Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
aecf9967
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
aecf9967
编写于
1月 30, 2022
作者:
F
fwenguang
提交者:
GitHub
1月 30, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU] add softmax_with_cross_entropy mlu kernel (#39260)
上级
d28f6f7b
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
321 addition
and
10 deletion
+321
-10
paddle/fluid/operators/softmax_with_cross_entropy_op.cc
paddle/fluid/operators/softmax_with_cross_entropy_op.cc
+8
-9
paddle/fluid/operators/softmax_with_cross_entropy_op_mlu.cc
paddle/fluid/operators/softmax_with_cross_entropy_op_mlu.cc
+151
-0
python/paddle/fluid/layers/loss.py
python/paddle/fluid/layers/loss.py
+1
-1
python/paddle/fluid/tests/unittests/mlu/test_softmax_with_cross_entropy_op_mlu.py
...s/unittests/mlu/test_softmax_with_cross_entropy_op_mlu.py
+161
-0
未找到文件。
paddle/fluid/operators/softmax_with_cross_entropy_op.cc
浏览文件 @
aecf9967
...
@@ -40,7 +40,7 @@ class SoftmaxWithCrossEntropyOpMaker
...
@@ -40,7 +40,7 @@ class SoftmaxWithCrossEntropyOpMaker
"The outputs value of softmax activation by given the input batch, "
"The outputs value of softmax activation by given the input batch, "
"which will be used in backward calculation."
)
"which will be used in backward calculation."
)
.
AsIntermediate
();
.
AsIntermediate
();
#if
def PADDLE_WITH_ASCEND_CL
#if
defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_MLU)
AddOutput
(
AddOutput
(
"Backprop"
,
"Backprop"
,
"(Tensor, default: Tensor<float>), A tensor in same shape with "
"(Tensor, default: Tensor<float>), A tensor in same shape with "
...
@@ -49,7 +49,7 @@ class SoftmaxWithCrossEntropyOpMaker
...
@@ -49,7 +49,7 @@ class SoftmaxWithCrossEntropyOpMaker
"is :"
"is :"
"exp(logits -max_logits) / sum(exp(logits - max_logits)) - labels, "
"exp(logits -max_logits) / sum(exp(logits - max_logits)) - labels, "
"where labels is ont-hot."
"where labels is ont-hot."
"Currently, the tensor is generated and used in npu
kernel only
. "
)
"Currently, the tensor is generated and used in npu
/mlu kernel
. "
)
.
AsIntermediate
();
.
AsIntermediate
();
#endif
#endif
AddOutput
(
"Loss"
,
AddOutput
(
"Loss"
,
...
@@ -131,7 +131,7 @@ class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel {
...
@@ -131,7 +131,7 @@ class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Softmax"
),
true
,
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Softmax"
),
true
,
platform
::
errors
::
InvalidArgument
(
platform
::
errors
::
InvalidArgument
(
"Output(Softmax) should be not null."
));
"Output(Softmax) should be not null."
));
#if
def PADDLE_WITH_ASCEND_CL
#if
defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_MLU)
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Backprop"
),
true
,
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Backprop"
),
true
,
platform
::
errors
::
InvalidArgument
(
platform
::
errors
::
InvalidArgument
(
"Output(Backprop) should be not null."
));
"Output(Backprop) should be not null."
));
...
@@ -194,7 +194,7 @@ class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel {
...
@@ -194,7 +194,7 @@ class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel {
}
}
ctx
->
SetOutputDim
(
"Softmax"
,
logits_dims
);
ctx
->
SetOutputDim
(
"Softmax"
,
logits_dims
);
#if
def PADDLE_WITH_ASCEND_CL
#if
defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_MLU)
ctx
->
SetOutputDim
(
"Backprop"
,
logits_dims
);
ctx
->
SetOutputDim
(
"Backprop"
,
logits_dims
);
ctx
->
ShareLoD
(
"Logits"
,
/*->*/
"Backprop"
);
ctx
->
ShareLoD
(
"Logits"
,
/*->*/
"Backprop"
);
#endif
#endif
...
@@ -225,7 +225,7 @@ class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel {
...
@@ -225,7 +225,7 @@ class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Softmax"
),
true
,
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Softmax"
),
true
,
platform
::
errors
::
InvalidArgument
(
platform
::
errors
::
InvalidArgument
(
"Input(Softmax) should be not null."
));
"Input(Softmax) should be not null."
));
#if
def PADDLE_WITH_ASCEND_CL
#if
defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_MLU)
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Backprop"
),
true
,
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Backprop"
),
true
,
platform
::
errors
::
InvalidArgument
(
platform
::
errors
::
InvalidArgument
(
"Input(Backprop) should be not null."
));
"Input(Backprop) should be not null."
));
...
@@ -306,7 +306,7 @@ class SoftmaxGradMaker : public framework::SingleGradOpMaker<T> {
...
@@ -306,7 +306,7 @@ class SoftmaxGradMaker : public framework::SingleGradOpMaker<T> {
grad_op
->
SetType
(
"softmax_with_cross_entropy_grad"
);
grad_op
->
SetType
(
"softmax_with_cross_entropy_grad"
);
grad_op
->
SetInput
(
"Label"
,
this
->
Input
(
"Label"
));
grad_op
->
SetInput
(
"Label"
,
this
->
Input
(
"Label"
));
grad_op
->
SetInput
(
"Softmax"
,
this
->
Output
(
"Softmax"
));
grad_op
->
SetInput
(
"Softmax"
,
this
->
Output
(
"Softmax"
));
#if
def PADDLE_WITH_ASCEND_CL
#if
defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_MLU)
grad_op
->
SetInput
(
"Backprop"
,
this
->
Output
(
"Backprop"
));
grad_op
->
SetInput
(
"Backprop"
,
this
->
Output
(
"Backprop"
));
#endif
#endif
grad_op
->
SetInput
(
framework
::
GradVarName
(
"Loss"
),
this
->
OutputGrad
(
"Loss"
));
grad_op
->
SetInput
(
framework
::
GradVarName
(
"Loss"
),
this
->
OutputGrad
(
"Loss"
));
...
@@ -343,7 +343,7 @@ REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy_grad,
...
@@ -343,7 +343,7 @@ REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy_grad,
ops
::
SoftmaxWithCrossEntropyGradKernel
<
double
>
);
ops
::
SoftmaxWithCrossEntropyGradKernel
<
double
>
);
REGISTER_OP_VERSION
(
softmax_with_cross_entropy
)
REGISTER_OP_VERSION
(
softmax_with_cross_entropy
)
#if
def PADDLE_WITH_ASCEND_CL
#if
defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_MLU)
.
AddCheckpoint
(
.
AddCheckpoint
(
R"ROC(
R"ROC(
Add a new attribute [use_softmax] )ROC"
,
Add a new attribute [use_softmax] )ROC"
,
...
@@ -358,8 +358,7 @@ REGISTER_OP_VERSION(softmax_with_cross_entropy)
...
@@ -358,8 +358,7 @@ REGISTER_OP_VERSION(softmax_with_cross_entropy)
"calculation is :"
"calculation is :"
"exp(logits -max_logits) / sum(exp(logits - max_logits)) - labels, "
"exp(logits -max_logits) / sum(exp(logits - max_logits)) - labels, "
"where labels is ont-hot."
"where labels is ont-hot."
"Currently, the tensor is generated and used in npu kernel "
"Currently, the tensor is generated and used in npu/mlu kernel. "
));
"only. "
));
#else
#else
.
AddCheckpoint
(
.
AddCheckpoint
(
R"ROC(
R"ROC(
...
...
paddle/fluid/operators/softmax_with_cross_entropy_op_mlu.cc
0 → 100644
浏览文件 @
aecf9967
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/softmax_with_cross_entropy_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
SoftmaxWithCrossEntropyMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
logits
=
ctx
.
Input
<
Tensor
>
(
"Logits"
);
auto
*
labels
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
*
softmax
=
ctx
.
Output
<
Tensor
>
(
"Softmax"
);
auto
*
loss
=
ctx
.
Output
<
Tensor
>
(
"Loss"
);
auto
*
backprop
=
ctx
.
Output
<
Tensor
>
(
"Backprop"
);
auto
soft_label
=
ctx
.
Attr
<
bool
>
(
"soft_label"
);
PADDLE_ENFORCE_EQ
(
ctx
.
Attr
<
bool
>
(
"use_softmax"
),
true
,
platform
::
errors
::
InvalidArgument
(
"use_softmax=False is not supported in "
"the mlu kernel of softmax_with_cross_entropy."
));
const
int
rank
=
logits
->
dims
().
size
();
const
int
axis
=
CanonicalAxis
(
ctx
.
Attr
<
int
>
(
"axis"
),
rank
);
loss
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
backprop
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
softmax
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// cnnl softmax only support 3-dims, regard all shape as [d1, d2, d3]
const
int
cnnl_softmax_dims
=
3
;
const
int
d1
=
SizeToAxis
(
axis
,
logits
->
dims
());
const
int
d2_logits
=
logits
->
dims
()[
axis
];
const
int
d2_labels
=
labels
->
dims
()[
axis
];
const
int
d3
=
SizeOutAxis
(
axis
,
logits
->
dims
());
// CNNL_SOFTMAX_MODE_LOW_DIMENSION has better perfermence, use it as much as
// possible.
cnnlSoftmaxMode_t
mode
=
CNNL_SOFTMAX_MODE_LOW_DIMENSION
;
std
::
vector
<
int
>
regard_logits_shape
{
d1
,
1
,
d2_logits
};
std
::
vector
<
int
>
regard_labels_shape
{
d1
,
1
,
d2_labels
};
std
::
vector
<
int
>
regard_loss_shape
{
d1
,
1
,
1
};
if
(
d3
!=
1
)
{
mode
=
CNNL_SOFTMAX_MODE_MEDIUM_DIMENSION
;
regard_logits_shape
=
{
d1
,
d2_logits
,
d3
};
regard_labels_shape
=
{
d1
,
d2_labels
,
d3
};
regard_loss_shape
=
{
d1
,
1
,
d3
};
}
MLUCnnlTensorDesc
logits_desc
(
cnnl_softmax_dims
,
regard_logits_shape
.
data
(),
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
labels_desc
(
cnnl_softmax_dims
,
regard_labels_shape
.
data
(),
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
loss_desc
(
cnnl_softmax_dims
,
regard_loss_shape
.
data
(),
ToCnnlDataType
<
T
>
());
const
cnnlSoftmaxAlgorithm_t
algo
=
CNNL_SOFTMAX_ACCURATE
;
MLUCnnl
::
SoftmaxForward
(
ctx
,
algo
,
mode
,
NULL
,
logits_desc
.
get
(),
GetBasePtr
(
logits
),
NULL
,
logits_desc
.
get
(),
GetBasePtr
(
softmax
));
if
(
soft_label
)
{
const
cnnlComputationPreference_t
prefer
=
CNNL_COMPUTATION_HIGH_PRECISION
;
MLUCnnl
::
SoftmaxCrossEntropyWithLogits
(
ctx
,
mode
,
prefer
,
logits_desc
.
get
(),
GetBasePtr
(
logits
),
labels_desc
.
get
(),
GetBasePtr
(
labels
),
loss_desc
.
get
(),
GetBasePtr
(
loss
),
logits_desc
.
get
(),
GetBasePtr
(
backprop
));
}
else
{
PADDLE_ENFORCE_EQ
(
d3
,
1
,
platform
::
errors
::
InvalidArgument
(
"If soft_label=False, axis must be -1 or"
" can be regard as last dimention in mlu kernel."
));
framework
::
Tensor
labels_int32
(
VT
::
INT32
);
labels_int32
.
Resize
(
labels
->
dims
());
labels_int32
.
mutable_data
<
int32_t
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
labels_int64_desc
(
*
labels
);
MLUCnnlTensorDesc
labels_int32_desc
(
labels_int32
);
cnnlCastDataType_t
cast_type
=
GetCastDataType
(
VT
::
INT64
,
VT
::
INT32
);
MLUCnnl
::
Cast
(
ctx
,
cast_type
,
labels_int64_desc
.
get
(),
GetBasePtr
(
labels
),
labels_int32_desc
.
get
(),
GetBasePtr
(
&
labels_int32
));
const
int
regard_sparse_shape
[
cnnl_softmax_dims
-
1
]
=
{
d1
,
1
};
MLUCnnlTensorDesc
sparse_labels_desc
(
cnnl_softmax_dims
-
1
,
regard_sparse_shape
,
ToCnnlDataType
<
int32_t
>
());
MLUCnnlTensorDesc
sparse_loss_desc
(
cnnl_softmax_dims
-
1
,
regard_sparse_shape
,
ToCnnlDataType
<
T
>
());
MLUCnnl
::
SparseSoftmaxXentWithLogits
(
ctx
,
mode
,
logits_desc
.
get
(),
GetBasePtr
(
logits
),
sparse_labels_desc
.
get
(),
GetBasePtr
(
&
labels_int32
),
sparse_loss_desc
.
get
(),
GetBasePtr
(
loss
),
logits_desc
.
get
(),
GetBasePtr
(
backprop
));
}
}
};
template
<
typename
T
>
class
SoftmaxWithCrossEntropyGradMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
backprop
=
ctx
.
Input
<
Tensor
>
(
"Backprop"
);
auto
*
loss_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
auto
*
logits_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Logits"
));
PADDLE_ENFORCE_NOT_NULL
(
backprop
,
platform
::
errors
::
PreconditionNotMet
(
"backprop should not be null in MLU kernel of "
"softmax_with_cross_entropy_grad."
));
logits_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
MLUCnnlOpTensorDesc
mul_op_desc
(
CNNL_OP_TENSOR_MUL
,
ToCnnlDataType
<
T
>
(),
CNNL_NOT_PROPAGATE_NAN
);
MLUCnnlTensorDesc
backprop_desc
(
*
backprop
);
MLUCnnlTensorDesc
loss_grad_desc
(
*
loss_grad
);
MLUCnnlTensorDesc
logits_grad_desc
(
*
logits_grad
);
MLUCnnl
::
OpTensor
(
ctx
,
mul_op_desc
.
get
(),
backprop_desc
.
get
(),
GetBasePtr
(
backprop
),
loss_grad_desc
.
get
(),
GetBasePtr
(
loss_grad
),
logits_grad_desc
.
get
(),
GetBasePtr
(
logits_grad
),
ToCnnlDataType
<
T
>
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_MLU_KERNEL
(
softmax_with_cross_entropy
,
ops
::
SoftmaxWithCrossEntropyMLUKernel
<
float
>
,
ops
::
SoftmaxWithCrossEntropyMLUKernel
<
paddle
::
platform
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
softmax_with_cross_entropy_grad
,
ops
::
SoftmaxWithCrossEntropyGradMLUKernel
<
float
>
,
ops
::
SoftmaxWithCrossEntropyGradMLUKernel
<
paddle
::
platform
::
float16
>
);
python/paddle/fluid/layers/loss.py
浏览文件 @
aecf9967
...
@@ -1287,7 +1287,7 @@ def softmax_with_cross_entropy(logits,
...
@@ -1287,7 +1287,7 @@ def softmax_with_cross_entropy(logits,
loss
=
helper
.
create_variable_for_type_inference
(
dtype
=
logits
.
dtype
)
loss
=
helper
.
create_variable_for_type_inference
(
dtype
=
logits
.
dtype
)
outputs
=
{
'Softmax'
:
softmax
,
'Loss'
:
loss
}
outputs
=
{
'Softmax'
:
softmax
,
'Loss'
:
loss
}
if
core
.
is_compiled_with_npu
():
if
core
.
is_compiled_with_npu
()
or
core
.
is_compiled_with_mlu
()
:
backprop
=
helper
.
create_variable_for_type_inference
(
dtype
=
logits
.
dtype
)
backprop
=
helper
.
create_variable_for_type_inference
(
dtype
=
logits
.
dtype
)
outputs
[
'Backprop'
]
=
backprop
outputs
[
'Backprop'
]
=
backprop
helper
.
append_op
(
helper
.
append_op
(
...
...
python/paddle/fluid/tests/unittests/mlu/test_softmax_with_cross_entropy_op_mlu.py
0 → 100644
浏览文件 @
aecf9967
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
from
test_softmax_op
import
stable_softmax
from
test_softmax_with_cross_entropy_op
import
cross_entropy
paddle
.
enable_static
()
SEED
=
2021
class
TestSoftmaxWithCrossEntropyOp
(
OpTest
):
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
initParams
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"softmax_with_cross_entropy"
self
.
numeric_stable_mode
=
False
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
soft_label
=
False
self
.
init_dtype
()
self
.
axis
=
-
1
self
.
ignore_index
=
-
1
self
.
shape
=
[
41
,
37
]
np
.
random
.
seed
(
SEED
)
def
setUp
(
self
):
self
.
initParams
()
logits
=
getattr
(
self
,
"logits"
,
np
.
random
.
uniform
(
0.1
,
1.0
,
self
.
shape
).
astype
(
self
.
dtype
))
softmax
=
np
.
apply_along_axis
(
stable_softmax
,
self
.
axis
,
logits
)
if
self
.
soft_label
:
labels
=
np
.
random
.
uniform
(
0.1
,
1.0
,
self
.
shape
).
astype
(
self
.
dtype
)
labels
/=
np
.
sum
(
labels
,
axis
=
self
.
axis
,
keepdims
=
True
)
else
:
axis_dim
=
self
.
shape
[
self
.
axis
]
self
.
shape
[
self
.
axis
]
=
1
labels
=
np
.
random
.
randint
(
0
,
axis_dim
,
self
.
shape
,
dtype
=
"int64"
)
loss
=
cross_entropy
(
softmax
,
labels
,
self
.
soft_label
,
self
.
axis
,
self
.
ignore_index
)
one_hot_label
=
np
.
eye
(
axis_dim
)[
labels
.
reshape
(
-
1
)]
self
.
inputs
=
{
"Logits"
:
logits
,
"Label"
:
labels
}
self
.
outputs
=
{
"Backprop"
:
(
softmax
-
one_hot_label
).
astype
(
self
.
dtype
),
"Softmax"
:
softmax
.
astype
(
self
.
dtype
),
"Loss"
:
loss
.
astype
(
self
.
dtype
)
}
self
.
attrs
=
{
"numeric_stable_mode"
:
self
.
numeric_stable_mode
,
"soft_label"
:
self
.
soft_label
,
"ignore_index"
:
self
.
ignore_index
,
}
if
self
.
axis
!=
-
1
:
self
.
attrs
[
'axis'
]
=
self
.
axis
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
# fp32 has low precision, cpu and mlu both need to relax the max_relative_error if using fp32
self
.
check_grad_with_place
(
self
.
place
,
[
'Logits'
],
'Loss'
,
numeric_grad_delta
=
0.001
,
max_relative_error
=
0.5
)
class
TestPowNet
(
unittest
.
TestCase
):
def
_test
(
self
,
run_mlu
=
True
):
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
np
.
random
.
seed
(
SEED
)
a_np
=
np
.
random
.
random
(
size
=
(
32
,
32
)).
astype
(
'float32'
)
b_np
=
np
.
random
.
random
(
size
=
(
32
,
32
)).
astype
(
'float32'
)
label_np
=
np
.
random
.
randint
(
2
,
size
=
(
32
,
1
)).
astype
(
'int64'
)
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
a
=
paddle
.
static
.
data
(
name
=
"a"
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
b
=
paddle
.
static
.
data
(
name
=
"b"
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
label
=
paddle
.
static
.
data
(
name
=
"label"
,
shape
=
[
32
,
1
],
dtype
=
'int64'
)
sum
=
paddle
.
add
(
a
,
b
)
z
=
paddle
.
pow
(
sum
,
2.0
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
z
,
size
=
128
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
)
cost
=
fluid
.
layers
.
softmax_with_cross_entropy
(
prediction
,
label
)
loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
sgd
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
sgd
.
minimize
(
loss
)
if
run_mlu
:
place
=
paddle
.
device
.
MLUPlace
(
0
)
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
print
(
"Start run on {}"
.
format
(
place
))
for
epoch
in
range
(
100
):
pred_res
,
loss_res
=
exe
.
run
(
main_prog
,
feed
=
{
"a"
:
a_np
,
"b"
:
b_np
,
"label"
:
label_np
},
fetch_list
=
[
prediction
,
loss
])
if
epoch
%
10
==
0
:
print
(
"Epoch {} | Prediction[0]: {}, Loss: {}"
.
format
(
epoch
,
pred_res
[
0
],
loss_res
))
return
pred_res
,
loss_res
def
test_mlu
(
self
):
cpu_pred
,
cpu_loss
=
self
.
_test
(
False
)
mlu_pred
,
mlu_loss
=
self
.
_test
(
True
)
self
.
assertTrue
(
np
.
allclose
(
mlu_pred
,
cpu_pred
))
self
.
assertTrue
(
np
.
allclose
(
mlu_loss
,
cpu_loss
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录