@@ -23,9 +23,9 @@ Their relation is illustrated in the following graph:
...
@@ -23,9 +23,9 @@ Their relation is illustrated in the following graph:
<imgsrc="src/paddle-model-sharding.png"/>
<imgsrc="src/paddle-model-sharding.png"/>
By coordinate these processes, paddle can complete the procedure of training neural networks using SGD. Paddle can support both "synchronize SGD" and "asynchronize SGD".
By coordinating these processes, PaddlePaddle supports use both Synchronize Stochastic Gradient Descent (sync SGD) and Asynchronous Stochastic Gradient Descent (async SGD) to train user-defined neural network topologies.
When training with "sync SGD", paddle parameter servers use barriers to wait for all trainers to finish gradients update. When using "async SGD", parameter servers would not wait for all trainers, so training and parameter optimize will run in parallel. parameter servers will not depend on each other, they will receive the gradients update in parrallel; Also trainers will not depend on each other, run training jobs in parrallel. Using asyc SGD will be faster when training, but parameters on one of the parameter server will be newer than the other, but this will introduce more Randomness.
When training with sync SGD, parameter servers wait for all trainers to finish gradients update and then send the updated parameters to trainers, training can not proceed until the trainer received the updated parameters. This creates a synchronization point between trainers. When training with async SGD, each trainer upload gradient and download new parameters individually, without the synchronization with other trainers. Using asyc SGD will be faster in terms of time per pass, but have more noise in gradient since trainers are likely to have a stale model.
在上图中显示了在一个实际生产环境中的应用(人脸识别)的数据流图。生产环境的日志数据会通过实时流的方式(Kafka)和离线数据的方式(HDFS)存储,并在集群中运行多个分布式数据处理任务,比如流式数据处理(online data process),离线批处理(offline data process)完成数据的预处理,提供给paddle作为训练数据。用于也可以上传labeled data到分布式存储补充训练数据。在paddle之上运行的深度学习训练输出的模型会提供给在线人脸识别的应用使用。
在上图中显示了在一个实际生产环境中的应用(人脸识别)的数据流图。生产环境的日志数据会通过实时流的方式(Kafka)和离线数据的方式(HDFS)存储,并在集群中运行多个分布式数据处理任务,比如流式数据处理(online data process),离线批处理(offline data process)完成数据的预处理,提供给paddle作为训练数据。用于也可以上传labeled data到分布式存储补充训练数据。在paddle之上运行的深度学习训练输出的模型会提供给在线人脸识别的应用使用。