未验证 提交 ac596a39 编写于 作者: Y Yu Yang 提交者: GitHub

Feature/switch program (#5932)

* Unify fluid submodules to fluid module

Change books just use `import fluid`, not submodules

* Remove g_main_program/g_startup_program

Use default_main_program/default_startup_program instead

* Typo

* Add API for switch default program

* Two functions: switch_main_program/switch_startup_program
* A guard: program_guard. Users can use the `with` statement change
  default programs
* Change unittests in `test_layers`

* Fix CI

* Fix CI

* Fix CI
上级 35453df1
develop 2.0.1-rocm-post Ligoml-patch-1 OliverLPH-patch-1 OliverLPH-patch-2 PaddlePM-patch-1 PaddlePM-patch-2 ZHUI-patch-1 add_default_att add_model_benchmark_ci add_some_yaml_config addfile all_new_design_exec ascendrc ascendrelease cherry_undefined_var compile_windows cp_2.4_fix_numpy delete_2.0.1-rocm-post delete_add_default_att delete_all_new_design_exec delete_ascendrc delete_compile_windows delete_delete_addfile delete_disable_iterable_dataset_unittest delete_fix_dataloader_memory_leak delete_fix_imperative_dygraph_error delete_fix_retry_ci delete_fix_undefined_var delete_improve_sccache delete_incubate/lite delete_paddle_tiny_install delete_paralleltest delete_prv-disable-more-cache delete_revert-31068-fix_conv3d_windows delete_revert-31562-mean delete_revert-33630-bug-fix delete_revert-34159-add_npu_bce_logical_dev delete_revert-34910-spinlocks_for_allocator delete_revert-35069-revert-34910-spinlocks_for_allocator delete_revert-36057-dev/read_flags_in_ut dingjiaweiww-patch-1 disable_iterable_dataset_unittest dy2static enable_eager_model_test final_state_gen_python_c final_state_intermediate fix-numpy-issue fix_concat_slice fix_dataloader_memory_leak fix_dlpack_for fix_imperative_dygraph_error fix_npu_ci fix_op_flops fix_retry_ci fix_rnn_docs fix_tensor_type fix_undefined_var fix_var_stop_gradient_error fixiscan fixiscan1 fixiscan2 fixiscan3 github/fork/123malin/netifaces github/fork/123malin/tdm_abacus github/fork/AshburnLee/dev_unique github/fork/ForFishes/fix_memory_matmul github/fork/ForFishes/rm_fluid github/fork/LielinJiang/move-2.0-api github/fork/LielinJiang/visual-dl-cb github/fork/LiuChiachi/add-transformer-generate-square-subsequent-mask-api github/fork/LiuChiachi/fix-example-code-for-hapi-Model github/fork/LiuChiachi/remove-input-requirment-in-dygraph-Model github/fork/MrChengmo/fix_ps_profiler github/fork/MrChengmo/update_ps_heter github/fork/PWhiddy/patch-1 github/fork/Shixiaowei02/dev/save_load_upgrade github/fork/TCChenlong/fix_hapi github/fork/TCChenlong/fix_inden github/fork/Thunderbrook/xpu_slice github/fork/XieYunshen/disable_ut_test_parallel_executor_fetch_isolated_var github/fork/XieYunshen/disable_ut_test_parallel_executor_fetch_isolated_var_2 github/fork/XieYunshen/disable_ut_test_parallel_executor_fetch_isolated_var_3 github/fork/XieYunshen/timeout_20S_ut github/fork/ZeyuChen/remove-nltk github/fork/arlesniak/arlesniak/selective__mkldnn_flags github/fork/baiyfbupt/code_doc_mig github/fork/chalsliu/set_timeout github/fork/chen-zhiyu/develop github/fork/chenwhql/ci/try_to_find_test_buffer_shared_memory_reuse_pass_error github/fork/chenwhql/dygraph/remove_scale_loss_and_apply_collective_grads github/fork/chenwhql/saveload/add_get_inference_program github/fork/chenwhql/saveload/remove_save_load_config github/fork/cryoco/pass-compatibility-trt github/fork/danleifeng/isempty_api2.0 github/fork/frankwhzhang/api_transfer github/fork/hbwx24/error_msg/cuda_kernel_error_msg github/fork/heavengate/cherry_yolo_box github/fork/heavengate/update_yolo_box github/fork/iclementine/rnn_fix github/fork/iducn/testestse github/fork/jczaja/prv-25537-fix github/fork/jeff41404/release/1.8 github/fork/jiweibo/api_2.0 github/fork/jiweibo/fix_lite_resnet50_test github/fork/juncaipeng/fix_doc_1 github/fork/lfchener/sample_code github/fork/littletomatodonkey/fix_reg_doc github/fork/liym27/dy2stat_update_assign_to_rc20 github/fork/luotao1/profiler_ut github/fork/mapingshuo/add_wait github/fork/mapingshuo/doc_2.0 github/fork/mapingshuo/zero-0.5 github/fork/miraiwk/dev github/fork/pangyoki/add-Categorical-class-branch github/fork/pangyoki/add-multinomial-op-branch github/fork/pangyoki/fix-test_distritbution-CI github/fork/qjing666/doublegrad github/fork/qjing666/fix_hdfs_download github/fork/sandyhouse/add_gather_etc github/fork/sandyhouse/add_send_recv_alltoall_etc github/fork/sandyhouse/pipeline_exe_run github/fork/seiriosPlus/feature/large_scale_kv_save_delta github/fork/seiriosPlus/fix/paddle_errors_fix github/fork/seiriosPlus/fix/paddle_op_errors github/fork/shangzhizhou/fix_test_activation_op_random_bug github/fork/smallv0221/yxp0924 github/fork/smallv0221/yxp0925 github/fork/swtkiwi/del-matplotlib github/fork/tianshuo78520a/kunlun_test github/fork/tianshuo78520a/update_dockerfile github/fork/wanghaoshuang/bert_fuse github/fork/wanghaoshuang/label_smooth github/fork/wanghuancoder/develop_CUDASynchronize github/fork/wanghuancoder/develop_Layer_doc github/fork/wanghuancoder/develop_ParameterList_doc github/fork/wanghuancoder/develop_Sequential_doc github/fork/wanghuancoder/develop_bilinear_tensor_product github/fork/wanghuancoder/develop_coverage_build_sh github/fork/wanghuancoder/develop_in_dynamic_mode_doc github/fork/wanghuancoder/develop_unique_name_doc github/fork/wangxicoding/fleet_meta_combine github/fork/wawltor/error_message_fix_5 github/fork/willthefrog/remove_l2_norm github/fork/windstamp/momentum_op github/fork/windstamp/mv_op_5 github/fork/windstamp/normal_api github/fork/wojtuss/wojtuss/fusion_gru_quantization github/fork/wojtuss/wojtuss/quantization-with-shift github/fork/wzzju/fix_err_info github/fork/wzzju/pure_fp16 github/fork/xiemoyuan/op_error_message github/fork/xiemoyuan/optimize_error_message github/fork/yaoxuefeng6/fix_doc github/fork/yaoxuefeng6/mod_dataset_v2 github/fork/yongqiangma/lod github/fork/ysh329/fix-clip-by-norm-error github/fork/ysh329/fix-error-clip-by-value github/fork/yukavio/error_info github/fork/zhangting2020/conv_filter_grad github/fork/zhangting2020/is_compile_with_cuda github/fork/zhangting2020/place_doc github/fork/zhangting2020/program github/fork/zhhsplendid/fix_any github/fork/zhhsplendid/refine_api2 github/fork/zhhsplendid/refine_api2_test github/fork/zhhsplendid/refine_api_test_ptb_lm github/fork/zhhsplendid/refine_api_test_resnet github/fork/zhhsplendid/refine_api_test_simnet github/fork/zhiqiu/dev/refine_initializer github/fork/zhiqiu/dev/remove_inplace_argument github/fork/zlsh80826/nvinfer_plugin_var_len_cuda11 improve_sccache incubate/frl_train_eval incubate/infrt incubate/lite inplace_addto layer_norm make_flag_adding_easier master matmul_double_grad move_embedding_to_phi move_histogram_to_pten move_sgd_to_phi move_slice_to_pten move_temporal_shift_to_phi move_yolo_box_to_phi npu_fix_alloc numel paddle_tiny_install paralleltest preln_ernie prv-disable-more-cache prv-md-even-more prv-onednn-2.5 prv-reshape-mkldnn-ut2 pten_tensor_refactor release/0.11.0 release/0.12.0 release/0.13.0 release/0.14.0 release/0.15.0 release/1.0.0 release/1.1 release/1.2 release/1.3 release/1.4 release/1.5 release/1.6 release/1.7 release/1.8 release/2.0 release/2.0-alpha release/2.0-beta release/2.0-rc release/2.0-rc1 release/2.1 release/2.2 release/2.3 release/2.3-fc-ernie-fix release/2.4 release/lite-0.1 revert-24981-add_device_attr_for_regulization revert-26856-strategy_example2 revert-27520-disable_pr revert-31068-fix_conv3d_windows revert-31562-mean revert-32290-develop-hardlabel revert-33037-forci revert-33475-fix_cifar_label_dimension revert-33630-bug-fix revert-34159-add_npu_bce_logical_dev revert-34406-add_copy_from_tensor revert-34910-spinlocks_for_allocator revert-35069-revert-34910-spinlocks_for_allocator revert-36057-dev/read_flags_in_ut revert-36201-refine_fast_threaded_ssa_graph_executor revert-36985-add_license revert-37318-refactor_dygraph_to_eager revert-37926-eager_coreops_500 revert-37956-revert-37727-pylayer_support_tuple revert-38100-mingdong revert-38301-allocation_rearrange_pr revert-38703-numpy_bf16_package_reupload revert-38732-remove_useless_header_in_elementwise_mul_grad revert-38959-Reduce_Grad revert-39143-adjust_empty revert-39227-move_trace_op_to_pten revert-39268-dev/remove_concat_fluid_kernel revert-40170-support_partial_grad revert-41056-revert-40727-move_some_activaion_to_phi revert-41065-revert-40993-mv_ele_floordiv_pow revert-41068-revert-40790-phi_new revert-41944-smaller_inference_api_test revert-42149-do-not-reset-default-stream-for-stream-safe-cuda-allocator revert-43155-fix_ut_tempfile revert-43882-revert-41944-smaller_inference_api_test revert-45808-phi/simplify_size_op revert-46827-deform_comment revert-47325-remove_cudnn_hardcode revert-47645-add_npu_storage_dims revert-48815-set_free_when_no_cache_hit_default_value_true revert-49654-prim_api_gen revert-49763-fix_static_composite_gen rocm_dev_0217 support-0D-sort support_weight_transpose test_benchmark_ci test_feature_precision_test_c test_for_Filtetfiles test_model_benchmark test_model_benchmark_ci zhiqiu-patch-1 v2.4.1 v2.4.0 v2.4.0-rc0 v2.3.2 v2.3.1 v2.3.0 v2.3.0-rc0 v2.2.2 v2.2.1 v2.2.0 v2.2.0-rc0 v2.2.0-bak0 v2.1.3 v2.1.2 v2.1.1 v2.1.0 v2.1.0-rc0 v2.0.2 v2.0.1 v2.0.0 v2.0.0-rc1 v2.0.0-rc0 v2.0.0-beta0 v2.0.0-alpha0 v1.8.5 v1.8.4 v1.8.3 v1.8.2 v1.8.1 v1.8.0 v1.7.2 v1.7.1 v1.7.0 v1.6.3 v1.6.2 v1.6.1 v1.6.0 v1.6.0-rc0 v1.5.2 v1.5.1 v1.5.0 v1.4.1 v1.4.0 v1.3.2 v1.3.1 v1.3.0 v1.2.1 v1.2.0 v1.1.0 v1.0.2 v1.0.1 v1.0.0 v1.0.0-rc0 v0.15.0 v0.15.0-rc0 v0.14.0 v0.13.0 v0.12.0 v0.11.1a2 v0.11.1a1 v0.11.0 lite-v0.1
...@@ -3,10 +3,12 @@ import collections ...@@ -3,10 +3,12 @@ import collections
import numpy as np import numpy as np
from . import core from . import core
import proto.framework_pb2 as framework_pb2 import proto.framework_pb2 as framework_pb2
import contextlib
__all__ = [ __all__ = [
'Block', 'Variable', 'Program', 'Operator', 'default_startup_program', 'Block', 'Variable', 'Program', 'Operator', 'default_startup_program',
'default_main_program' 'default_main_program', 'program_guard', 'switch_startup_program',
'switch_main_program'
] ]
...@@ -659,8 +661,83 @@ _startup_program_ = Program() ...@@ -659,8 +661,83 @@ _startup_program_ = Program()
def default_startup_program(): def default_startup_program():
"""
Get default startup program. In startup program, Paddle will initialize
parameters, initialize nccl handle, etc.
Returns:
Program: startup program
"""
return _startup_program_ return _startup_program_
def default_main_program(): def default_main_program():
"""
Get default main program. The main program is used for training or testing.
Returns:
Program: main program
"""
return _main_program_ return _main_program_
def switch_main_program(program):
"""
Switch the main program to a new program.
Args:
program(Program): The new main program
Returns:
Program: The previous main program
"""
global _main_program_
prev_program = _main_program_
_main_program_ = program
return prev_program
def switch_startup_program(program):
"""
Switch the startup program to a new program
Args:
program(Program): The new startup program
Returns:
Program: The previous startup program
"""
global _startup_program_
prev_program = _startup_program_
_startup_program_ = program
return prev_program
@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
"""
Switch program with `with` statement
Examples:
>>> with program_guard(Program()):
>>> data = fluid.layers.data(...)
>>> hidden = fluid.layers.fc(...)
Args:
main_program(Program): New main program inside `with` statement
startup_program(Program): New startup program inside `with` statement.
None means do not change startup program.
Returns:
None
"""
if not isinstance(main_program, Program):
raise TypeError("main_program should be Program")
main_program = switch_main_program(main_program)
if startup_program is not None:
if not isinstance(startup_program, Program):
raise TypeError("startup_program should be Program")
startup_program = switch_startup_program(startup_program)
yield
switch_main_program(main_program)
if startup_program is not None:
switch_startup_program(startup_program)
from __future__ import print_function
import unittest import unittest
import paddle.v2.fluid.layers as layers import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.nets as nets import paddle.v2.fluid.nets as nets
from paddle.v2.fluid.framework import Program from paddle.v2.fluid.framework import Program, program_guard
class TestBook(unittest.TestCase): class TestBook(unittest.TestCase):
def test_fit_a_line(self): def test_fit_a_line(self):
program = Program() program = Program()
x = layers.data( with program_guard(program, startup_program=Program()):
name='x', shape=[13], dtype='float32', main_program=program) x = layers.data(name='x', shape=[13], dtype='float32')
y_predict = layers.fc(input=x, size=1, act=None, main_program=program) y_predict = layers.fc(input=x, size=1, act=None)
y = layers.data(name='y', shape=[1], dtype='float32')
cost = layers.square_error_cost(input=y_predict, label=y)
avg_cost = layers.mean(x=cost)
self.assertIsNotNone(avg_cost)
program.append_backward(avg_cost)
y = layers.data( print(str(program))
name='y', shape=[1], dtype='float32', main_program=program)
cost = layers.square_error_cost(
input=y_predict, label=y, main_program=program)
avg_cost = layers.mean(x=cost, main_program=program)
self.assertIsNotNone(avg_cost)
program.append_backward(avg_cost)
print str(program)
def test_recognize_digits_mlp(self): def test_recognize_digits_mlp(self):
program = Program() program = Program()
with program_guard(program, startup_program=Program()):
# Change g_program, so the rest layers use `g_program` # Change g_program, so the rest layers use `g_program`
images = layers.data( images = layers.data(name='pixel', shape=[784], dtype='float32')
name='pixel', shape=[784], dtype='float32', main_program=program) label = layers.data(name='label', shape=[1], dtype='int32')
label = layers.data( hidden1 = layers.fc(input=images, size=128, act='relu')
name='label', shape=[1], dtype='int32', main_program=program) hidden2 = layers.fc(input=hidden1, size=64, act='relu')
hidden1 = layers.fc(input=images, predict = layers.fc(input=hidden2, size=10, act='softmax')
size=128, cost = layers.cross_entropy(input=predict, label=label)
act='relu', avg_cost = layers.mean(x=cost)
main_program=program) self.assertIsNotNone(avg_cost)
hidden2 = layers.fc(input=hidden1,
size=64, print(str(program))
act='relu',
main_program=program)
predict = layers.fc(input=hidden2,
size=10,
act='softmax',
main_program=program)
cost = layers.cross_entropy(
input=predict, label=label, main_program=program)
avg_cost = layers.mean(x=cost, main_program=program)
self.assertIsNotNone(avg_cost)
print str(program)
def test_simple_conv2d(self): def test_simple_conv2d(self):
program = Program() program = Program()
images = layers.data( with program_guard(program, startup_program=Program()):
name='pixel', images = layers.data(name='pixel', shape=[3, 48, 48], dtype='int32')
shape=[3, 48, 48], layers.conv2d(input=images, num_filters=3, filter_size=[4, 4])
dtype='int32',
main_program=program) print(str(program))
layers.conv2d(
input=images,
num_filters=3,
filter_size=[4, 4],
main_program=program)
print str(program)
def test_conv2d_transpose(self): def test_conv2d_transpose(self):
program = Program() program = Program()
kwargs = {'main_program': program} with program_guard(program):
img = layers.data( img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
name='pixel', shape=[3, 2, 2], dtype='float32', **kwargs) layers.conv2d_transpose(input=img, num_filters=10, output_size=28)
layers.conv2d_transpose( print(str(program))
input=img, num_filters=10, output_size=28, **kwargs)
print str(program)
def test_recognize_digits_conv(self): def test_recognize_digits_conv(self):
program = Program() program = Program()
with program_guard(program, startup_program=Program()):
images = layers.data( images = layers.data(
name='pixel', name='pixel', shape=[1, 28, 28], dtype='float32')
shape=[1, 28, 28], label = layers.data(name='label', shape=[1], dtype='int32')
dtype='float32', conv_pool_1 = nets.simple_img_conv_pool(
main_program=program) input=images,
label = layers.data( filter_size=5,
name='label', shape=[1], dtype='int32', main_program=program) num_filters=2,
conv_pool_1 = nets.simple_img_conv_pool( pool_size=2,
input=images, pool_stride=2,
filter_size=5, act="relu")
num_filters=2, conv_pool_2 = nets.simple_img_conv_pool(
pool_size=2, input=conv_pool_1,
pool_stride=2, filter_size=5,
act="relu", num_filters=4,
main_program=program) pool_size=2,
conv_pool_2 = nets.simple_img_conv_pool( pool_stride=2,
input=conv_pool_1, act="relu")
filter_size=5,
num_filters=4, predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
pool_size=2, cost = layers.cross_entropy(input=predict, label=label)
pool_stride=2, avg_cost = layers.mean(x=cost)
act="relu",
main_program=program) program.append_backward(avg_cost)
predict = layers.fc(input=conv_pool_2, print(str(program))
size=10,
act="softmax",
main_program=program)
cost = layers.cross_entropy(
input=predict, label=label, main_program=program)
avg_cost = layers.mean(x=cost, main_program=program)
program.append_backward(avg_cost)
print str(program)
def test_word_embedding(self): def test_word_embedding(self):
program = Program() program = Program()
dict_size = 10000 with program_guard(program, startup_program=Program()):
embed_size = 32 dict_size = 10000
first_word = layers.data( embed_size = 32
name='firstw', shape=[1], dtype='int64', main_program=program) first_word = layers.data(name='firstw', shape=[1], dtype='int64')
second_word = layers.data( second_word = layers.data(name='secondw', shape=[1], dtype='int64')
name='secondw', shape=[1], dtype='int64', main_program=program) third_word = layers.data(name='thirdw', shape=[1], dtype='int64')
third_word = layers.data( forth_word = layers.data(name='forthw', shape=[1], dtype='int64')
name='thirdw', shape=[1], dtype='int64', main_program=program) next_word = layers.data(name='nextw', shape=[1], dtype='int64')
forth_word = layers.data(
name='forthw', shape=[1], dtype='int64', main_program=program) embed_first = layers.embedding(
next_word = layers.data( input=first_word,
name='nextw', shape=[1], dtype='int64', main_program=program) size=[dict_size, embed_size],
dtype='float32',
embed_first = layers.embedding( param_attr='shared_w')
input=first_word, embed_second = layers.embedding(
size=[dict_size, embed_size], input=second_word,
dtype='float32', size=[dict_size, embed_size],
param_attr='shared_w', dtype='float32',
main_program=program) param_attr='shared_w')
embed_second = layers.embedding(
input=second_word, embed_third = layers.embedding(
size=[dict_size, embed_size], input=third_word,
dtype='float32', size=[dict_size, embed_size],
param_attr='shared_w', dtype='float32',
main_program=program) param_attr='shared_w')
embed_forth = layers.embedding(
embed_third = layers.embedding( input=forth_word,
input=third_word, size=[dict_size, embed_size],
size=[dict_size, embed_size], dtype='float32',
dtype='float32', param_attr='shared_w')
param_attr='shared_w',
main_program=program) concat_embed = layers.concat(
embed_forth = layers.embedding( input=[embed_first, embed_second, embed_third, embed_forth],
input=forth_word, axis=1)
size=[dict_size, embed_size],
dtype='float32', hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
param_attr='shared_w', predict_word = layers.fc(input=hidden1,
main_program=program) size=dict_size,
act='softmax')
concat_embed = layers.concat( cost = layers.cross_entropy(input=predict_word, label=next_word)
input=[embed_first, embed_second, embed_third, embed_forth], avg_cost = layers.mean(x=cost)
axis=1, self.assertIsNotNone(avg_cost)
main_program=program)
print(str(program))
hidden1 = layers.fc(input=concat_embed,
size=256,
act='sigmoid',
main_program=program)
predict_word = layers.fc(input=hidden1,
size=dict_size,
act='softmax',
main_program=program)
cost = layers.cross_entropy(
input=predict_word, label=next_word, main_program=program)
avg_cost = layers.mean(x=cost, main_program=program)
self.assertIsNotNone(avg_cost)
print str(program)
def test_linear_chain_crf(self): def test_linear_chain_crf(self):
program = Program() program = Program()
with program_guard(program, startup_program=Program()):
# Change g_program, so the rest layers use `g_program` images = layers.data(name='pixel', shape=[784], dtype='float32')
images = layers.data( label = layers.data(name='label', shape=[1], dtype='int32')
name='pixel', shape=[784], dtype='float32', main_program=program) hidden = layers.fc(input=images, size=128)
label = layers.data( crf = layers.linear_chain_crf(input=hidden, label=label)
name='label', shape=[1], dtype='int32', main_program=program) self.assertNotEqual(crf, None)
hidden = layers.fc(input=images, size=128, main_program=program)
crf = layers.linear_chain_crf( print(str(program))
input=hidden, label=label, main_program=program)
print str(program)
if __name__ == '__main__': if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册
反馈
建议
客服 返回
顶部