Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
b463dff4
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b463dff4
编写于
12月 24, 2021
作者:
Z
zhiboniu
提交者:
GitHub
12月 24, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
new API inner&outer (#37706)
上级
42cf2bee
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
450 addition
and
0 deletion
+450
-0
python/paddle/__init__.py
python/paddle/__init__.py
+4
-0
python/paddle/fluid/tests/unittests/test_inner.py
python/paddle/fluid/tests/unittests/test_inner.py
+166
-0
python/paddle/fluid/tests/unittests/test_outer.py
python/paddle/fluid/tests/unittests/test_outer.py
+153
-0
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+4
-0
python/paddle/tensor/math.py
python/paddle/tensor/math.py
+123
-0
未找到文件。
python/paddle/__init__.py
浏览文件 @
b463dff4
...
...
@@ -245,6 +245,8 @@ from .tensor.math import diff # noqa: F401
from
.tensor.math
import
angle
# noqa: F401
from
.tensor.math
import
fmax
# noqa: F401
from
.tensor.math
import
fmin
# noqa: F401
from
.tensor.math
import
inner
# noqa: F401
from
.tensor.math
import
outer
# noqa: F401
from
.tensor.random
import
bernoulli
# noqa: F401
from
.tensor.random
import
poisson
# noqa: F401
...
...
@@ -500,6 +502,8 @@ __all__ = [ # noqa
'lgamma'
,
'lerp'
,
'erfinv'
,
'inner'
,
'outer'
,
'square'
,
'divide'
,
'ceil'
,
...
...
python/paddle/fluid/tests/unittests/test_inner.py
0 → 100644
浏览文件 @
b463dff4
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
from
paddle.static
import
Program
,
program_guard
class
TestMultiplyApi
(
unittest
.
TestCase
):
def
_run_static_graph_case
(
self
,
x_data
,
y_data
):
with
program_guard
(
Program
(),
Program
()):
paddle
.
enable_static
()
x
=
paddle
.
static
.
data
(
name
=
'x'
,
shape
=
x_data
.
shape
,
dtype
=
x_data
.
dtype
)
y
=
paddle
.
static
.
data
(
name
=
'y'
,
shape
=
y_data
.
shape
,
dtype
=
y_data
.
dtype
)
res
=
paddle
.
inner
(
x
,
y
)
place
=
paddle
.
CUDAPlace
(
0
)
if
paddle
.
is_compiled_with_cuda
(
)
else
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
outs
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
'x'
:
x_data
,
'y'
:
y_data
},
fetch_list
=
[
res
])
res
=
outs
[
0
]
return
res
def
_run_dynamic_graph_case
(
self
,
x_data
,
y_data
):
paddle
.
disable_static
()
x
=
paddle
.
to_tensor
(
x_data
)
y
=
paddle
.
to_tensor
(
y_data
)
res
=
paddle
.
inner
(
x
,
y
)
return
res
.
numpy
()
def
test_multiply
(
self
):
np
.
random
.
seed
(
7
)
# test static computation graph: 3-d array
x_data
=
np
.
random
.
rand
(
2
,
10
,
10
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
2
,
5
,
10
).
astype
(
np
.
float64
)
res
=
self
.
_run_static_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
inner
(
x_data
,
y_data
)))
# test static computation graph: 2-d array
x_data
=
np
.
random
.
rand
(
200
,
5
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
50
,
5
).
astype
(
np
.
float64
)
res
=
self
.
_run_static_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
inner
(
x_data
,
y_data
)))
# test static computation graph: 1-d array
x_data
=
np
.
random
.
rand
(
50
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
50
).
astype
(
np
.
float64
)
res
=
self
.
_run_static_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
inner
(
x_data
,
y_data
)))
# test dynamic computation graph: 3-d array
x_data
=
np
.
random
.
rand
(
5
,
10
,
10
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
2
,
10
).
astype
(
np
.
float64
)
res
=
self
.
_run_dynamic_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
inner
(
x_data
,
y_data
)))
# test dynamic computation graph: 2-d array
x_data
=
np
.
random
.
rand
(
20
,
50
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
50
).
astype
(
np
.
float64
)
res
=
self
.
_run_dynamic_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
inner
(
x_data
,
y_data
)))
# test dynamic computation graph: Scalar
x_data
=
np
.
random
.
rand
(
20
,
10
).
astype
(
np
.
float32
)
y_data
=
np
.
random
.
rand
(
1
).
astype
(
np
.
float32
).
item
()
res
=
self
.
_run_dynamic_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
inner
(
x_data
,
y_data
)))
# test dynamic computation graph: 2-d array Complex
x_data
=
np
.
random
.
rand
(
20
,
50
).
astype
(
np
.
float64
)
+
1J
*
np
.
random
.
rand
(
20
,
50
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
50
).
astype
(
np
.
float64
)
+
1J
*
np
.
random
.
rand
(
50
).
astype
(
np
.
float64
)
res
=
self
.
_run_dynamic_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
inner
(
x_data
,
y_data
)))
# test dynamic computation graph: 3-d array Complex
x_data
=
np
.
random
.
rand
(
5
,
10
,
10
).
astype
(
np
.
float64
)
+
1J
*
np
.
random
.
rand
(
5
,
10
,
10
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
2
,
10
).
astype
(
np
.
float64
)
+
1J
*
np
.
random
.
rand
(
2
,
10
).
astype
(
np
.
float64
)
res
=
self
.
_run_dynamic_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
inner
(
x_data
,
y_data
)))
class
TestMultiplyError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
# test static computation graph: dtype can not be int8
paddle
.
enable_static
()
with
program_guard
(
Program
(),
Program
()):
x
=
paddle
.
static
.
data
(
name
=
'x'
,
shape
=
[
100
],
dtype
=
np
.
int8
)
y
=
paddle
.
static
.
data
(
name
=
'y'
,
shape
=
[
100
],
dtype
=
np
.
int8
)
self
.
assertRaises
(
TypeError
,
paddle
.
inner
,
x
,
y
)
# test static computation graph: inputs must be broadcastable
with
program_guard
(
Program
(),
Program
()):
x
=
paddle
.
static
.
data
(
name
=
'x'
,
shape
=
[
20
,
50
],
dtype
=
np
.
float64
)
y
=
paddle
.
static
.
data
(
name
=
'y'
,
shape
=
[
20
],
dtype
=
np
.
float64
)
self
.
assertRaises
(
ValueError
,
paddle
.
inner
,
x
,
y
)
np
.
random
.
seed
(
7
)
# test dynamic computation graph: dtype can not be int8
paddle
.
disable_static
()
x_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
int8
)
y_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
int8
)
x
=
paddle
.
to_tensor
(
x_data
)
y
=
paddle
.
to_tensor
(
y_data
)
self
.
assertRaises
(
RuntimeError
,
paddle
.
inner
,
x
,
y
)
# test dynamic computation graph: inputs must be broadcastable
x_data
=
np
.
random
.
rand
(
20
,
5
)
y_data
=
np
.
random
.
rand
(
10
,
2
)
x
=
paddle
.
to_tensor
(
x_data
)
y
=
paddle
.
to_tensor
(
y_data
)
self
.
assertRaises
(
ValueError
,
paddle
.
inner
,
x
,
y
)
# test dynamic computation graph: dtype must be same
x_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float32
)
y_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float64
)
x
=
paddle
.
to_tensor
(
x_data
)
y
=
paddle
.
to_tensor
(
y_data
)
self
.
assertRaises
(
ValueError
,
paddle
.
inner
,
x
,
y
)
# test dynamic computation graph: dtype must be Tensor type
x_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float64
)
y
=
paddle
.
to_tensor
(
y_data
)
self
.
assertRaises
(
ValueError
,
paddle
.
inner
,
x_data
,
y
)
# test dynamic computation graph: dtype must be Tensor type
x_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float64
)
x
=
paddle
.
to_tensor
(
x_data
)
self
.
assertRaises
(
ValueError
,
paddle
.
inner
,
x
,
y_data
)
# test dynamic computation graph: dtype must be Tensor type
x_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float32
)
y_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float32
)
self
.
assertRaises
(
ValueError
,
paddle
.
inner
,
x_data
,
y_data
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_outer.py
0 → 100644
浏览文件 @
b463dff4
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
from
paddle.static
import
Program
,
program_guard
class
TestMultiplyApi
(
unittest
.
TestCase
):
def
_run_static_graph_case
(
self
,
x_data
,
y_data
):
with
program_guard
(
Program
(),
Program
()):
paddle
.
enable_static
()
x
=
paddle
.
static
.
data
(
name
=
'x'
,
shape
=
x_data
.
shape
,
dtype
=
x_data
.
dtype
)
y
=
paddle
.
static
.
data
(
name
=
'y'
,
shape
=
y_data
.
shape
,
dtype
=
y_data
.
dtype
)
res
=
paddle
.
outer
(
x
,
y
)
place
=
paddle
.
CUDAPlace
(
0
)
if
paddle
.
is_compiled_with_cuda
(
)
else
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
outs
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
'x'
:
x_data
,
'y'
:
y_data
},
fetch_list
=
[
res
])
res
=
outs
[
0
]
return
res
def
_run_dynamic_graph_case
(
self
,
x_data
,
y_data
):
paddle
.
disable_static
()
x
=
paddle
.
to_tensor
(
x_data
)
y
=
paddle
.
to_tensor
(
y_data
)
res
=
paddle
.
outer
(
x
,
y
)
return
res
.
numpy
()
def
test_multiply
(
self
):
np
.
random
.
seed
(
7
)
# test static computation graph: 3-d array
x_data
=
np
.
random
.
rand
(
2
,
10
,
10
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
2
,
5
,
10
).
astype
(
np
.
float64
)
res
=
self
.
_run_static_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
outer
(
x_data
,
y_data
)))
# test static computation graph: 2-d array
x_data
=
np
.
random
.
rand
(
200
,
5
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
50
,
5
).
astype
(
np
.
float64
)
res
=
self
.
_run_static_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
outer
(
x_data
,
y_data
)))
# test static computation graph: 1-d array
x_data
=
np
.
random
.
rand
(
50
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
50
).
astype
(
np
.
float64
)
res
=
self
.
_run_static_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
outer
(
x_data
,
y_data
)))
# test dynamic computation graph: 3-d array
x_data
=
np
.
random
.
rand
(
5
,
10
,
10
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
2
,
10
).
astype
(
np
.
float64
)
res
=
self
.
_run_dynamic_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
outer
(
x_data
,
y_data
)))
# test dynamic computation graph: 2-d array
x_data
=
np
.
random
.
rand
(
20
,
50
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
50
).
astype
(
np
.
float64
)
res
=
self
.
_run_dynamic_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
outer
(
x_data
,
y_data
)))
# test dynamic computation graph: Scalar
x_data
=
np
.
random
.
rand
(
20
,
10
).
astype
(
np
.
float32
)
y_data
=
np
.
random
.
rand
(
1
).
astype
(
np
.
float32
).
item
()
res
=
self
.
_run_dynamic_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
outer
(
x_data
,
y_data
),
rtol
=
1e4
))
# test dynamic computation graph: 2-d array Complex
x_data
=
np
.
random
.
rand
(
20
,
50
).
astype
(
np
.
float64
)
+
1J
*
np
.
random
.
rand
(
20
,
50
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
50
).
astype
(
np
.
float64
)
+
1J
*
np
.
random
.
rand
(
50
).
astype
(
np
.
float64
)
res
=
self
.
_run_dynamic_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
outer
(
x_data
,
y_data
)))
# test dynamic computation graph: 3-d array Complex
x_data
=
np
.
random
.
rand
(
5
,
10
,
10
).
astype
(
np
.
float64
)
+
1J
*
np
.
random
.
rand
(
5
,
10
,
10
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
2
,
10
).
astype
(
np
.
float64
)
+
1J
*
np
.
random
.
rand
(
2
,
10
).
astype
(
np
.
float64
)
res
=
self
.
_run_dynamic_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
outer
(
x_data
,
y_data
)))
class
TestMultiplyError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
# test static computation graph: dtype can not be int8
paddle
.
enable_static
()
with
program_guard
(
Program
(),
Program
()):
x
=
paddle
.
static
.
data
(
name
=
'x'
,
shape
=
[
100
],
dtype
=
np
.
int8
)
y
=
paddle
.
static
.
data
(
name
=
'y'
,
shape
=
[
100
],
dtype
=
np
.
int8
)
self
.
assertRaises
(
TypeError
,
paddle
.
outer
,
x
,
y
)
np
.
random
.
seed
(
7
)
# test dynamic computation graph: dtype can not be int8
paddle
.
disable_static
()
x_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
int8
)
y_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
int8
)
x
=
paddle
.
to_tensor
(
x_data
)
y
=
paddle
.
to_tensor
(
y_data
)
self
.
assertRaises
(
RuntimeError
,
paddle
.
outer
,
x
,
y
)
# test dynamic computation graph: dtype must be same
x_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float32
)
y_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float64
)
x
=
paddle
.
to_tensor
(
x_data
)
y
=
paddle
.
to_tensor
(
y_data
)
self
.
assertRaises
(
ValueError
,
paddle
.
outer
,
x
,
y
)
# test dynamic computation graph: dtype must be Tensor type
x_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float64
)
y
=
paddle
.
to_tensor
(
y_data
)
self
.
assertRaises
(
ValueError
,
paddle
.
outer
,
x_data
,
y
)
# test dynamic computation graph: dtype must be Tensor type
x_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float32
)
y_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float32
)
x
=
paddle
.
to_tensor
(
x_data
)
self
.
assertRaises
(
ValueError
,
paddle
.
outer
,
x
,
y_data
)
# test dynamic computation graph: dtype must be Tensor type
x_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float32
)
y_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float32
)
self
.
assertRaises
(
ValueError
,
paddle
.
outer
,
x_data
,
y_data
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/tensor/__init__.py
浏览文件 @
b463dff4
...
...
@@ -215,6 +215,8 @@ from .math import diff # noqa: F401
from
.math
import
angle
# noqa: F401
from
.math
import
fmax
# noqa: F401
from
.math
import
fmin
# noqa: F401
from
.math
import
inner
# noqa: F401
from
.math
import
outer
# noqa: F401
from
.random
import
multinomial
# noqa: F401
from
.random
import
standard_normal
# noqa: F401
...
...
@@ -323,6 +325,8 @@ tensor_method_func = [ #noqa
'fmax'
,
'fmin'
,
'mm'
,
'inner'
,
'outer'
,
'divide'
,
'floor_divide'
,
'remainder'
,
...
...
python/paddle/tensor/math.py
浏览文件 @
b463dff4
...
...
@@ -1195,6 +1195,129 @@ def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
return
out
def
inner
(
x
,
y
,
name
=
None
):
"""
Inner product of two input Tensor.
Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.
Args:
x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].
Examples:
.. code-block:: python
import paddle
x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
out = paddle.inner(x, y)
print(out)
# ([[14, 32, 50],
# [32, 77, 122]])
"""
if
x
.
size
==
1
or
y
.
size
==
1
:
return
multiply
(
x
,
y
)
else
:
xshape
=
x
.
shape
yshape
=
y
.
shape
dstshape
=
list
(
xshape
[:
-
1
])
+
list
(
yshape
[:
-
1
])
if
len
(
dstshape
)
==
0
:
dstshape
=
[
1
]
nx
=
x
.
reshape
((
-
1
,
xshape
[
-
1
]))
ny
=
y
.
reshape
((
-
1
,
yshape
[
-
1
]))
if
in_dygraph_mode
():
return
_C_ops
.
matmul_v2
(
nx
,
ny
.
T
).
reshape
(
dstshape
)
def
__check_input
(
x
,
y
):
var_names
=
{
'x'
:
x
,
'y'
:
y
}
for
name
,
val
in
var_names
.
items
():
check_variable_and_dtype
(
val
,
name
,
[
'float16'
,
'float32'
,
'float64'
],
'inner'
)
x_shape
=
list
(
xshape
)
y_shape
=
list
(
yshape
)
# check the inner 2 dimensions
if
x_shape
[
-
1
]
!=
y_shape
[
-
1
]:
if
not
((
x_shape
[
-
1
]
==
-
1
)
or
(
y_shape
[
-
1
]
==
-
1
)):
raise
ValueError
(
"After performing an optional transpose, Input X's last dim should be "
"equal to Y's last dim for multiplication "
"prerequisites. But received X's shape: %s, Y's shape: %s
\n
"
%
(
x_shape
,
y_shape
))
__check_input
(
nx
,
ny
)
helper
=
LayerHelper
(
'inner'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
nx
.
dtype
)
helper
.
append_op
(
type
=
'matmul_v2'
,
inputs
=
{
'X'
:
nx
,
'Y'
:
ny
.
T
},
outputs
=
{
'Out'
:
out
})
return
out
.
reshape
(
dstshape
)
def
outer
(
x
,
y
,
name
=
None
):
"""
Outer product of two Tensors.
Input is flattened if not already 1-dimensional.
Args:
x (Tensor): An N-D Tensor or a Scalar Tensor.
y (Tensor): An N-D Tensor or a Scalar Tensor.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Tensor: The outer-product Tensor.
Examples:
.. code-block:: python
import paddle
x = paddle.arange(1, 4).astype('float32')
y = paddle.arange(1, 6).astype('float32')
out = paddle.outer(x, y)
print(out)
# ([[1, 2, 3, 4, 5],
# [2, 4, 6, 8, 10],
# [3, 6, 9, 12, 15]])
"""
nx
=
x
.
reshape
((
-
1
,
1
))
ny
=
y
.
reshape
((
1
,
-
1
))
if
in_dygraph_mode
():
return
_C_ops
.
matmul_v2
(
nx
,
ny
)
def
__check_input
(
x
,
y
):
var_names
=
{
'x'
:
x
,
'y'
:
y
}
for
name
,
val
in
var_names
.
items
():
check_variable_and_dtype
(
val
,
name
,
[
'float16'
,
'float32'
,
'float64'
],
'inner'
)
__check_input
(
nx
,
ny
)
helper
=
LayerHelper
(
'outer'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
nx
.
dtype
)
helper
.
append_op
(
type
=
'matmul_v2'
,
inputs
=
{
'X'
:
nx
,
'Y'
:
ny
},
outputs
=
{
'Out'
:
out
})
return
out
def
logsumexp
(
x
,
axis
=
None
,
keepdim
=
False
,
name
=
None
):
r
"""
This OP calculates the log of the sum of exponentials of ``x`` along ``axis`` .
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录