=
v
.
second
.
CacheMisses
();
}
total_size_
=
size
;
total_cache_hits_
=
cache_hits
;
total_cache_misses_
=
cache_misses
;
}
}
// namespace autotune
}
// namespace phi
paddle/phi/kernels/autotune/cache.h
浏览文件 @
b4adbe5c
...
...
@@ -13,11 +13,12 @@
// limitations under the License.
#pragma once
#include <algorithm>
#include <mutex>
#include <numeric>
#include <unordered_map>
#include <vector>
#include "glog/logging.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/errors.h"
...
...
@@ -92,6 +93,13 @@ class AlgorithmsCache {
return
ret
;
}
void
Clean
()
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
cache_mutex_
);
hash_
.
clear
();
cache_hits_
=
0
;
cache_misses_
=
0
;
}
void
Set
(
size_t
key
,
AlgorithmT
algo
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
cache_mutex_
);
hash_
[
key
]
=
algo
;
...
...
@@ -116,15 +124,22 @@ class AlgorithmsCache {
private:
std
::
unordered_map
<
size_t
,
AlgorithmT
>
hash_
;
std
::
shared_ptr
<
std
::
mutex
>
cache_mutex_
;
int64_t
cache_hits_
=
0
;
int64_t
cache_misses_
=
0
;
int64_t
cache_hits_
{
0
};
int64_t
cache_misses_
{
0
};
};
enum
class
AlgorithmType
{
kConvForward
=
1
,
kConvBackwardData
=
2
,
kConvBackwardFilter
=
3
,
kAlgorithmCount
=
4
};
// AlgorithmsConfigKey -> AlgorithmsID
using
AlgorithmsConfigKeyMap
=
AlgorithmsCache
<
int64_t
>
;
// AlgorithmsType -> AlgorithmsCache
using
AlgorithmsTypeMap
=
std
::
unordered_map
<
std
::
string
,
AlgorithmsConfigKeyMap
>
;
using
AlgorithmsCacheMap
=
AlgorithmsCache
<
int64_t
>
;
// AlgorithmType -> AlgorithmsCache
using
AlgorithmsTypeMap
=
std
::
unordered_map
<
int64_t
,
AlgorithmsCacheMap
>
;
class
AutoTuneCache
{
public:
...
...
@@ -133,42 +148,30 @@ class AutoTuneCache {
return
autotune_cache
;
}
AlgorithmsConfigKeyMap
&
RegisterOrGet
(
const
std
::
string
&
algo_type
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
autotune_cache_mutex_
);
if
(
auto_tune_map_
.
find
(
algo_type
)
==
auto_tune_map_
.
end
())
{
AlgorithmsConfigKeyMap
cache
;
auto_tune_map_
[
algo_type
]
=
cache
;
}
return
auto_tune_map_
[
algo_type
];
AlgorithmsCacheMap
&
Get
(
const
AlgorithmType
&
algo_type
)
{
return
auto_tune_map_
[
static_cast
<
int64_t
>
(
algo_type
)];
}
void
Clean
(
float
miss_rate
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
autotune_cache_mutex_
);
// Set a small tolerance to avoid performance degradation
// due to large cache size under dynamic shape.
if
(
miss_rate
>
0.01
)
{
auto_tune_map_
.
clear
();
}
AlgorithmsCacheMap
&
GetConvForward
()
{
return
Get
(
AlgorithmType
::
kConvForward
);
}
AlgorithmsCacheMap
&
GetConvBackwardData
()
{
return
Get
(
AlgorithmType
::
kConvBackwardData
);
}
AlgorithmsCacheMap
&
GetConvBackwardFilter
()
{
return
Get
(
AlgorithmType
::
kConvBackwardFilter
);
}
void
UpdateStatus
()
{
int64_t
size
=
0
;
int64_t
cache_hits
=
0
;
int64_t
cache_misses
=
0
;
void
Clean
()
{
for
(
auto
&
v
:
auto_tune_map_
)
{
VLOG
(
4
)
<<
"AlgoType: "
<<
v
.
first
<<
" Cache Size: "
<<
v
.
second
.
Size
()
<<
" Hits: "
<<
v
.
second
.
CacheHits
()
<<
" Misses: "
<<
v
.
second
.
CacheMisses
()
<<
" Hit Rate: "
<<
v
.
second
.
CacheHitRate
();
size
+=
v
.
second
.
Size
();
cache_hits
+=
v
.
second
.
CacheHits
();
cache_misses
+=
v
.
second
.
CacheMisses
();
v
.
second
.
Clean
();
}
total_size_
=
size
;
total_cache_hits_
=
cache_hits
;
total_cache_misses_
=
cache_misses
;
}
void
UpdateStatus
();
// The number of total config cached
int64_t
Size
()
const
{
return
total_size_
;
}
...
...
@@ -183,17 +186,30 @@ class AutoTuneCache {
total_cache_hit_rate
=
static_cast
<
float
>
(
total_cache_hits_
)
/
static_cast
<
float
>
(
total_num_accesses
);
}
return
total_cache_hit_rate
;
}
private:
AutoTuneCache
()
:
autotune_cache_mutex_
(
new
std
::
mutex
())
{}
AutoTuneCache
()
:
autotune_cache_mutex_
(
new
std
::
mutex
())
{
for
(
int
i
=
1
;
i
<
static_cast
<
int
>
(
AlgorithmType
::
kAlgorithmCount
);
++
i
)
{
Register
(
static_cast
<
AlgorithmType
>
(
i
));
}
}
void
Register
(
const
AlgorithmType
&
algo_type
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
autotune_cache_mutex_
);
int64_t
key
=
static_cast
<
int64_t
>
(
algo_type
);
if
(
auto_tune_map_
.
find
(
key
)
==
auto_tune_map_
.
end
())
{
AlgorithmsCacheMap
cache
;
auto_tune_map_
[
key
]
=
cache
;
}
}
AlgorithmsTypeMap
auto_tune_map_
;
std
::
shared_ptr
<
std
::
mutex
>
autotune_cache_mutex_
;
int64_t
total_cache_hits_
=
0
;
int64_t
total_cache_misses_
=
0
;
int64_t
total_size_
=
0
;
int64_t
total_cache_hits_
{
0
}
;
int64_t
total_cache_misses_
{
0
}
;
int64_t
total_size_
{
0
}
;
};
}
// namespace autotune
...
...
paddle/phi/kernels/autotune/cache_test.cc
浏览文件 @
b4adbe5c
...
...
@@ -22,7 +22,7 @@ enum ConvAlgos { GEMMKernel = 0, CuDNNKernel_1 = 1, CuDNNKernel_2 = 2 };
TEST
(
AlgosCache
,
AlgosCache
)
{
auto
autotune_cache
=
phi
::
autotune
::
AutoTuneCache
::
Instance
();
auto
&
cache
=
autotune_cache
.
RegisterOrGet
(
"conv_fw"
);
auto
&
cache
=
autotune_cache
.
GetConvForward
(
);
std
::
vector
<
int64_t
>
x_shape
=
{
4
,
224
,
224
,
3
};
std
::
vector
<
int64_t
>
w_shape
=
{
32
,
3
,
3
,
3
};
...
...
paddle/phi/kernels/autotune/switch_autotune.cc
0 → 100644
浏览文件 @
b4adbe5c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/autotune/switch_autotune.h"
#include "gflags/gflags.h"
#include "glog/logging.h"
DECLARE_bool
(
use_autotune
);
namespace
phi
{
namespace
autotune
{
void
AutoTuneStatus
::
EnableAutoTune
()
{
FLAGS_use_autotune
=
true
;
Init
();
}
void
AutoTuneStatus
::
DisableAutoTune
()
{
FLAGS_use_autotune
=
false
;
Init
();
}
void
AutoTuneStatus
::
Update
()
{
current_steps_id_
+=
1
;
if
(
!
FLAGS_use_autotune
)
{
return
;
}
// This fuction is called when each iter finished.
if
(
current_steps_id_
+
1
<
start_step_id_
)
{
use_autotune_
=
false
;
}
else
if
(
current_steps_id_
+
1
>=
start_step_id_
&&
current_steps_id_
+
1
<
stop_step_id_
)
{
use_autotune_
=
true
;
AutoTuneCache
::
Instance
().
UpdateStatus
();
step_hit_rates_
.
push_back
(
StepHitRate
());
VLOG
(
3
)
<<
"Step ID: "
<<
current_steps_id_
<<
", Accumulative Cache Hit Rate: "
<<
static_cast
<
int
>
(
AutoTuneCache
::
Instance
().
CacheHitRate
()
*
100
)
<<
"%, Cache Size: "
<<
AutoTuneCache
::
Instance
().
Size
()
<<
", Current Step Hit Rate: "
<<
static_cast
<
int
>
(
StepHitRate
()
*
100
)
<<
"%"
;
}
else
{
use_autotune_
=
false
;
// Set a small tolerance to avoid performance degradation
// due to large cache size under dynamic shape.
// TODO(limingshu): Currently works for conv op only, this
// method shall be opimized when more ops involved in.
// float miss_rate = static_cast<float>(1) - RecentHitRate();
// if (current_steps_id_ == stop_step_id_) {
// AutoTuneCache::Instance().Clean(miss_rate);
// }
if
(
VLOG_IS_ON
(
4
))
{
AutoTuneCache
::
Instance
().
UpdateStatus
();
VLOG
(
4
)
<<
"Step ID: "
<<
current_steps_id_
<<
", Current Step Hit Rate: "
<<
static_cast
<
int
>
(
StepHitRate
()
*
100
)
<<
"%"
;
}
}
}
}
// namespace autotune
}
// namespace phi
paddle/phi/kernels/autotune/switch_autotune.h
浏览文件 @
b4adbe5c
...
...
@@ -13,10 +13,8 @@
// limitations under the License.
#pragma once
#include <cmath>
#include <mutex>
#include <numeric>
#include "glog/logging.h"
#include "paddle/phi/kernels/autotune/cache.h"
namespace
phi
{
...
...
@@ -31,45 +29,11 @@ class AutoTuneStatus {
bool
UseAutoTune
()
{
return
use_autotune_
;
}
// EnableAutoTune and DisableAutoTune Should be used for debug only.
void
EnableAutoTune
()
{
use_autotune_
=
true
;
Init
();
}
void
DisableAutoTune
()
{
use_autotune_
=
false
;
Init
();
}
// EnableAutoTune and DisableAutoTune should be used for debug only.
void
EnableAutoTune
();
void
DisableAutoTune
();
void
Update
()
{
current_steps_id_
+=
1
;
if
(
!
use_autotune_
&&
!
update_use_autotune_
)
{
return
;
}
if
(
current_steps_id_
<
start_step_id_
)
{
use_autotune_
=
false
;
}
else
if
(
current_steps_id_
>=
start_step_id_
&&
current_steps_id_
<
stop_step_id_
)
{
use_autotune_
=
true
;
AutoTuneCache
::
Instance
().
UpdateStatus
();
step_hit_rates_
.
push_back
(
StepHitRate
());
VLOG
(
3
)
<<
"Step ID "
<<
current_steps_id_
<<
", Accumulative Cache Hit Rate: "
<<
AutoTuneCache
::
Instance
().
CacheHitRate
()
<<
", Cache Size: "
<<
AutoTuneCache
::
Instance
().
Size
()
<<
", Current Step Hit Rate: "
<<
StepHitRate
();
}
else
if
(
current_steps_id_
==
stop_step_id_
)
{
use_autotune_
=
false
;
update_use_autotune_
=
false
;
// clean cache according miss rate
float
miss_rate
=
static_cast
<
float
>
(
1
)
-
RecentHitRate
();
AutoTuneCache
::
Instance
().
Clean
(
miss_rate
);
VLOG
(
3
)
<<
"Recent Miss Rate: "
<<
miss_rate
;
}
}
void
Update
();
int64_t
StepID
()
{
return
current_steps_id_
;
}
...
...
@@ -84,19 +48,25 @@ class AutoTuneStatus {
// Hit Rate of Current Step
float
StepHitRate
()
{
int64_t
current_hits
=
AutoTuneCache
::
Instance
().
CacheHits
();
int64_t
current_misses
=
AutoTuneCache
::
Instance
().
CacheMisses
();
int64_t
step_hits_
=
current_hits
-
previous_hits_
;
int64_t
step_misses_
=
current_misses
-
previous_misses_
;
float
step_hit_rate
=
0.
;
int64_t
step_num_accesses
=
step_hits_
+
step_misses_
;
if
(
step_num_accesses
!=
0
)
{
step_hit_rate
=
static_cast
<
float
>
(
step_hits_
)
/
static_cast
<
float
>
(
step_num_accesses
);
static
int64_t
last_step_id
=
-
2
;
if
(
last_step_id
!=
current_steps_id_
)
{
int64_t
current_hits
=
AutoTuneCache
::
Instance
().
CacheHits
();
int64_t
current_misses
=
AutoTuneCache
::
Instance
().
CacheMisses
();
int64_t
step_hits_
=
current_hits
-
previous_hits_
;
int64_t
step_misses_
=
current_misses
-
previous_misses_
;
float
step_hit_rate
=
0.
;
int64_t
step_num_accesses
=
step_hits_
+
step_misses_
;
if
(
step_num_accesses
!=
0
)
{
step_hit_rate
=
static_cast
<
float
>
(
step_hits_
)
/
static_cast
<
float
>
(
step_num_accesses
);
}
previous_hits_
=
current_hits
;
previous_misses_
=
current_misses
;
current_step_hit_rate_
=
step_hit_rate
;
last_step_id
=
current_steps_id_
;
}
previous_hits_
=
current_hits
;
previous_misses_
=
current_misses
;
return
step_hit_rate
;
return
current_step_hit_rate_
;
}
void
SetAutoTuneRange
(
int64_t
start
,
int64_t
stop
)
{
...
...
@@ -108,21 +78,21 @@ class AutoTuneStatus {
AutoTuneStatus
()
=
default
;
void
Init
()
{
u
pdate_use_autotune_
=
use_autotune_
;
u
se_autotune_
=
false
;
current_steps_id_
=
-
1
;
previous_hits_
=
0
;
previous_misses_
=
0
;
step_hit_rates_
.
clear
();
AutoTuneCache
::
Instance
().
Clean
(
1.0
);
AutoTuneCache
::
Instance
().
Clean
();
}
int64_t
start_step_id_
=
0
;
int64_t
st
op_step_id_
=
10
;
int64_t
current_steps_id_
=
-
1
;
bool
use_autotune_
=
false
;
bool
update_use_autotune_
=
false
;
int64_t
previous_
hits_
=
0
;
int64_t
previous_misses_
=
0
;
bool
use_autotune_
{
false
}
;
int64_t
st
art_step_id_
{
1
}
;
int64_t
stop_step_id_
{
10
}
;
int64_t
current_steps_id_
{
-
1
}
;
int64_t
previous_hits_
{
0
}
;
int64_t
previous_
misses_
{
0
}
;
float
current_step_hit_rate_
{
0.
f
}
;
std
::
vector
<
float
>
step_hit_rates_
;
};
...
...
paddle/phi/kernels/gpudnn/conv_grad_grad_kernel.cu
浏览文件 @
b4adbe5c
...
...
@@ -289,21 +289,17 @@ void ConvCudnnGradGradKernel(
dtype
};
#ifdef PADDLE_WITH_HIP
miopenConvFwdAlgorithm_t
fwd_algo1
=
static_cast
<
miopenConvFwdAlgorithm_t
>
(
0
);
miopenConvFwdAlgorithm_t
fwd_algo2
=
static_cast
<
miopenConvFwdAlgorithm_t
>
(
0
);
miopenConvBwdDataAlgorithm_t
data_algo
=
static_cast
<
miopenConvBwdDataAlgorithm_t
>
(
0
);
miopenConvBwdWeightsAlgorithm_t
filter_algo
=
static_cast
<
miopenConvBwdWeightsAlgorithm_t
>
(
0
);
paddle
::
operators
::
SearchResult
<
miopenConvFwdAlgorithm_t
>
fwd_result1
;
paddle
::
operators
::
SearchResult
<
miopenConvFwdAlgorithm_t
>
fwd_result2
;
paddle
::
operators
::
SearchResult
<
miopenConvBwdDataAlgorithm_t
>
data_result
;
paddle
::
operators
::
SearchResult
<
miopenConvBwdWeightsAlgorithm_t
>
filter_result
;
#else
cudnnConvolutionFwdAlgo_t
fwd_algo1
=
static_cast
<
cudnnConvolutionFwdAlgo_t
>
(
0
);
cudnnConvolutionFwdAlgo_t
fwd_algo2
=
static_cast
<
cudnnConvolutionFwdAlgo_t
>
(
0
);
cudnnConvolutionBwdDataAlgo_t
data_algo
=
static_cast
<
cudnnConvolutionBwdDataAlgo_t
>
(
0
);
cudnnConvolutionBwdFilterAlgo_t
filter_algo
=
static_cast
<
cudnnConvolutionBwdFilterAlgo_t
>
(
0
);
paddle
::
operators
::
SearchResult
<
cudnnConvolutionFwdAlgo_t
>
fwd_result1
;
paddle
::
operators
::
SearchResult
<
cudnnConvolutionFwdAlgo_t
>
fwd_result2
;
paddle
::
operators
::
SearchResult
<
cudnnConvolutionBwdDataAlgo_t
>
data_result
;
paddle
::
operators
::
SearchResult
<
cudnnConvolutionBwdFilterAlgo_t
>
filter_result
;
#endif
auto
layout
=
paddle
::
platform
::
GetCudnnTensorFormat
(
...
...
@@ -332,13 +328,13 @@ void ConvCudnnGradGradKernel(
using
search1
=
paddle
::
operators
::
SearchAlgorithm
<
miopenConvFwdAlgorithm_t
>
;
workspace_size
=
search1
::
GetWorkspaceSize
(
args1
);
fwd_
algo1
=
search1
::
Find
<
T
>
(
fwd_
result1
.
algo
=
search1
::
Find
<
T
>
(
args1
,
exhaustive_search
,
false
,
workspace_size
,
ctx
);
#else
using
search1
=
paddle
::
operators
::
SearchAlgorithm
<
cudnnConvolutionFwdAlgoPerf_t
>
;
fwd_
algo
1
=
search1
::
Find
<
T
>
(
args1
,
exhaustive_search
,
false
,
ctx
);
workspace_size
=
search1
::
GetWorkspaceSize
(
args1
,
fwd_
algo1
);
fwd_
result
1
=
search1
::
Find
<
T
>
(
args1
,
exhaustive_search
,
false
,
ctx
);
workspace_size
=
search1
::
GetWorkspaceSize
(
args1
,
fwd_
result1
.
algo
);
#endif
}
...
...
@@ -360,14 +356,14 @@ void ConvCudnnGradGradKernel(
paddle
::
operators
::
SearchAlgorithm
<
miopenConvFwdAlgorithm_t
>
;
workspace_size
=
std
::
max
(
workspace_size
,
search2
::
GetWorkspaceSize
(
args2
));
fwd_
algo2
=
search2
::
Find
<
T
>
(
fwd_
result2
.
algo
=
search2
::
Find
<
T
>
(
args2
,
exhaustive_search
,
false
,
workspace_size
,
ctx
);
#else
using
search2
=
paddle
::
operators
::
SearchAlgorithm
<
cudnnConvolutionFwdAlgoPerf_t
>
;
fwd_
algo
2
=
search2
::
Find
<
T
>
(
args2
,
exhaustive_search
,
false
,
ctx
);
workspace_size
=
std
::
max
(
workspace_size
,
search2
::
GetWorkspaceSize
(
args2
,
fwd_algo2
));
fwd_
result
2
=
search2
::
Find
<
T
>
(
args2
,
exhaustive_search
,
false
,
ctx
);
workspace_size
=
std
::
max
(
workspace_size
,
search2
::
GetWorkspaceSize
(
args2
,
fwd_result2
.
algo
));
#endif
}
}
...
...
@@ -389,15 +385,15 @@ void ConvCudnnGradGradKernel(
using
search3
=
paddle
::
operators
::
SearchAlgorithm
<
miopenConvBwdWeightsAlgorithm_t
>
;
workspace_size
=
std
::
max
(
workspace_size
,
search3
::
GetWorkspaceSize
(
args3
));
filter_algo
=
search3
::
Find
<
T
>
(
filter_
result
.
algo
=
search3
::
Find
<
T
>
(
args3
,
exhaustive_search
,
deterministic
,
workspace_size
,
ctx
);
#else
using
search3
=
paddle
::
operators
::
SearchAlgorithm
<
cudnnConvolutionBwdFilterAlgoPerf_t
>
;
filter_
algo
=
filter_
result
=
search3
::
Find
<
T
>
(
args3
,
exhaustive_search
,
deterministic
,
ctx
);
workspace_size
=
std
::
max
(
workspace_size
,
search3
::
GetWorkspaceSize
(
args3
,
filter_
algo
));
workspace_size
=
std
::
max
(
workspace_size
,
search3
::
GetWorkspaceSize
(
args3
,
filter_result
.
algo
));
#endif
}
...
...
@@ -419,14 +415,15 @@ void ConvCudnnGradGradKernel(
using
search4
=
paddle
::
operators
::
SearchAlgorithm
<
miopenConvBwdDataAlgorithm_t
>
;
workspace_size
=
std
::
max
(
workspace_size
,
search4
::
GetWorkspaceSize
(
args4
));
data_algo
=
search4
::
Find
<
T
>
(
data_
result
.
algo
=
search4
::
Find
<
T
>
(
args4
,
exhaustive_search
,
deterministic
,
workspace_size
,
ctx
);
#else
using
search4
=
paddle
::
operators
::
SearchAlgorithm
<
cudnnConvolutionBwdDataAlgoPerf_t
>
;
data_algo
=
search4
::
Find
<
T
>
(
args4
,
exhaustive_search
,
deterministic
,
ctx
);
workspace_size
=
std
::
max
(
workspace_size
,
search4
::
GetWorkspaceSize
(
args4
,
data_algo
));
data_result
=
search4
::
Find
<
T
>
(
args4
,
exhaustive_search
,
deterministic
,
ctx
);
workspace_size
=
std
::
max
(
workspace_size
,
search4
::
GetWorkspaceSize
(
args4
,
data_result
.
algo
));
#endif
}
...
...
@@ -471,7 +468,7 @@ void ConvCudnnGradGradKernel(
args1
.
wdesc
.
desc
(),
w
,
args1
.
cdesc
.
desc
(),
fwd_
algo1
,
fwd_
result1
.
algo
,
&
beta
,
args1
.
odesc
.
desc
(),
transformed_ddy_channel
,
...
...
@@ -492,7 +489,7 @@ void ConvCudnnGradGradKernel(
args1
.
wdesc
.
desc
(),
w
+
i
*
group_offset_filter
,
args1
.
cdesc
.
desc
(),
fwd_
algo1
,
fwd_
result1
.
algo
,
workspace_ptr
,
workspace_size
,
&
beta
,
...
...
@@ -517,7 +514,7 @@ void ConvCudnnGradGradKernel(
args2
.
wdesc
.
desc
(),
ddw
,
args2
.
cdesc
.
desc
(),
fwd_
algo2
,
fwd_
result2
.
algo
,
&
beta
,
args2
.
odesc
.
desc
(),
transformed_ddy_channel
,
...
...
@@ -538,7 +535,7 @@ void ConvCudnnGradGradKernel(
args2
.
wdesc
.
desc
(),
ddw
+
i
*
group_offset_filter
,
args2
.
cdesc
.
desc
(),
fwd_
algo2
,
fwd_
result2
.
algo
,
workspace_ptr
,
workspace_size
,
&
alpha
,
...
...
@@ -568,7 +565,7 @@ void ConvCudnnGradGradKernel(
args3
.
idesc
.
desc
(),
ddx
,
args3
.
cdesc
.
desc
(),
filter_algo
,
filter_
result
.
algo
,
&
beta
,
args3
.
wdesc
.
desc
(),
dw
,
...
...
@@ -589,7 +586,7 @@ void ConvCudnnGradGradKernel(
args3
.
odesc
.
desc
(),
transformed_dy_channel
+
i
*
group_offset_out
,
args3
.
cdesc
.
desc
(),
filter_algo
,
filter_
result
.
algo
,
workspace_ptr
,
workspace_size
,
&
beta
,
...
...
@@ -615,7 +612,7 @@ void ConvCudnnGradGradKernel(
args4
.
wdesc
.
desc
(),
ddw
,
args4
.
cdesc
.
desc
(),
data_algo
,
data_
result
.
algo
,
&
beta
,
args4
.
idesc
.
desc
(),
transformed_dx
,
...
...
@@ -636,7 +633,7 @@ void ConvCudnnGradGradKernel(
args4
.
odesc
.
desc
(),
transformed_dy_channel
+
i
*
group_offset_out
,
args4
.
cdesc
.
desc
(),
data_algo
,
data_
result
.
algo
,
workspace_ptr
,
workspace_size
,
&
beta
,
...
...
paddle/phi/kernels/gpudnn/conv_grad_kernel.cu
浏览文件 @
b4adbe5c
...
...
@@ -322,17 +322,16 @@ void ConvCudnnGradKernel(const Context& ctx,
int
group_offset_in
=
i_c
/
groups
*
i_h
*
i_w
*
i_d
;
int
group_offset_out
=
o_c
/
groups
*
o_h
*
o_w
*
o_d
;
int
group_offset_filter
=
transformed_filter_channel
.
numel
()
/
groups
;
// ------------------- cudnn backward algorithm ---------------------
#ifdef PADDLE_WITH_HIP
miopenConvBwdDataAlgorithm_t
data_algo
=
static_cast
<
miopenConvBwdDataAlgorithm_t
>
(
0
);
miopenConvBwdWeightsAlgorithm_t
filter_algo
=
static_cast
<
miopenConvBwdWeightsAlgorithm_t
>
(
0
);
paddle
::
operators
::
SearchResult
<
miopenConvBwdDataAlgorithm_t
>
bwd_result
;
paddle
::
operators
::
SearchResult
<
miopenConvBwdWeightsAlgorithm_t
>
filter_result
;
#else
cudnnConvolutionBwdDataAlgo_t
data_algo
=
static_cast
<
cudnnConvolutionBwdDataAlgo_t
>
(
0
);
cudnnConvolutionBwdFilterAlgo_t
filter_algo
=
static_cast
<
cudnnConvolutionBwdFilterAlgo_t
>
(
0
);
paddle
::
operators
::
SearchResult
<
cudnnConvolutionBwdDataAlgo_t
>
bwd_result
;
paddle
::
operators
::
SearchResult
<
cudnnConvolutionBwdFilterAlgo_t
>
filter_result
;
#endif
// input data workspace_size
size_t
workspace_size_d
=
0
;
...
...
@@ -368,14 +367,14 @@ void ConvCudnnGradKernel(const Context& ctx,
paddle
::
operators
::
SearchAlgorithm
<
miopenConvBwdDataAlgorithm_t
>
;
workspace_size_d
=
std
::
max
(
workspace_size_d
,
search1
::
GetWorkspaceSize
(
args1
));
data_
algo
=
search1
::
Find
<
T
>
(
bwd_result
.
algo
=
search1
::
Find
<
T
>
(
args1
,
exhaustive_search
,
deterministic
,
workspace_size_d
,
ctx
);
#else
using
search1
=
paddle
::
operators
::
SearchAlgorithm
<
cudnnConvolutionBwdDataAlgoPerf_t
>
;
data_algo
=
search1
::
Find
<
T
>
(
args1
,
exhaustive_search
,
deterministic
,
ctx
);
workspace_size_d
=
std
::
max
(
workspace_size_d
,
search1
::
GetWorkspaceSize
(
args1
,
data_
algo
));
bwd_result
=
search1
::
Find
<
T
>
(
args1
,
exhaustive_search
,
deterministic
,
ctx
);
workspace_size_d
=
std
::
max
(
workspace_size_d
,
search1
::
GetWorkspaceSize
(
args1
,
bwd_result
.
algo
));
#endif
}
...
...
@@ -397,15 +396,17 @@ void ConvCudnnGradKernel(const Context& ctx,
paddle
::
operators
::
SearchAlgorithm
<
miopenConvBwdWeightsAlgorithm_t
>
;
workspace_size_w
=
std
::
max
(
workspace_size_w
,
search2
::
GetWorkspaceSize
(
args2
));
filter_algo
=
search2
::
Find
<
T
>
(
filter_
result
.
algo
=
search2
::
Find
<
T
>
(
args2
,
exhaustive_search
,
deterministic
,
workspace_size_w
,
ctx
);
#else
using
search2
=
paddle
::
operators
::
SearchAlgorithm
<
cudnnConvolutionBwdFilterAlgoPerf_t
>
;
filter_
algo
=
filter_
result
=
search2
::
Find
<
T
>
(
args2
,
exhaustive_search
,
deterministic
,
ctx
);
workspace_size_w
=
std
::
max
(
workspace_size_w
,
search2
::
GetWorkspaceSize
(
args2
,
filter_algo
));
VLOG
(
3
)
<<
"filter algo: "
<<
filter_result
.
algo
<<
", time "
<<
filter_result
.
time
;
workspace_size_w
=
std
::
max
(
workspace_size_w
,
search2
::
GetWorkspaceSize
(
args2
,
filter_result
.
algo
));
#endif
}
...
...
@@ -439,7 +440,7 @@ void ConvCudnnGradKernel(const Context& ctx,
args1
.
wdesc
.
desc
(),
filter_data
,
args1
.
cdesc
.
desc
(),
data_
algo
,
bwd_result
.
algo
,
&
beta
,
args1
.
idesc
.
desc
(),
temp_tensor_data
,
...
...
@@ -471,7 +472,7 @@ void ConvCudnnGradKernel(const Context& ctx,
args1
.
wdesc
.
desc
(),
filter_data
,
args1
.
cdesc
.
desc
(),
data_
algo
,
bwd_result
.
algo
,
&
beta
,
args1
.
idesc
.
desc
(),
transformed_input_grad_data
,
...
...
@@ -494,7 +495,7 @@ void ConvCudnnGradKernel(const Context& ctx,
args1
.
odesc
.
desc
(),
output_grad_data
+
i
*
group_offset_out
,
args1
.
cdesc
.
desc
(),
data_
algo
,
bwd_result
.
algo
,
cudnn_workspace_ptr
,
workspace_size_d
,
&
beta
,
...
...
@@ -554,7 +555,7 @@ void ConvCudnnGradKernel(const Context& ctx,
args2
.
idesc
.
desc
(),
input_data
,
args2
.
cdesc
.
desc
(),
filter_algo
,
filter_
result
.
algo
,
&
beta
,
args2
.
wdesc
.
desc
(),
filter_grad_data
,
...
...
@@ -575,7 +576,7 @@ void ConvCudnnGradKernel(const Context& ctx,
args2
.
odesc
.
desc
(),
output_grad_data
+
i
*
group_offset_out
,
args2
.
cdesc
.
desc
(),
filter_algo
,
filter_
result
.
algo
,
cudnn_workspace_ptr
,
workspace_size_w
,
&
beta_filter
,
...
...
paddle/phi/kernels/gpudnn/conv_kernel.cu
浏览文件 @
b4adbe5c
...
...
@@ -18,7 +18,6 @@
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/fluid/framework/eigen.h"
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/operators/conv_miopen_helper.h"
#else
...
...
@@ -68,7 +67,6 @@ void ConvCudnnKernel(const Context& ctx,
"FLAGS_cudnn_deterministic True at same time."
));
const
bool
channel_last
=
(
data_format
==
"NHWC"
||
data_format
==
"NDHWC"
);
auto
dtype
=
paddle
::
platform
::
CudnnDataType
<
T
>::
type
;
#ifdef PADDLE_WITH_HIP
...
...
@@ -309,17 +307,17 @@ void ConvCudnnKernel(const Context& ctx,
size_t
workspace_size
=
0
;
// final workspace to allocate.
// ------------------- cudnn conv algorithm ---------------------
#ifdef PADDLE_WITH_HIP
miopenConvFwdAlgorithm_t
algo
{}
;
paddle
::
operators
::
SearchResult
<
miopenConvFwdAlgorithm_t
>
fwd_result
;
using
search
=
paddle
::
operators
::
SearchAlgorithm
<
miopenConvFwdAlgorithm_t
>
;
workspace_size
=
search
::
GetWorkspaceSize
(
args
);
algo
=
search
::
Find
<
T
>
(
fwd_result
.
algo
=
search
::
Find
<
T
>
(
args
,
exhaustive_search
,
deterministic
,
workspace_size
,
ctx
);
#else
cudnnConvolutionFwdAlgo_t
algo
{}
;
paddle
::
operators
::
SearchResult
<
cudnnConvolutionFwdAlgo_t
>
fwd_result
;
using
search
=
paddle
::
operators
::
SearchAlgorithm
<
cudnnConvolutionFwdAlgoPerf_t
>
;
algo
=
search
::
Find
<
T
>
(
args
,
exhaustive_search
,
deterministic
,
ctx
);
workspace_size
=
search
::
GetWorkspaceSize
(
args
,
algo
);
fwd_result
=
search
::
Find
<
T
>
(
args
,
exhaustive_search
,
deterministic
,
ctx
);
workspace_size
=
search
::
GetWorkspaceSize
(
args
,
fwd_result
.
algo
);
#endif
#if defined(PADDLE_WITH_CUDA) && CUDNN_VERSION_MIN(7, 0, 1)
...
...
@@ -328,7 +326,7 @@ void ConvCudnnKernel(const Context& ctx,
// in forward computation, so change the algorithm to CUDNN_CONVOLUTION_\
// FWD_ALGO_IMPLICIT_GEMM manually.
if
(
groups
>
1
)
{
algo
=
static_cast
<
cudnnConvolutionFwdAlgo_t
>
(
0
);
fwd_result
.
algo
=
static_cast
<
cudnnConvolutionFwdAlgo_t
>
(
0
);
}
#endif
...
...
@@ -352,7 +350,7 @@ void ConvCudnnKernel(const Context& ctx,
args
.
wdesc
.
desc
(),
filter_data
,
args
.
cdesc
.
desc
(),
algo
,
fwd_result
.
algo
,
&
beta
,
args
.
odesc
.
desc
(),
output_data
,
...
...
@@ -373,7 +371,7 @@ void ConvCudnnKernel(const Context& ctx,
args
.
wdesc
.
desc
(),
filter_data
+
i
*
group_offset_filter
,
args
.
cdesc
.
desc
(),
algo
,
fwd_result
.
algo
,
workspace_ptr
,
workspace_size
,
&
beta
,
...
...
paddle/phi/kernels/gpudnn/conv_transpose_grad_kernel.cu
浏览文件 @
b4adbe5c
...
...
@@ -188,11 +188,13 @@ void ConvTransposeGradRawGPUDNNKernel(const Context& ctx,
dtype
};
#ifdef PADDLE_WITH_HIP
miopenConvFwdAlgorithm_t
data_algo
{};
miopenConvBwdWeightsAlgorithm_t
filter_algo
{};
paddle
::
operators
::
SearchResult
<
miopenConvFwdAlgorithm_t
>
fwd_result
;
paddle
::
operators
::
SearchResult
<
miopenConvBwdWeightsAlgorithm_t
>
filter_result
;
#else
cudnnConvolutionFwdAlgo_t
data_algo
{};
cudnnConvolutionBwdFilterAlgo_t
filter_algo
{};
paddle
::
operators
::
SearchResult
<
cudnnConvolutionFwdAlgo_t
>
fwd_result
;
paddle
::
operators
::
SearchResult
<
cudnnConvolutionBwdFilterAlgo_t
>
filter_result
;
#endif
auto
layout_tensor
=
paddle
::
platform
::
GetCudnnTensorFormat
(
layout
);
...
...
@@ -218,14 +220,14 @@ void ConvTransposeGradRawGPUDNNKernel(const Context& ctx,
using
search1
=
paddle
::
operators
::
SearchAlgorithm
<
miopenConvFwdAlgorithm_t
>
;
workspace_size
=
std
::
max
(
workspace_size
,
search1
::
GetWorkspaceSize
(
args1
));
data_
algo
=
fwd_result
.
algo
=
search1
::
Find
<
T
>
(
args1
,
false
,
deterministic
,
workspace_size
,
ctx
);
#else
using
search1
=
paddle
::
operators
::
SearchAlgorithm
<
cudnnConvolutionFwdAlgoPerf_t
>
;
data_algo
=
search1
::
Find
<
T
>
(
args1
,
false
,
deterministic
,
ctx
);
workspace_size
=
std
::
max
(
workspace_size
,
search1
::
GetWorkspaceSize
(
args1
,
data_
algo
));
fwd_result
=
search1
::
Find
<
T
>
(
args1
,
false
,
deterministic
,
ctx
);
workspace_size
=
std
::
max
(
workspace_size
,
search1
::
GetWorkspaceSize
(
args1
,
fwd_result
.
algo
));
#endif
}
...
...
@@ -245,14 +247,14 @@ void ConvTransposeGradRawGPUDNNKernel(const Context& ctx,
using
search2
=
paddle
::
operators
::
SearchAlgorithm
<
miopenConvBwdWeightsAlgorithm_t
>
;
workspace_size
=
std
::
max
(
workspace_size
,
search2
::
GetWorkspaceSize
(
args2
));
filter_algo
=
filter_
result
.
algo
=
search2
::
Find
<
T
>
(
args2
,
false
,
deterministic
,
workspace_size
,
ctx
);
#else
using
search2
=
paddle
::
operators
::
SearchAlgorithm
<
cudnnConvolutionBwdFilterAlgoPerf_t
>
;
filter_
algo
=
search2
::
Find
<
T
>
(
args2
,
false
,
deterministic
,
ctx
);
workspace_size
=
std
::
max
(
workspace_size
,
search2
::
GetWorkspaceSize
(
args2
,
filter_
algo
));
filter_
result
=
search2
::
Find
<
T
>
(
args2
,
false
,
deterministic
,
ctx
);
workspace_size
=
std
::
max
(
workspace_size
,
search2
::
GetWorkspaceSize
(
args2
,
filter_result
.
algo
));
#endif
}
...
...
@@ -278,7 +280,7 @@ void ConvTransposeGradRawGPUDNNKernel(const Context& ctx,
args1
.
wdesc
.
desc
(),
filter_data
+
filter_offset
*
g
,
args1
.
cdesc
.
desc
(),
data_
algo
,
fwd_result
.
algo
,
&
beta
,
args1
.
odesc
.
desc
(),
dx_data
+
x_offset
*
g
,
...
...
@@ -295,7 +297,7 @@ void ConvTransposeGradRawGPUDNNKernel(const Context& ctx,
args1
.
wdesc
.
desc
(),
filter_data
+
filter_offset
*
g
,
args1
.
cdesc
.
desc
(),
data_
algo
,
fwd_result
.
algo
,
cudnn_workspace
,
workspace_size
,
&
beta
,
...
...
@@ -338,7 +340,7 @@ void ConvTransposeGradRawGPUDNNKernel(const Context& ctx,
args2
.
idesc
.
desc
(),
dout_data
+
dout_offset
*
g
,
args2
.
cdesc
.
desc
(),
filter_algo
,
filter_
result
.
algo
,
&
beta
,
args2
.
wdesc
.
desc
(),
dfilter_data
+
filter_offset
*
g
,
...
...
@@ -355,7 +357,7 @@ void ConvTransposeGradRawGPUDNNKernel(const Context& ctx,
args2
.
odesc
.
desc
(),
x_data
+
x_offset
*
g
,
args2
.
cdesc
.
desc
(),
filter_algo
,
filter_
result
.
algo
,
cudnn_workspace
,
workspace_size
,
&
beta
,
...
...
@@ -653,22 +655,17 @@ void Conv2dTransposeDoubleGradGPUDNNKernel(
dilations_
,
dtype
};
#ifdef PADDLE_WITH_HIP
miopenConvBwdDataAlgorithm_t
bwd_algo1
=
static_cast
<
miopenConvBwdDataAlgorithm_t
>
(
0
);
miopenConvBwdDataAlgorithm_t
bwd_algo2
=
static_cast
<
miopenConvBwdDataAlgorithm_t
>
(
0
);
miopenConvFwdAlgorithm_t
data_algo
=
static_cast
<
miopenConvFwdAlgorithm_t
>
(
0
);
miopenConvBwdWeightsAlgorithm_t
filter_algo
=
static_cast
<
miopenConvBwdWeightsAlgorithm_t
>
(
0
);
paddle
::
operators
::
SearchResult
<
miopenConvBwdDataAlgorithm_t
>
bwd_result1
;
paddle
::
operators
::
SearchResult
<
miopenConvBwdDataAlgorithm_t
>
bwd_result2
;
paddle
::
operators
::
SearchResult
<
miopenConvBwdWeightsAlgorithm_t
>
filter_result
;
paddle
::
operators
::
SearchResult
<
miopenConvFwdAlgorithm_t
>
fwd_result
;
#else
cudnnConvolutionBwdDataAlgo_t
bwd_algo1
=
static_cast
<
cudnnConvolutionBwdDataAlgo_t
>
(
0
);
cudnnConvolutionBwdDataAlgo_t
bwd_algo2
=
static_cast
<
cudnnConvolutionBwdDataAlgo_t
>
(
0
);
cudnnConvolutionFwdAlgo_t
data_algo
=
static_cast
<
cudnnConvolutionFwdAlgo_t
>
(
0
);
cudnnConvolutionBwdFilterAlgo_t
filter_algo
=
static_cast
<
cudnnConvolutionBwdFilterAlgo_t
>
(
0
);
paddle
::
operators
::
SearchResult
<
cudnnConvolutionBwdDataAlgo_t
>
bwd_result1
;
paddle
::
operators
::
SearchResult
<
cudnnConvolutionBwdDataAlgo_t
>
bwd_result2
;
paddle
::
operators
::
SearchResult
<
cudnnConvolutionBwdFilterAlgo_t
>
filter_result
;
paddle
::
operators
::
SearchResult
<
cudnnConvolutionFwdAlgo_t
>
fwd_result
;
#endif
auto
layout
=
paddle
::
platform
::
GetCudnnTensorFormat
(
GPUDNNDataLayout
::
kNCHW
);
...
...
@@ -696,13 +693,13 @@ void Conv2dTransposeDoubleGradGPUDNNKernel(
using
search1
=
paddle
::
operators
::
SearchAlgorithm
<
miopenConvBwdDataAlgorithm_t
>
;
workspace_size
=
search1
::
GetWorkspaceSize
(
args1
);
bwd_
algo1
=
bwd_
result1
.
algo
=
search1
::
Find
<
T
>
(
args1
,
false
,
deterministic
,
workspace_size
,
ctx
);
#else
using
search1
=
paddle
::
operators
::
SearchAlgorithm
<
cudnnConvolutionBwdDataAlgoPerf_t
>
;
bwd_
algo
1
=
search1
::
Find
<
T
>
(
args1
,
false
,
deterministic
,
ctx
);
workspace_size
=
search1
::
GetWorkspaceSize
(
args1
,
bwd_
algo1
);
bwd_
result
1
=
search1
::
Find
<
T
>
(
args1
,
false
,
deterministic
,
ctx
);
workspace_size
=
search1
::
GetWorkspaceSize
(
args1
,
bwd_
result1
.
algo
);
#endif
ddfilter_
=
ddfilter
.
data
<
T
>
();
...
...
@@ -720,14 +717,14 @@ void Conv2dTransposeDoubleGradGPUDNNKernel(
using
search2
=
paddle
::
operators
::
SearchAlgorithm
<
miopenConvBwdDataAlgorithm_t
>
;
workspace_size
=
std
::
max
(
workspace_size
,
search2
::
GetWorkspaceSize
(
args2
));
bwd_
algo2
=
bwd_
result2
.
algo
=
search2
::
Find
<
T
>
(
args2
,
false
,
deterministic
,
workspace_size
,
ctx
);
#else
using
search2
=
paddle
::
operators
::
SearchAlgorithm
<
cudnnConvolutionBwdDataAlgoPerf_t
>
;
bwd_
algo
2
=
search2
::
Find
<
T
>
(
args2
,
false
,
deterministic
,
ctx
);
workspace_size
=
std
::
max
(
workspace_size
,
search2
::
GetWorkspaceSize
(
args2
,
bwd_algo2
));
bwd_
result
2
=
search2
::
Find
<
T
>
(
args2
,
false
,
deterministic
,
ctx
);
workspace_size
=
std
::
max
(
workspace_size
,
search2
::
GetWorkspaceSize
(
args2
,
bwd_result2
.
algo
));
#endif
}
...
...
@@ -736,9 +733,7 @@ void Conv2dTransposeDoubleGradGPUDNNKernel(
args3
.
handle
=
handle
;
args3
.
idesc
.
set
(
transformed_dout
,
iwo_group
);
args3
.
wdesc
.
set
(
*
dfilter
,
layout
,
iwo_group
);
args3
.
odesc
.
set
(
transformed_ddx_channel
,
iwo_group
);
args3
.
cdesc
.
set
(
dtype
,
padding_common
,
strides
,
...
...
@@ -749,14 +744,14 @@ void Conv2dTransposeDoubleGradGPUDNNKernel(
using
search3
=
paddle
::
operators
::
SearchAlgorithm
<
miopenConvBwdWeightsAlgorithm_t
>
;
workspace_size
=
std
::
max
(
workspace_size
,
search3
::
GetWorkspaceSize
(
args3
));
filter_algo
=
filter_
result
.
algo
=
search3
::
Find
<
T
>
(
args3
,
false
,
deterministic
,
workspace_size
,
ctx
);
#else
using
search3
=
paddle
::
operators
::
SearchAlgorithm
<
cudnnConvolutionBwdFilterAlgoPerf_t
>
;
filter_
algo
=
search3
::
Find
<
T
>
(
args3
,
false
,
deterministic
,
ctx
);
workspace_size
=
std
::
max
(
workspace_size
,
search3
::
GetWorkspaceSize
(
args3
,
filter_
algo
));
filter_
result
=
search3
::
Find
<
T
>
(
args3
,
false
,
deterministic
,
ctx
);
workspace_size
=
std
::
max
(
workspace_size
,
search3
::
GetWorkspaceSize
(
args3
,
filter_result
.
algo
));
#endif
}
...
...
@@ -777,14 +772,14 @@ void Conv2dTransposeDoubleGradGPUDNNKernel(
using
search4
=
paddle
::
operators
::
SearchAlgorithm
<
miopenConvFwdAlgorithm_t
>
;
workspace_size
=
std
::
max
(
workspace_size
,
search4
::
GetWorkspaceSize
(
args4
));
data_
algo
=
fwd_result
.
algo
=
search4
::
Find
<
T
>
(
args4
,
false
,
deterministic
,
workspace_size
,
ctx
);
#else
using
search4
=
paddle
::
operators
::
SearchAlgorithm
<
cudnnConvolutionFwdAlgoPerf_t
>
;
data_algo
=
search4
::
Find
<
T
>
(
args4
,
false
,
deterministic
,
ctx
);
workspace_size
=
std
::
max
(
workspace_size
,
search4
::
GetWorkspaceSize
(
args4
,
data_
algo
));
fwd_result
=
search4
::
Find
<
T
>
(
args4
,
false
,
deterministic
,
ctx
);
workspace_size
=
std
::
max
(
workspace_size
,
search4
::
GetWorkspaceSize
(
args4
,
fwd_result
.
algo
));
#endif
}
...
...
@@ -831,7 +826,7 @@ void Conv2dTransposeDoubleGradGPUDNNKernel(
args1
.
wdesc
.
desc
(),
filter_
+
i
*
group_offset_filter
,
args1
.
cdesc
.
desc
(),
bwd_
algo1
,
bwd_
result1
.
algo
,
&
beta
,
args1
.
idesc
.
desc
(),
transformed_ddout_channel_
+
i
*
group_offset_out
,
...
...
@@ -850,7 +845,7 @@ void Conv2dTransposeDoubleGradGPUDNNKernel(
args1
.
odesc
.
desc
(),
ddx_
+
i
*
group_offset_in
,
args1
.
cdesc
.
desc
(),
bwd_
algo1
,
bwd_
result1
.
algo
,
workspace_ptr
,
workspace_size
,
&
beta
,
...
...
@@ -877,7 +872,7 @@ void Conv2dTransposeDoubleGradGPUDNNKernel(
args2
.
wdesc
.
desc
(),
ddfilter_
+
i
*
group_offset_filter
,
args2
.
cdesc
.
desc
(),
bwd_
algo2
,
bwd_
result2
.
algo
,
&
beta
,
args2
.
idesc
.
desc
(),
conv_x_ddfilter_data
+
i
*
group_offset_out
,
...
...
@@ -908,7 +903,7 @@ void Conv2dTransposeDoubleGradGPUDNNKernel(
args2
.
odesc
.
desc
(),
x_
+
i
*
group_offset_in
,
args2
.
cdesc
.
desc
(),
bwd_
algo2
,
bwd_
result2
.
algo
,
workspace_ptr
,
workspace_size
,
&
alpha
,
...
...
@@ -964,7 +959,7 @@ void Conv2dTransposeDoubleGradGPUDNNKernel(
args3
.
idesc
.
desc
(),
transformed_dout_channel_
+
i
*
group_offset_out
,
args3
.
cdesc
.
desc
(),
filter_algo
,
filter_
result
.
algo
,
&
beta
,
args3
.
wdesc
.
desc
(),
dfilter_
+
i
*
group_offset_filter
,
...
...
@@ -983,7 +978,7 @@ void Conv2dTransposeDoubleGradGPUDNNKernel(
args3
.
odesc
.
desc
(),
ddx_
+
i
*
group_offset_in
,
args3
.
cdesc
.
desc
(),
filter_algo
,
filter_
result
.
algo
,
workspace_ptr
,
workspace_size
,
&
beta
,
...
...
@@ -1009,7 +1004,7 @@ void Conv2dTransposeDoubleGradGPUDNNKernel(
args4
.
wdesc
.
desc
(),
ddfilter_
+
i
*
group_offset_filter
,
args4
.
cdesc
.
desc
(),
data_
algo
,
fwd_result
.
algo
,
&
beta
,
args4
.
odesc
.
desc
(),
transformed_dx_
+
i
*
group_offset_in
,
...
...
@@ -1028,7 +1023,7 @@ void Conv2dTransposeDoubleGradGPUDNNKernel(
args4
.
wdesc
.
desc
(),
ddfilter_
+
i
*
group_offset_filter
,
args4
.
cdesc
.
desc
(),
data_
algo
,
fwd_result
.
algo
,
workspace_ptr
,
workspace_size
,
&
beta
,
...
...
paddle/phi/kernels/gpudnn/conv_transpose_kernel.cu
浏览文件 @
b4adbe5c
...
...
@@ -217,16 +217,19 @@ void ConvTransposeRawGPUDNNKernel(const Context& ctx,
c_groups
);
#ifdef PADDLE_WITH_HIP
paddle
::
operators
::
SearchResult
<
miopenConvBwdDataAlgorithm_t
>
bwd_result
;
using
search
=
paddle
::
operators
::
SearchAlgorithm
<
miopenConvBwdDataAlgorithm_t
>
;
workspace_size
=
std
::
max
(
workspace_size
,
search
::
GetWorkspaceSize
(
args
));
algo
=
search
::
Find
<
T
>
(
args
,
false
,
deterministic
,
workspace_size
,
ctx
);
bwd_result
.
algo
=
search
::
Find
<
T
>
(
args
,
false
,
deterministic
,
workspace_size
,
ctx
);
#else
paddle
::
operators
::
SearchResult
<
cudnnConvolutionBwdDataAlgo_t
>
bwd_result
;
using
search
=
paddle
::
operators
::
SearchAlgorithm
<
cudnnConvolutionBwdDataAlgoPerf_t
>
;
algo
=
search
::
Find
<
T
>
(
args
,
false
,
deterministic
,
ctx
);
bwd_result
=
search
::
Find
<
T
>
(
args
,
false
,
deterministic
,
ctx
);
workspace_size
=
std
::
max
(
workspace_size
,
search
::
GetWorkspaceSize
(
args
,
algo
));
std
::
max
(
workspace_size
,
search
::
GetWorkspaceSize
(
args
,
bwd_result
.
algo
));
#endif
// ------------------- cudnn conv transpose forward ---------------------
...
...
@@ -247,7 +250,7 @@ void ConvTransposeRawGPUDNNKernel(const Context& ctx,
args
.
wdesc
.
desc
(),
filter_data
+
filter_offset
*
g
,
args
.
cdesc
.
desc
(),
algo
,
bwd_result
.
algo
,
&
beta
,
args
.
idesc
.
desc
(),
transformed_out_data
+
out_offset
*
g
,
...
...
@@ -264,7 +267,7 @@ void ConvTransposeRawGPUDNNKernel(const Context& ctx,
args
.
odesc
.
desc
(),
x_data
+
x_offset
*
g
,
args
.
cdesc
.
desc
(),
algo
,
bwd_result
.
algo
,
cudnn_workspace
,
workspace_size
,
&
beta
,
...
...
paddle/phi/kernels/impl/conv_cudnn_impl.h
浏览文件 @
b4adbe5c
...
...
@@ -36,7 +36,7 @@
#include "paddle/phi/kernels/funcs/batch_norm_utils.h"
DECLARE_bool
(
cudnn_deterministic
);
DECLARE_
u
int64
(
conv_workspace_size_limit
);
DECLARE_int64
(
conv_workspace_size_limit
);
DECLARE_bool
(
cudnn_exhaustive_search
);
namespace
phi
{
...
...
python/paddle/fluid/tests/unittests/test_switch_autotune.py
浏览文件 @
b4adbe5c
...
...
@@ -14,7 +14,7 @@
import
paddle
import
unittest
import
numpy
import
numpy
as
np
class
SimpleNet
(
paddle
.
nn
.
Layer
):
...
...
@@ -27,6 +27,7 @@ class SimpleNet(paddle.nn.Layer):
def
train_dygraph
(
net
,
data
):
data
.
stop_gradient
=
False
out
=
net
(
data
)
loss
=
paddle
.
mean
(
out
)
adam
=
paddle
.
optimizer
.
Adam
(
parameters
=
net
.
parameters
())
...
...
@@ -36,6 +37,7 @@ def train_dygraph(net, data):
def
static_program
(
net
,
data
):
data
.
stop_gradient
=
False
out
=
net
(
data
)
loss
=
paddle
.
mean
(
out
)
adam
=
paddle
.
optimizer
.
Adam
()
...
...
@@ -44,48 +46,63 @@ def static_program(net, data):
class
TestAutoTune
(
unittest
.
TestCase
):
def
set_flags
(
self
,
enable_autotune
):
if
paddle
.
is_compiled_with_cuda
():
if
enable_autotune
:
paddle
.
set_flags
({
'FLAGS_conv_workspace_size_limit'
:
-
1
})
else
:
paddle
.
set_flags
({
'FLAGS_conv_workspace_size_limit'
:
512
})
def
get_flags
(
self
,
name
):
res
=
paddle
.
get_flags
(
name
)
return
res
[
name
]
def
get_expected_res
(
self
,
step_id
,
enable_autotune
):
expected_res
=
{
"step_id"
:
step_id
,
"cache_size"
:
0
,
"cache_hit_rate"
:
0
}
if
paddle
.
is_compiled_with_cuda
():
# Total 3 * num_iters cache accesses, only iter 2 hits the cache.
if
enable_autotune
and
step_id
>=
1
:
expected_res
[
"cache_size"
]
=
3
if
enable_autotune
and
step_id
==
2
:
expected_res
[
"cache_hit_rate"
]
=
np
.
round
(
float
(
3
)
/
float
(
9
),
5
)
return
expected_res
def
test_autotune
(
self
):
paddle
.
fluid
.
core
.
disable_autotune
()
status
=
paddle
.
fluid
.
core
.
autotune_status
()
self
.
assertEqual
(
status
[
"use_autotune"
],
False
)
self
.
assertEqual
(
self
.
get_flags
(
"FLAGS_use_autotune"
),
False
)
paddle
.
fluid
.
core
.
enable_autotune
()
status
=
paddle
.
fluid
.
core
.
autotune_status
()
self
.
assertEqual
(
status
[
"use_autotune"
],
True
)
self
.
assertEqual
(
self
.
get_flags
(
"FLAGS_use_autotune"
),
True
)
def
check_status
(
self
,
expected_res
):
status
=
paddle
.
fluid
.
core
.
autotune_status
()
for
key
in
status
.
keys
():
self
.
assertEqual
(
status
[
key
],
expected_res
[
key
])
if
key
==
"cache_hit_rate"
:
v
=
np
.
round
(
status
[
key
],
5
)
else
:
v
=
status
[
key
]
self
.
assertEqual
(
v
,
expected_res
[
key
])
class
TestDygraphAutoTuneStatus
(
TestAutoTune
):
def
run_program
(
self
,
enable_autotune
):
self
.
set_flags
(
enable_autotune
)
if
enable_autotune
:
paddle
.
fluid
.
core
.
enable_autotune
()
else
:
paddle
.
fluid
.
core
.
disable_autotune
()
paddle
.
fluid
.
core
.
autotune_range
(
1
,
2
)
paddle
.
fluid
.
core
.
set_
autotune_range
(
1
,
2
)
x_var
=
paddle
.
uniform
((
1
,
1
,
8
,
8
),
dtype
=
'float32'
,
min
=-
1.
,
max
=
1.
)
net
=
SimpleNet
()
for
i
in
range
(
3
):
train_dygraph
(
net
,
x_var
)
if
i
>=
1
and
i
<
2
:
expected_res
=
{
"step_id"
:
i
,
"use_autotune"
:
enable_autotune
,
"cache_size"
:
0
,
"cache_hit_rate"
:
0
}
self
.
check_status
(
expected_res
)
else
:
expected_res
=
{
"step_id"
:
i
,
"use_autotune"
:
False
,
"cache_size"
:
0
,
"cache_hit_rate"
:
0
}
self
.
check_status
(
expected_res
)
expected_res
=
self
.
get_expected_res
(
i
,
enable_autotune
)
self
.
check_status
(
expected_res
)
def
func_enable_autotune
(
self
):
self
.
run_program
(
enable_autotune
=
True
)
...
...
@@ -107,59 +124,45 @@ class TestDygraphAutoTuneStatus(TestAutoTune):
class
TestStaticAutoTuneStatus
(
TestAutoTune
):
def
run_program
(
self
,
enable_autotune
):
paddle
.
enable_static
()
if
enable_autotune
:
paddle
.
fluid
.
core
.
enable_autotune
()
else
:
paddle
.
fluid
.
core
.
disable_autotune
()
paddle
.
fluid
.
core
.
autotune_range
(
1
,
2
)
data_shape
=
[
1
,
1
,
8
,
8
]
data
=
paddle
.
static
.
data
(
name
=
'X'
,
shape
=
data_shape
,
dtype
=
'float32'
)
net
=
SimpleNet
()
loss
=
static_program
(
net
,
data
)
main_program
=
paddle
.
static
.
Program
()
startup_program
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
main_program
,
startup_program
):
data
=
paddle
.
static
.
data
(
name
=
'X'
,
shape
=
data_shape
,
dtype
=
'float32'
)
net
=
SimpleNet
()
loss
=
static_program
(
net
,
data
)
place
=
paddle
.
CUDAPlace
(
0
)
if
paddle
.
fluid
.
core
.
is_compiled_with_cuda
(
)
else
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
paddle
.
static
.
default_startup_program
())
x
=
numpy
.
random
.
random
(
size
=
data_shape
).
astype
(
'float32'
)
exe
.
run
(
startup_program
)
x
=
np
.
random
.
random
(
size
=
data_shape
).
astype
(
'float32'
)
self
.
set_flags
(
enable_autotune
)
if
enable_autotune
:
paddle
.
fluid
.
core
.
enable_autotune
()
else
:
paddle
.
fluid
.
core
.
disable_autotune
()
paddle
.
fluid
.
core
.
set_autotune_range
(
1
,
2
)
for
i
in
range
(
3
):
exe
.
run
(
feed
=
{
'X'
:
x
},
fetch_list
=
[
loss
])
exe
.
run
(
program
=
main_program
,
feed
=
{
'X'
:
x
},
fetch_list
=
[
loss
])
status
=
paddle
.
fluid
.
core
.
autotune_status
()
# In static mode, the startup_program will run at first.
# The expected step_id will be increased by 1.
if
i
>=
0
and
i
<
1
:
expected_res
=
{
"step_id"
:
i
+
1
,
"use_autotune"
:
enable_autotune
,
"cache_size"
:
0
,
"cache_hit_rate"
:
0
}
self
.
check_status
(
expected_res
)
else
:
expected_res
=
{
"step_id"
:
i
+
1
,
"use_autotune"
:
False
,
"cache_size"
:
0
,
"cache_hit_rate"
:
0
}
self
.
check_status
(
expected_res
)
expected_res
=
self
.
get_expected_res
(
i
,
enable_autotune
)
self
.
check_status
(
expected_res
)
paddle
.
disable_static
()
def
func_enable_autotune
(
self
):
self
.
run_program
(
enable_autotune
=
True
)
def
test_enable_autotune
(
self
):
with
paddle
.
fluid
.
framework
.
_test_eager_guard
():
self
.
func_enable_autotune
()
self
.
func_enable_autotune
()
def
func_disable_autotune
(
self
):
self
.
run_program
(
enable_autotune
=
False
)
def
test_disable_autotune
(
self
):
with
paddle
.
fluid
.
framework
.
_test_eager_guard
():
self
.
func_disable_autotune
()
self
.
func_disable_autotune
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录