Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
acec26a1
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
acec26a1
编写于
4月 02, 2022
作者:
T
taixiurong
提交者:
GitHub
4月 02, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
xpu add dropout&cast unitest (#41120)
上级
3b686b18
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
259 addition
and
110 deletion
+259
-110
paddle/fluid/operators/dropout_op_xpu.cc
paddle/fluid/operators/dropout_op_xpu.cc
+7
-1
python/paddle/fluid/tests/unittests/op_test_xpu.py
python/paddle/fluid/tests/unittests/op_test_xpu.py
+36
-13
python/paddle/fluid/tests/unittests/xpu/test_cast_op_xpu.py
python/paddle/fluid/tests/unittests/xpu/test_cast_op_xpu.py
+26
-12
python/paddle/fluid/tests/unittests/xpu/test_dropout_op_xpu.py
...n/paddle/fluid/tests/unittests/xpu/test_dropout_op_xpu.py
+190
-84
未找到文件。
paddle/fluid/operators/dropout_op_xpu.cc
浏览文件 @
acec26a1
...
...
@@ -42,7 +42,13 @@ class DropoutXPUKernel : public framework::OpKernel<T> {
if
(
!
context
.
Attr
<
bool
>
(
"is_test"
))
{
int
seed_data
=
0
;
if
(
seed
)
{
seed_data
=
*
(
seed
->
data
<
int
>
());
if
(
platform
::
is_xpu_place
(
seed
->
place
()))
{
memory
::
Copy
(
platform
::
CPUPlace
(),
&
seed_data
,
seed
->
place
(),
seed
->
data
<
int
>
(),
sizeof
(
int
));
}
else
{
seed_data
=
*
(
seed
->
data
<
int
>
());
}
}
else
{
seed_data
=
context
.
Attr
<
bool
>
(
"fix_seed"
)
?
context
.
Attr
<
int
>
(
"seed"
)
:
0
;
...
...
python/paddle/fluid/tests/unittests/op_test_xpu.py
浏览文件 @
acec26a1
...
...
@@ -54,13 +54,11 @@ class XPUOpTest(OpTest):
"""Restore random seeds"""
def
is_empty_grad_op
(
op_type
):
all_op_kernels
=
core
.
_get_all_register_op_kernels
()
grad_op
=
op_type
+
'_grad'
if
grad_op
in
all_op_kernels
.
keys
():
grad_op_kernels
=
all_op_kernels
[
grad_op
]
for
grad_op_kernel
in
grad_op_kernels
:
if
'XPU'
in
grad_op_kernel
:
return
False
xpu_version
=
core
.
get_xpu_device_version
(
0
)
xpu_op_list
=
core
.
get_xpu_device_op_list
(
xpu_version
)
if
grad_op
in
xpu_op_list
.
keys
():
return
False
return
True
if
cls
.
dtype
==
np
.
float16
:
...
...
@@ -70,9 +68,20 @@ class XPUOpTest(OpTest):
super
().
tearDownClass
()
def
_get_places
(
self
):
places
=
[
fluid
.
XPUPlace
(
0
)]
places
=
[
paddle
.
XPUPlace
(
0
)]
return
places
def
check_output
(
self
,
atol
=
0.001
,
no_check_set
=
None
,
equal_nan
=
False
,
check_dygraph
=
True
,
inplace_atol
=
None
,
check_eager
=
False
):
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
,
atol
,
no_check_set
,
equal_nan
,
check_dygraph
,
inplace_atol
,
check_eager
)
def
check_output_with_place
(
self
,
place
,
atol
=
0.001
,
...
...
@@ -82,20 +91,37 @@ class XPUOpTest(OpTest):
inplace_atol
=
None
,
check_eager
=
False
):
self
.
infer_dtype_from_inputs_outputs
(
self
.
inputs
,
self
.
outputs
)
#xpu not support float64
if
self
.
dtype
==
np
.
float64
:
return
if
place
==
None
:
place
=
paddle
.
XPUPlace
(
0
)
if
self
.
dtype
==
np
.
float16
:
if
core
.
is_float16_supported
(
place
)
==
False
:
return
if
self
.
dtype
==
np
.
float16
:
atol
=
0.1
return
super
().
check_output_with_place
(
place
,
atol
,
no_check_set
,
equal_nan
,
check_dygraph
,
inplace_atol
)
def
check_grad
(
self
,
inputs_to_check
,
output_names
,
no_grad_set
=
None
,
numeric_grad_delta
=
0.005
,
in_place
=
False
,
max_relative_error
=
0.005
,
user_defined_grads
=
None
,
user_defined_grad_outputs
=
None
,
check_dygraph
=
True
,
numeric_place
=
None
,
check_eager
=
False
):
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
inputs_to_check
,
output_names
,
no_grad_set
,
numeric_grad_delta
,
in_place
,
max_relative_error
,
user_defined_grads
,
user_defined_grad_outputs
,
check_dygraph
,
numeric_place
,
check_eager
)
def
check_grad_with_place
(
self
,
place
,
inputs_to_check
,
...
...
@@ -116,9 +142,6 @@ class XPUOpTest(OpTest):
self
.
_check_grad_helper
()
return
if
place
==
None
:
place
=
paddle
.
XPUPlace
(
0
)
if
self
.
dtype
==
np
.
float64
:
return
...
...
python/paddle/fluid/tests/unittests/xpu/test_cast_op_xpu.py
浏览文件 @
acec26a1
...
...
@@ -23,6 +23,9 @@ import paddle
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
paddle.fluid
import
compiler
,
Program
,
program_guard
from
op_test_xpu
import
XPUOpTest
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
typeid_dict
=
{
'int32'
:
int
(
core
.
VarDesc
.
VarType
.
INT32
),
...
...
@@ -33,10 +36,27 @@ typeid_dict = {
}
def
create_test_class
(
in_typename
,
out_typename
):
class
Cls
(
op_test
.
OpTest
):
class
XPUTestCastOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'cast'
self
.
use_dynamic_create_class
=
True
def
dynamic_create_class
(
self
):
base_class
=
self
.
TestCastOp
classes
=
[]
for
out_type
in
{
'float16'
,
'float32'
,
'int32'
,
'int64'
}:
class_name
=
'XPUTestCastOp_outtype_'
+
out_type
attr_dict
=
{
'out_typename'
:
out_type
}
classes
.
append
([
class_name
,
attr_dict
])
return
base_class
,
classes
class
TestCastOp
(
XPUOpTest
):
def
setUp
(
self
):
ipt
=
np
.
random
.
random
(
size
=
[
10
,
10
])
in_typename
=
self
.
in_type_str
out_typename
=
'float32'
if
not
hasattr
(
self
,
'out_typename'
)
else
self
.
out_typename
self
.
inputs
=
{
'X'
:
ipt
.
astype
(
in_typename
)}
self
.
outputs
=
{
'Out'
:
ipt
.
astype
(
in_typename
).
astype
(
out_typename
)}
self
.
attrs
=
{
...
...
@@ -47,18 +67,12 @@ def create_test_class(in_typename, out_typename):
self
.
__class__
.
no_need_check_grad
=
True
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
cls_name
=
"cast_{0}_{1}"
.
format
(
in_typename
,
out_typename
)
Cls
.
__name__
=
cls_name
globals
()[
cls_name
]
=
Cls
self
.
check_output
()
for
in_type
in
{
'float16'
,
'float32'
,
'int32'
,
'int64'
,
'bool'
}:
for
out_type
in
{
'float16'
,
'float32'
,
'int32'
,
'int64'
}
:
create_test_class
(
in_type
,
out_
type
)
support_types
=
get_xpu_op_support_types
(
'cast'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestCastOp
,
s
type
)
class
TestCastOpError
(
unittest
.
TestCase
):
...
...
python/paddle/fluid/tests/unittests/xpu/test_dropout_op_xpu.py
浏览文件 @
acec26a1
...
...
@@ -25,90 +25,196 @@ from paddle.fluid import Program, program_guard
from
op_test_xpu
import
XPUOpTest
paddle
.
enable_static
()
class
TestDropoutOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dropout_prob'
:
0.0
,
'fix_seed'
:
True
,
'is_test'
:
False
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
],
'Mask'
:
np
.
ones
((
32
,
64
)).
astype
(
'uint8'
)
}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad_normal
(
self
):
if
paddle
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
)
class
TestDropoutOpInput1d
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
2000
,
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dropout_prob'
:
0.0
,
'fix_seed'
:
True
,
'is_test'
:
False
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
],
'Mask'
:
np
.
ones
((
2000
)).
astype
(
'uint8'
)
}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad_normal
(
self
):
if
paddle
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
)
class
TestDropoutOp2
(
TestDropoutOp
):
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dropout_prob'
:
1.0
,
'fix_seed'
:
True
,
'is_test'
:
False
}
self
.
outputs
=
{
'Out'
:
np
.
zeros
((
32
,
64
)).
astype
(
'float32'
),
'Mask'
:
np
.
zeros
((
32
,
64
)).
astype
(
'uint8'
)
}
class
TestDropoutOp3
(
TestDropoutOp
):
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
,
2
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dropout_prob'
:
0.0
,
'fix_seed'
:
True
,
'is_test'
:
False
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
],
'Mask'
:
np
.
ones
((
32
,
64
,
2
)).
astype
(
'uint8'
)
}
class
TestDropoutOp6
(
TestDropoutOp
):
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
,
2
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dropout_prob'
:
0.0
,
'fix_seed'
:
True
,
'is_test'
:
False
,
'dropout_implementation'
:
'upscale_in_train'
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
],
'Mask'
:
np
.
ones
((
32
,
64
,
2
)).
astype
(
'uint8'
)
}
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
class
XPUTestDropoutOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'dropout'
self
.
use_dynamic_create_class
=
False
class
TestDropoutOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
init_inputs_shape
()
self
.
init_attrs
()
self
.
dtype
=
self
.
in_type
self
.
op_type
=
'dropout'
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dropout_prob'
:
self
.
dropout_prob
,
'fix_seed'
:
self
.
fix_seed
,
'is_test'
:
self
.
is_test
,
'dropout_implementation'
:
self
.
dropout_implementation
}
out
=
self
.
inputs
[
'X'
]
*
(
1.0
-
self
.
dropout_prob
)
if
self
.
is_test
==
False
:
mask
=
None
if
self
.
dropout_prob
==
0.0
:
mask
=
np
.
ones
(
self
.
shape
).
astype
(
self
.
dtype
)
elif
self
.
dropout_prob
==
1.0
:
mask
=
np
.
zeros
(
self
.
shape
).
astype
(
self
.
dtype
)
self
.
outputs
=
{
'Out'
:
out
,
'Mask'
:
mask
}
else
:
self
.
outputs
=
{
'Out'
:
out
}
def
init_inputs_shape
(
self
):
self
.
shape
=
[
32
,
64
]
def
init_attrs
(
self
):
self
.
__class__
.
no_need_check_grad
=
False
self
.
dropout_prob
=
0.0
self
.
fix_seed
=
True
self
.
is_test
=
False
self
.
dropout_implementation
=
"upscale_in_train"
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
if
hasattr
(
self
.
__class__
,
"no_need_check_grad"
)
and
self
.
__class__
.
no_need_check_grad
==
True
:
return
self
.
check_grad
([
'X'
],
'Out'
)
class
TestDropoutOpInput1d
(
TestDropoutOp
):
def
init_inputs_shape
(
self
):
self
.
shape
=
[
2000
]
class
TestDropoutOp2
(
TestDropoutOp
):
def
init_inputs_shape
(
self
):
self
.
shape
=
[
32
,
64
]
def
init_attrs
(
self
):
self
.
dropout_prob
=
1.0
self
.
fix_seed
=
True
self
.
is_test
=
False
self
.
dropout_implementation
=
"upscale_in_train"
class
TestDropoutOp3
(
TestDropoutOp
):
def
init_inputs_shape
(
self
):
self
.
shape
=
[
32
,
64
,
2
]
class
TestDropoutOp4
(
TestDropoutOp
):
def
init_attrs
(
self
):
self
.
__class__
.
no_need_check_grad
=
True
self
.
dropout_prob
=
0.35
self
.
fix_seed
=
True
self
.
is_test
=
True
self
.
dropout_implementation
=
"downgrade_in_infer"
class
TestDropoutOp5
(
TestDropoutOp
):
def
init_inputs_shape
(
self
):
self
.
shape
=
[
32
,
64
,
3
]
def
init_attrs
(
self
):
self
.
__class__
.
no_need_check_grad
=
True
self
.
dropout_prob
=
0.75
self
.
fix_seed
=
True
self
.
is_test
=
True
self
.
dropout_implementation
=
"downgrade_in_infer"
class
TestDropoutOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
def
test_Variable
():
# the input of dropout must be Variable.
x1
=
fluid
.
create_lod_tensor
(
np
.
array
([
-
1
,
3
,
5
,
5
]),
[[
1
,
1
,
1
,
1
]],
fluid
.
CPUPlace
())
fluid
.
layers
.
dropout
(
x1
,
dropout_prob
=
0.5
)
self
.
assertRaises
(
TypeError
,
test_Variable
)
def
test_dtype
():
# the input dtype of dropout must be float16 or float32 or float64
# float16 only can be set on GPU place
x2
=
fluid
.
layers
.
data
(
name
=
'x2'
,
shape
=
[
3
,
4
,
5
,
6
],
dtype
=
"int32"
)
fluid
.
layers
.
dropout
(
x2
,
dropout_prob
=
0.5
)
self
.
assertRaises
(
TypeError
,
test_dtype
)
class
TestDropoutCAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
np
.
random
.
seed
(
123
)
self
.
places
=
[
fluid
.
CPUPlace
()]
self
.
places
.
append
(
fluid
.
XPUPlace
(
0
))
def
test_dygraph
(
self
):
for
place
in
self
.
places
:
with
fluid
.
dygraph
.
guard
(
place
):
input_np
=
np
.
random
.
random
([
40
,
40
]).
astype
(
self
.
in_type
)
result_np
=
input_np
input
=
fluid
.
dygraph
.
to_variable
(
input_np
)
m
=
paddle
.
nn
.
Dropout
(
p
=
0.
)
m
.
eval
()
result
=
m
(
input
)
self
.
assertTrue
(
np
.
allclose
(
result
.
numpy
(),
result_np
))
class
TestDropoutBackward
(
unittest
.
TestCase
):
def
setUp
(
self
):
np
.
random
.
seed
(
123
)
self
.
places
=
[
fluid
.
CPUPlace
()]
self
.
places
.
append
(
fluid
.
XPUPlace
(
0
))
def
cal_grad_upscale_train
(
self
,
mask
,
prob
):
return
mask
.
astype
(
self
.
in_type
)
/
(
1
-
prob
)
def
cal_grad_downscale_in_infer
(
self
,
mask
):
return
mask
.
astype
(
self
.
in_type
)
def
test_backward_downscale_in_infer
(
self
):
for
place
in
self
.
places
:
with
fluid
.
dygraph
.
guard
(
place
):
input
=
paddle
.
uniform
([
40
,
40
],
dtype
=
self
.
in_type
)
input
.
stop_gradient
=
False
out
,
mask
=
core
.
ops
.
dropout
(
input
,
'dropout_prob'
,
0.5
)
out
.
backward
()
self
.
assertTrue
(
np
.
array_equal
(
input
.
gradient
(
),
self
.
cal_grad_downscale_in_infer
(
mask
.
numpy
())))
def
test_backward_upscale_train
(
self
):
for
place
in
self
.
places
:
with
fluid
.
dygraph
.
guard
(
place
):
prob
=
0.5
input
=
paddle
.
uniform
([
40
,
40
],
dtype
=
self
.
in_type
)
input
.
stop_gradient
=
False
out
,
mask
=
core
.
ops
.
dropout
(
input
,
'dropout_prob'
,
prob
,
"dropout_implementation"
,
"upscale_in_train"
)
out
.
backward
()
self
.
assertTrue
(
np
.
allclose
(
input
.
gradient
(
),
self
.
cal_grad_upscale_train
(
mask
.
numpy
(),
prob
)))
def
test_backward_upscale_train_2
(
self
):
for
place
in
self
.
places
:
with
fluid
.
dygraph
.
guard
(
place
):
prob
=
0.3
input
=
paddle
.
uniform
([
40
,
40
],
dtype
=
self
.
in_type
)
input
.
stop_gradient
=
False
out
,
mask
=
core
.
ops
.
dropout
(
input
,
'dropout_prob'
,
prob
,
"dropout_implementation"
,
"upscale_in_train"
)
out
.
backward
()
self
.
assertTrue
(
np
.
allclose
(
input
.
gradient
(
),
self
.
cal_grad_upscale_train
(
mask
.
numpy
(),
prob
)))
support_types
=
get_xpu_op_support_types
(
'dropout'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestDropoutOp
,
stype
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录