Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
abdcd828
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
abdcd828
编写于
9月 26, 2017
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into reduce-elementwise-warning
上级
0fa4b985
6f9a9a93
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
807 addition
and
60 deletion
+807
-60
paddle/framework/attribute.cc
paddle/framework/attribute.cc
+3
-0
paddle/operators/math/softmax.cc
paddle/operators/math/softmax.cc
+1
-1
paddle/operators/softmax_with_cross_entropy_op.cc
paddle/operators/softmax_with_cross_entropy_op.cc
+37
-40
paddle/pybind/CMakeLists.txt
paddle/pybind/CMakeLists.txt
+1
-1
paddle/pybind/protobuf.cc
paddle/pybind/protobuf.cc
+575
-0
paddle/pybind/protobuf.h
paddle/pybind/protobuf.h
+35
-0
paddle/pybind/pybind.cc
paddle/pybind/pybind.cc
+6
-9
python/paddle/v2/framework/tests/test_modified_huber_loss_op.py
.../paddle/v2/framework/tests/test_modified_huber_loss_op.py
+18
-9
python/paddle/v2/framework/tests/test_protobuf_descs.py
python/paddle/v2/framework/tests/test_protobuf_descs.py
+131
-0
未找到文件。
paddle/framework/attribute.cc
浏览文件 @
abdcd828
...
...
@@ -24,6 +24,9 @@ static ProgramDesc* g_program_desc = nullptr;
ProgramDesc
&
GetProgramDesc
()
{
if
(
g_program_desc
==
nullptr
)
{
g_program_desc
=
new
ProgramDesc
();
auto
root_block
=
g_program_desc
->
mutable_blocks
()
->
Add
();
root_block
->
set_idx
(
0
);
root_block
->
set_parent_idx
(
-
1
);
}
return
*
g_program_desc
;
}
...
...
paddle/operators/math/softmax.cc
浏览文件 @
abdcd828
...
...
@@ -18,7 +18,7 @@ namespace paddle {
namespace
operators
{
namespace
math
{
template
class
SoftmaxFunctor
<
platform
::
G
PUPlace
,
float
>;
template
class
SoftmaxFunctor
<
platform
::
C
PUPlace
,
float
>;
}
// namespace math
}
// namespace operators
...
...
paddle/operators/softmax_with_cross_entropy_op.cc
浏览文件 @
abdcd828
...
...
@@ -82,40 +82,38 @@ class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Logits"
),
"Input(Logits) should be not null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Label"
),
"Input(Label) should be not null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
"Softmax"
),
"Output(Softmax) should be not null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
"Loss"
),
"Output(Loss) should be not null."
);
const
Tensor
*
logits
=
ctx
.
Input
<
Tensor
>
(
"Logits"
);
const
Tensor
*
labels
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
void
InferShape
(
framework
::
InferShapeContextBase
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Logits"
),
"Input(Logits) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input(Label) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Softmax"
),
"Output(Softmax) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Loss"
),
"Output(Loss) should be not null."
);
auto
logits_dims
=
ctx
->
GetInputDim
(
"Logits"
);
auto
labels_dims
=
ctx
->
GetInputDim
(
"Label"
);
PADDLE_ENFORCE_EQ
(
logits
->
dims
()
.
size
(),
2UL
,
logits
_dims
.
size
(),
2UL
,
"The input of softmax_with_cross_entropy should be a 2-D tensor."
);
PADDLE_ENFORCE_EQ
(
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
dims
()
.
size
(),
2UL
,
PADDLE_ENFORCE_EQ
(
labels_dims
.
size
(),
2UL
,
"The labels should be a 2-D tensor."
);
if
(
ctx
.
Attr
<
bool
>
(
"softLabel"
))
{
PADDLE_ENFORCE_EQ
(
logits
->
dims
()[
1
],
labels
->
dims
()
[
1
],
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"softLabel"
))
{
PADDLE_ENFORCE_EQ
(
logits
_dims
[
1
],
labels_dims
[
1
],
"If Attr(softLabel) == true, the 2nd dimension of "
"Input(X) and Input(Label) should be equal."
);
}
else
{
PADDLE_ENFORCE_EQ
(
labels
->
dims
()
[
1
],
1UL
,
PADDLE_ENFORCE_EQ
(
labels
_dims
[
1
],
1UL
,
"If Attr(softLabel) == false, the 2nd dimension of "
"Input(Label) should be 1."
);
}
ctx
.
Output
<
framework
::
Tensor
>
(
"Softmax"
)
->
Resize
(
logits
->
dims
()
);
ctx
.
Output
<
framework
::
Tensor
>
(
"Loss"
)
->
Resize
({
logits
->
dims
()
[
0
],
1
});
ctx
->
SetOutputDim
(
"Softmax"
,
logits_dims
);
ctx
->
SetOutputDim
(
"Loss"
,
{
logits_dims
[
0
],
1
});
ctx
.
ShareLoD
(
"Logits"
,
/*->*/
"Softmax"
);
ctx
.
ShareLoD
(
"Logits"
,
/*->*/
"Loss"
);
ctx
->
ShareLoD
(
"Logits"
,
/*->*/
"Softmax"
);
ctx
->
ShareLoD
(
"Logits"
,
/*->*/
"Loss"
);
}
};
...
...
@@ -124,33 +122,32 @@ class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Loss"
)),
"Input(Loss@Grad) should not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Softmax"
),
"Input(Softmax) should be not null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Label"
),
"Input(Label) should be not null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
framework
::
GradVarName
(
"Logits"
)),
"Output(Logits@Grad) should be not null."
);
const
Tensor
*
softmax
=
ctx
.
Input
<
Tensor
>
(
"Softmax"
);
const
Tensor
*
labels
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
PADDLE_ENFORCE_EQ
(
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
dims
().
size
(),
2UL
,
void
InferShape
(
framework
::
InferShapeContextBase
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Loss"
)),
"Input(Loss@Grad) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Softmax"
),
"Input(Softmax) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input(Label) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Logits"
)),
"Output(Logits@Grad) should be not null."
);
auto
softmax_dims
=
ctx
->
GetInputDim
(
"Softmax"
);
auto
labels_dims
=
ctx
->
GetInputDim
(
"Label"
);
PADDLE_ENFORCE_EQ
(
labels_dims
.
size
(),
2UL
,
"The labels should be a 2-D tensor."
);
if
(
ctx
.
Attr
<
bool
>
(
"softLabel"
))
{
PADDLE_ENFORCE_EQ
(
softmax
->
dims
()[
1
],
labels
->
dims
()
[
1
],
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"softLabel"
))
{
PADDLE_ENFORCE_EQ
(
softmax
_dims
[
1
],
labels_dims
[
1
],
"When Attr(softLabel) == true, the 2nd dimension of "
"Input(X) and Input(Label) should be equal."
);
}
else
{
PADDLE_ENFORCE_EQ
(
labels
->
dims
()
[
1
],
1UL
,
PADDLE_ENFORCE_EQ
(
labels
_dims
[
1
],
1UL
,
"When Attr(softLabel) == false, the 2nd dimension of "
"Input(Label) should be 1."
);
}
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Logits"
))
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"Softmax"
)
->
dims
(
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Logits"
),
ctx
->
GetInputDim
(
"Softmax"
));
}
};
...
...
paddle/pybind/CMakeLists.txt
浏览文件 @
abdcd828
if
(
WITH_PYTHON
)
cc_library
(
paddle_pybind SHARED
SRCS pybind.cc
SRCS pybind.cc
protobuf.cc
DEPS pybind python backward
${
GLOB_OP_LIB
}
)
endif
(
WITH_PYTHON
)
paddle/pybind/protobuf.cc
0 → 100644
浏览文件 @
abdcd828
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/pybind/protobuf.h"
#include <deque>
#include <iostream>
#include "paddle/framework/attribute.h"
// Cast boost::variant for PyBind.
// Copy from
// https://github.com/pybind/pybind11/issues/576#issuecomment-269563199
namespace
pybind11
{
namespace
detail
{
// Can be replaced by a generic lambda in C++14
struct
variant_caster_visitor
:
public
boost
::
static_visitor
<
handle
>
{
return_value_policy
policy
;
handle
parent
;
variant_caster_visitor
(
return_value_policy
policy
,
handle
parent
)
:
policy
(
policy
),
parent
(
parent
)
{}
template
<
class
T
>
handle
operator
()(
T
const
&
src
)
const
{
return
make_caster
<
T
>::
cast
(
src
,
policy
,
parent
);
}
};
template
<
class
Variant
>
struct
variant_caster
;
template
<
template
<
class
...
>
class
V
,
class
...
Ts
>
struct
variant_caster
<
V
<
Ts
...
>>
{
using
Type
=
V
<
Ts
...
>
;
template
<
typename
T
>
typename
std
::
enable_if
<
!
std
::
is_same
<
T
,
boost
::
detail
::
variant
::
void_
>::
value
,
bool
>::
type
try_load
(
handle
src
,
bool
convert
)
{
auto
caster
=
make_caster
<
T
>
();
if
(
!
load_success_
&&
caster
.
load
(
src
,
convert
))
{
load_success_
=
true
;
value
=
cast_op
<
T
>
(
caster
);
return
true
;
}
return
false
;
}
template
<
typename
T
>
typename
std
::
enable_if
<
std
::
is_same
<
T
,
boost
::
detail
::
variant
::
void_
>::
value
,
bool
>::
type
try_load
(
handle
src
,
bool
convert
)
{
return
false
;
}
bool
load
(
handle
src
,
bool
convert
)
{
auto
unused
=
{
false
,
try_load
<
Ts
>
(
src
,
convert
)...};
(
void
)(
unused
);
return
load_success_
;
}
static
handle
cast
(
Type
const
&
src
,
return_value_policy
policy
,
handle
parent
)
{
variant_caster_visitor
visitor
(
policy
,
parent
);
return
boost
::
apply_visitor
(
visitor
,
src
);
}
PYBIND11_TYPE_CASTER
(
Type
,
_
(
"Variant"
));
bool
load_success_
{
false
};
};
// Add specialization for concrete variant type
template
<
class
...
Args
>
struct
type_caster
<
boost
::
variant
<
Args
...
>>
:
variant_caster
<
boost
::
variant
<
Args
...
>>
{};
}
// namespace detail
}
// namespace pybind11
namespace
paddle
{
namespace
pybind
{
using
namespace
paddle
::
framework
;
// NOLINT
// convert between std::vector and protobuf repeated.
template
<
typename
T
>
inline
std
::
vector
<
T
>
RepeatedToVector
(
const
google
::
protobuf
::
RepeatedField
<
T
>
&
repeated_field
)
{
std
::
vector
<
T
>
ret
;
ret
.
reserve
(
repeated_field
.
size
());
std
::
copy
(
repeated_field
.
begin
(),
repeated_field
.
end
(),
std
::
back_inserter
(
ret
));
return
ret
;
}
template
<
typename
T
,
typename
RepeatedField
>
inline
void
VectorToRepeated
(
const
std
::
vector
<
T
>
&
vec
,
RepeatedField
*
repeated_field
)
{
repeated_field
->
Reserve
(
vec
.
size
());
for
(
const
auto
&
elem
:
vec
)
{
*
repeated_field
->
Add
()
=
elem
;
}
}
// Specialize vector<bool>.
template
<
typename
RepeatedField
>
inline
void
VectorToRepeated
(
const
std
::
vector
<
bool
>
&
vec
,
RepeatedField
*
repeated_field
)
{
repeated_field
->
Reserve
(
vec
.
size
());
for
(
auto
elem
:
vec
)
{
*
repeated_field
->
Add
()
=
elem
;
}
}
class
ProgramDescBind
;
class
OpDescBind
;
class
BlockDescBind
;
class
VarDescBind
;
// Each Protobuf Message, we provide a XXXBind class. In that class, we optimize
// read/write speed. Only when we want the protobuf message, the local changes
// will be synchronized (by `Sync` method).
class
VarDescBind
{
public:
explicit
VarDescBind
(
const
std
::
string
&
name
)
{
desc_
.
set_name
(
name
);
}
VarDesc
*
Proto
()
{
return
&
desc_
;
}
py
::
bytes
Name
()
const
{
return
desc_
.
name
();
}
void
SetShape
(
const
std
::
vector
<
int64_t
>
&
dims
)
{
VectorToRepeated
(
dims
,
desc_
.
mutable_lod_tensor
()
->
mutable_dims
());
}
void
SetDataType
(
framework
::
DataType
data_type
)
{
desc_
.
mutable_lod_tensor
()
->
set_data_type
(
data_type
);
}
std
::
vector
<
int64_t
>
Shape
()
const
{
return
RepeatedToVector
(
desc_
.
lod_tensor
().
dims
());
}
framework
::
DataType
DataType
()
const
{
return
desc_
.
lod_tensor
().
data_type
();
}
private:
VarDesc
desc_
;
};
class
OpDescBind
{
public:
OpDesc
*
Proto
()
{
Sync
();
return
&
op_desc_
;
}
std
::
string
Type
()
const
{
return
op_desc_
.
type
();
}
void
SetType
(
const
std
::
string
&
type
)
{
op_desc_
.
set_type
(
type
);
}
const
std
::
vector
<
std
::
string
>
&
Input
(
const
std
::
string
&
name
)
const
{
auto
it
=
inputs_
.
find
(
name
);
PADDLE_ENFORCE
(
it
!=
inputs_
.
end
(),
"Input %s cannot be found in Op %s"
,
name
,
Type
());
return
it
->
second
;
}
std
::
vector
<
std
::
string
>
InputNames
()
const
{
std
::
vector
<
std
::
string
>
retv
;
retv
.
reserve
(
this
->
inputs_
.
size
());
for
(
auto
&
ipt
:
this
->
inputs_
)
{
retv
.
push_back
(
ipt
.
first
);
}
return
retv
;
}
void
SetInput
(
const
std
::
string
&
param_name
,
const
std
::
vector
<
std
::
string
>
&
args
)
{
need_update_
=
true
;
inputs_
[
param_name
]
=
args
;
}
const
std
::
vector
<
std
::
string
>
&
Output
(
const
std
::
string
&
name
)
const
{
auto
it
=
outputs_
.
find
(
name
);
PADDLE_ENFORCE
(
it
!=
outputs_
.
end
(),
"Output %s cannot be found in Op %s"
,
name
,
Type
());
return
it
->
second
;
}
std
::
vector
<
std
::
string
>
OutputNames
()
const
{
std
::
vector
<
std
::
string
>
retv
;
retv
.
reserve
(
this
->
outputs_
.
size
());
for
(
auto
&
ipt
:
this
->
outputs_
)
{
retv
.
push_back
(
ipt
.
first
);
}
return
retv
;
}
void
SetOutput
(
const
std
::
string
&
param_name
,
const
std
::
vector
<
std
::
string
>
&
args
)
{
need_update_
=
true
;
this
->
outputs_
[
param_name
]
=
args
;
}
std
::
string
DebugString
()
{
return
this
->
Proto
()
->
DebugString
();
}
bool
HasAttr
(
const
std
::
string
&
name
)
const
{
return
attrs_
.
find
(
name
)
!=
attrs_
.
end
();
}
framework
::
AttrType
GetAttrType
(
const
std
::
string
&
name
)
const
{
auto
it
=
attrs_
.
find
(
name
);
PADDLE_ENFORCE
(
it
!=
attrs_
.
end
(),
"Attribute %s is not found"
,
name
);
return
static_cast
<
framework
::
AttrType
>
(
it
->
second
.
which
()
-
1
);
}
std
::
vector
<
std
::
string
>
AttrNames
()
const
{
std
::
vector
<
std
::
string
>
retv
;
retv
.
reserve
(
attrs_
.
size
());
for
(
auto
&
attr
:
attrs_
)
{
retv
.
push_back
(
attr
.
first
);
}
return
retv
;
}
void
SetAttr
(
const
std
::
string
&
name
,
const
Attribute
&
v
)
{
this
->
attrs_
[
name
]
=
v
;
need_update_
=
true
;
}
void
SetBlockAttr
(
const
std
::
string
&
name
,
BlockDescBind
&
block
);
Attribute
GetAttr
(
const
std
::
string
&
name
)
const
{
auto
it
=
attrs_
.
find
(
name
);
PADDLE_ENFORCE
(
it
!=
attrs_
.
end
(),
"Attribute %s is not found"
,
name
);
return
it
->
second
;
}
int
GetBlockAttr
(
const
std
::
string
&
name
)
const
{
auto
it
=
attrs_
.
find
(
name
);
PADDLE_ENFORCE
(
it
!=
attrs_
.
end
(),
"Attribute %s is not found"
,
name
);
return
boost
::
get
<
BlockDesc
*>
(
it
->
second
)
->
idx
();
}
private:
struct
SetAttrDescVisitor
:
public
boost
::
static_visitor
<
void
>
{
explicit
SetAttrDescVisitor
(
OpDesc
::
Attr
*
attr
)
:
attr_
(
attr
)
{}
mutable
OpDesc
::
Attr
*
attr_
;
void
operator
()(
int
v
)
const
{
attr_
->
set_i
(
v
);
}
void
operator
()(
float
v
)
const
{
attr_
->
set_f
(
v
);
}
void
operator
()(
const
std
::
string
&
v
)
const
{
attr_
->
set_s
(
v
);
}
void
operator
()(
bool
b
)
const
{
attr_
->
set_b
(
b
);
}
void
operator
()(
const
std
::
vector
<
int
>
&
v
)
const
{
VectorToRepeated
(
v
,
attr_
->
mutable_ints
());
}
void
operator
()(
const
std
::
vector
<
float
>
&
v
)
const
{
VectorToRepeated
(
v
,
attr_
->
mutable_floats
());
}
void
operator
()(
const
std
::
vector
<
std
::
string
>
&
v
)
const
{
VectorToRepeated
(
v
,
attr_
->
mutable_strings
());
}
void
operator
()(
const
std
::
vector
<
bool
>
&
v
)
const
{
VectorToRepeated
(
v
,
attr_
->
mutable_bools
());
}
void
operator
()(
BlockDesc
*
desc
)
const
{
attr_
->
set_block_idx
(
desc
->
idx
());
}
void
operator
()(
boost
::
blank
)
const
{
PADDLE_THROW
(
"Unexpected branch"
);
}
};
void
Sync
()
{
if
(
need_update_
)
{
this
->
op_desc_
.
mutable_inputs
()
->
Clear
();
for
(
auto
&
ipt
:
inputs_
)
{
auto
*
input
=
op_desc_
.
add_inputs
();
input
->
set_parameter
(
ipt
.
first
);
VectorToRepeated
(
ipt
.
second
,
input
->
mutable_arguments
());
}
this
->
op_desc_
.
mutable_outputs
()
->
Clear
();
for
(
auto
&
opt
:
outputs_
)
{
auto
*
output
=
op_desc_
.
add_outputs
();
output
->
set_parameter
(
opt
.
first
);
VectorToRepeated
(
opt
.
second
,
output
->
mutable_arguments
());
}
this
->
op_desc_
.
mutable_attrs
()
->
Clear
();
for
(
auto
&
attr
:
attrs_
)
{
auto
*
attr_desc
=
op_desc_
.
add_attrs
();
attr_desc
->
set_name
(
attr
.
first
);
attr_desc
->
set_type
(
static_cast
<
framework
::
AttrType
>
(
attr
.
second
.
which
()
-
1
));
boost
::
apply_visitor
(
SetAttrDescVisitor
(
attr_desc
),
attr
.
second
);
}
need_update_
=
false
;
}
}
OpDesc
op_desc_
;
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
inputs_
;
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
outputs_
;
std
::
unordered_map
<
std
::
string
,
Attribute
>
attrs_
;
// need_update_ indicate there some local changes not be synchronized. If
// local changes should be synchronized, need_update_ should be set to true.
bool
need_update_
{
false
};
};
class
BlockDescBind
{
public:
BlockDescBind
(
ProgramDescBind
*
prog
,
BlockDesc
*
desc
)
:
prog_
(
prog
),
desc_
(
desc
),
need_update_
(
false
)
{}
BlockDescBind
(
const
BlockDescBind
&
o
)
=
delete
;
BlockDescBind
&
operator
=
(
const
BlockDescBind
&
o
)
=
delete
;
int32_t
ID
()
const
{
return
desc_
->
idx
();
}
int32_t
Parent
()
const
{
return
desc_
->
parent_idx
();
}
VarDescBind
*
NewVar
(
py
::
bytes
name_bytes
)
{
std
::
string
name
=
name_bytes
;
need_update_
=
true
;
auto
it
=
vars_
.
find
(
name
);
PADDLE_ENFORCE
(
it
==
vars_
.
end
(),
"Duplicated variable %s"
,
name
);
auto
var
=
new
VarDescBind
(
name
);
vars_
[
name
].
reset
(
var
);
return
var
;
}
VarDescBind
*
Var
(
py
::
bytes
name_bytes
)
const
{
std
::
string
name
=
name_bytes
;
auto
it
=
vars_
.
find
(
name
);
PADDLE_ENFORCE
(
it
!=
vars_
.
end
(),
"Can not find variable %s in current block."
,
name
);
return
it
->
second
.
get
();
}
std
::
vector
<
VarDescBind
*>
AllVars
()
const
{
std
::
vector
<
VarDescBind
*>
res
;
for
(
const
auto
&
p
:
vars_
)
{
res
.
push_back
(
p
.
second
.
get
());
}
return
res
;
}
BlockDescBind
*
ParentBlock
()
const
;
OpDescBind
*
AppendOp
()
{
need_update_
=
true
;
ops_
.
emplace_back
(
new
OpDescBind
());
return
ops_
.
back
().
get
();
}
OpDescBind
*
PrependOp
()
{
need_update_
=
true
;
ops_
.
emplace_front
(
new
OpDescBind
());
return
ops_
.
front
().
get
();
}
std
::
vector
<
OpDescBind
*>
AllOps
()
const
{
std
::
vector
<
OpDescBind
*>
res
;
for
(
const
auto
&
op
:
ops_
)
{
res
.
push_back
(
op
.
get
());
}
return
res
;
}
void
Sync
()
{
if
(
need_update_
)
{
auto
&
op_field
=
*
this
->
desc_
->
mutable_ops
();
op_field
.
Clear
();
op_field
.
Reserve
(
static_cast
<
int
>
(
ops_
.
size
()));
for
(
auto
&
op_desc
:
ops_
)
{
op_field
.
AddAllocated
(
op_desc
->
Proto
());
}
need_update_
=
false
;
}
}
BlockDesc
*
RawPtr
()
{
return
desc_
;
}
private:
ProgramDescBind
*
prog_
;
// not_own
BlockDesc
*
desc_
;
// not_own
bool
need_update_
;
std
::
deque
<
std
::
unique_ptr
<
OpDescBind
>>
ops_
;
std
::
unordered_map
<
std
::
string
,
std
::
unique_ptr
<
VarDescBind
>>
vars_
;
};
using
ProgDescMap
=
std
::
unordered_map
<
ProgramDesc
*
,
std
::
unique_ptr
<
ProgramDescBind
>>
;
static
ProgDescMap
*
g_bind_map
=
nullptr
;
class
ProgramDescBind
{
public:
static
ProgramDescBind
&
Instance
(
ProgramDesc
*
prog
)
{
if
(
g_bind_map
==
nullptr
)
{
g_bind_map
=
new
ProgDescMap
();
}
auto
&
map
=
*
g_bind_map
;
auto
&
ptr
=
map
[
prog
];
if
(
ptr
==
nullptr
)
{
ptr
.
reset
(
new
ProgramDescBind
(
prog
));
}
return
*
ptr
;
}
ProgramDescBind
(
const
ProgramDescBind
&
o
)
=
delete
;
ProgramDescBind
&
operator
=
(
const
ProgramDescBind
&
o
)
=
delete
;
BlockDescBind
*
AppendBlock
(
const
BlockDescBind
&
parent
)
{
auto
*
b
=
prog_
->
add_blocks
();
b
->
set_parent_idx
(
parent
.
ID
());
b
->
set_idx
(
prog_
->
blocks_size
()
-
1
);
blocks_
.
emplace_back
(
new
BlockDescBind
(
this
,
b
));
return
blocks_
.
back
().
get
();
}
BlockDescBind
*
Block
(
size_t
idx
)
{
return
blocks_
[
idx
].
get
();
}
std
::
string
DebugString
()
{
return
Proto
()
->
DebugString
();
}
size_t
Size
()
const
{
return
blocks_
.
size
();
}
ProgramDesc
*
Proto
()
{
for
(
auto
&
block
:
blocks_
)
{
block
->
Sync
();
}
return
prog_
;
}
private:
explicit
ProgramDescBind
(
ProgramDesc
*
prog
)
:
prog_
(
prog
)
{
for
(
auto
&
block
:
*
prog
->
mutable_blocks
())
{
blocks_
.
emplace_back
(
new
BlockDescBind
(
this
,
&
block
));
}
}
// Not owned
ProgramDesc
*
prog_
;
std
::
vector
<
std
::
unique_ptr
<
BlockDescBind
>>
blocks_
;
};
BlockDescBind
*
BlockDescBind
::
ParentBlock
()
const
{
if
(
this
->
desc_
->
parent_idx
()
==
-
1
)
{
return
nullptr
;
}
return
prog_
->
Block
(
static_cast
<
size_t
>
(
this
->
desc_
->
parent_idx
()));
}
void
OpDescBind
::
SetBlockAttr
(
const
std
::
string
&
name
,
BlockDescBind
&
block
)
{
BlockDesc
*
desc
=
block
.
RawPtr
();
this
->
attrs_
[
name
]
=
desc
;
}
// Bind Methods
void
BindProgramDesc
(
py
::
module
&
m
)
{
py
::
class_
<
ProgramDescBind
>
(
m
,
"ProgramDesc"
,
""
)
.
def_static
(
"instance"
,
[]()
->
ProgramDescBind
*
{
return
&
ProgramDescBind
::
Instance
(
&
GetProgramDesc
());
},
py
::
return_value_policy
::
reference
)
.
def_static
(
"__create_program_desc__"
,
[]()
->
ProgramDescBind
*
{
// Only used for unit-test
auto
*
prog_desc
=
new
ProgramDesc
;
auto
*
block
=
prog_desc
->
mutable_blocks
()
->
Add
();
block
->
set_idx
(
0
);
block
->
set_parent_idx
(
-
1
);
return
&
ProgramDescBind
::
Instance
(
prog_desc
);
},
py
::
return_value_policy
::
reference
)
.
def
(
"append_block"
,
&
ProgramDescBind
::
AppendBlock
,
py
::
return_value_policy
::
reference
)
.
def
(
"block"
,
&
ProgramDescBind
::
Block
,
py
::
return_value_policy
::
reference
)
.
def
(
"__str__"
,
&
ProgramDescBind
::
DebugString
)
.
def
(
"num_blocks"
,
&
ProgramDescBind
::
Size
);
}
void
BindBlockDesc
(
py
::
module
&
m
)
{
py
::
class_
<
BlockDescBind
>
(
m
,
"BlockDesc"
,
""
)
.
def_property_readonly
(
"id"
,
&
BlockDescBind
::
ID
)
.
def_property_readonly
(
"parent"
,
&
BlockDescBind
::
Parent
)
.
def
(
"append_op"
,
&
BlockDescBind
::
AppendOp
,
py
::
return_value_policy
::
reference
)
.
def
(
"prepend_op"
,
&
BlockDescBind
::
PrependOp
,
py
::
return_value_policy
::
reference
)
.
def
(
"new_var"
,
&
BlockDescBind
::
NewVar
,
py
::
return_value_policy
::
reference
)
.
def
(
"var"
,
&
BlockDescBind
::
Var
,
py
::
return_value_policy
::
reference
)
.
def
(
"all_vars"
,
&
BlockDescBind
::
AllVars
,
py
::
return_value_policy
::
reference
)
.
def
(
"all_ops"
,
&
BlockDescBind
::
AllOps
,
py
::
return_value_policy
::
reference
);
}
void
BindVarDsec
(
py
::
module
&
m
)
{
py
::
enum_
<
framework
::
DataType
>
(
m
,
"DataType"
,
""
)
.
value
(
"BOOL"
,
DataType
::
BOOL
)
.
value
(
"INT16"
,
DataType
::
INT16
)
.
value
(
"INT32"
,
DataType
::
INT32
)
.
value
(
"INT64"
,
DataType
::
INT64
)
.
value
(
"FP16"
,
DataType
::
FP16
)
.
value
(
"FP32"
,
DataType
::
FP32
)
.
value
(
"FP64"
,
DataType
::
FP64
);
py
::
class_
<
VarDescBind
>
(
m
,
"VarDesc"
,
""
)
.
def
(
"name"
,
&
VarDescBind
::
Name
,
py
::
return_value_policy
::
reference
)
.
def
(
"set_shape"
,
&
VarDescBind
::
SetShape
)
.
def
(
"set_data_type"
,
&
VarDescBind
::
SetDataType
)
.
def
(
"shape"
,
&
VarDescBind
::
Shape
,
py
::
return_value_policy
::
reference
)
.
def
(
"data_type"
,
&
VarDescBind
::
DataType
);
}
void
BindOpDesc
(
py
::
module
&
m
)
{
py
::
enum_
<
framework
::
AttrType
>
(
m
,
"AttrType"
,
""
)
.
value
(
"INT"
,
AttrType
::
INT
)
.
value
(
"INTS"
,
AttrType
::
INTS
)
.
value
(
"FLOAT"
,
AttrType
::
FLOAT
)
.
value
(
"FLOATS"
,
AttrType
::
FLOATS
)
.
value
(
"STRING"
,
AttrType
::
STRING
)
.
value
(
"STRINGS"
,
AttrType
::
STRINGS
)
.
value
(
"BOOL"
,
AttrType
::
BOOLEAN
)
.
value
(
"BOOLS"
,
AttrType
::
BOOLEANS
)
.
value
(
"BLOCK"
,
AttrType
::
BLOCK
);
py
::
class_
<
OpDescBind
>
op_desc
(
m
,
"OpDesc"
,
""
);
op_desc
.
def
(
"type"
,
&
OpDescBind
::
Type
)
.
def
(
"set_type"
,
&
OpDescBind
::
SetType
)
.
def
(
"input"
,
&
OpDescBind
::
Input
)
.
def
(
"input_names"
,
&
OpDescBind
::
InputNames
)
.
def
(
"set_input"
,
&
OpDescBind
::
SetInput
)
.
def
(
"output"
,
&
OpDescBind
::
Output
)
.
def
(
"output_names"
,
&
OpDescBind
::
OutputNames
)
.
def
(
"set_output"
,
&
OpDescBind
::
SetOutput
)
.
def
(
"__str__"
,
&
OpDescBind
::
DebugString
)
.
def
(
"__repr__"
,
&
OpDescBind
::
DebugString
)
.
def
(
"has_attr"
,
&
OpDescBind
::
HasAttr
)
.
def
(
"attr_type"
,
&
OpDescBind
::
GetAttrType
)
.
def
(
"attr_names"
,
&
OpDescBind
::
AttrNames
)
.
def
(
"set_attr"
,
&
OpDescBind
::
SetAttr
)
.
def
(
"attr"
,
&
OpDescBind
::
GetAttr
)
.
def
(
"set_block_attr"
,
&
OpDescBind
::
SetBlockAttr
)
.
def
(
"get_block_attr"
,
&
OpDescBind
::
GetBlockAttr
);
}
}
// namespace pybind
}
// namespace paddle
paddle/pybind/protobuf.h
0 → 100644
浏览文件 @
abdcd828
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <Python.h>
#include <fstream>
#include <vector>
#include "paddle/framework/op_registry.h"
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"
namespace
py
=
pybind11
;
namespace
paddle
{
namespace
pybind
{
void
BindProgramDesc
(
py
::
module
&
m
);
void
BindBlockDesc
(
py
::
module
&
m
);
void
BindVarDsec
(
py
::
module
&
m
);
void
BindOpDesc
(
py
::
module
&
m
);
}
// namespace pybind
}
// namespace paddle
paddle/pybind/pybind.cc
浏览文件 @
abdcd828
...
...
@@ -12,13 +12,10 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <Python.h>
#include <fstream>
#include <vector>
#include "paddle/pybind/protobuf.h"
#include "paddle/framework/backward.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/cond_op.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/recurrent_op.h"
...
...
@@ -27,11 +24,6 @@ limitations under the License. */
#include "paddle/pybind/pybind.h"
#include "paddle/pybind/tensor_py.h"
#include "paddle/string/to_string.h"
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"
namespace
py
=
pybind11
;
namespace
paddle
{
namespace
pybind
{
...
...
@@ -320,6 +312,11 @@ All parameter, weight, gradient are variables in Paddle.
m
.
def
(
"is_compile_gpu"
,
IsCompileGPU
);
BindProgramDesc
(
m
);
BindBlockDesc
(
m
);
BindVarDsec
(
m
);
BindOpDesc
(
m
);
return
m
.
ptr
();
}
}
// namespace pybind
...
...
python/paddle/v2/framework/tests/test_modified_huber_loss_op.py
浏览文件 @
abdcd828
...
...
@@ -5,22 +5,31 @@ from op_test import OpTest
def
modified_huber_loss_forward
(
val
):
if
val
<
-
1
:
return
-
4
*
val
return
-
4
.
*
val
elif
val
<
1
:
return
(
1
-
val
)
*
(
1
-
val
)
return
(
1
.
-
val
)
*
(
1.
-
val
)
else
:
return
0
return
0
.
class
TestModifiedHuberLossOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
'modified_huber_loss'
samples_num
=
32
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
-
1
,
1.
,
(
samples_num
,
1
)).
astype
(
'float32'
),
'Y'
:
np
.
random
.
choice
([
0
,
1
],
samples_num
).
reshape
((
samples_num
,
1
))
}
product_res
=
self
.
inputs
[
'X'
]
*
(
2
*
self
.
inputs
[
'Y'
]
-
1
)
x_np
=
np
.
random
.
uniform
(
-
2.
,
2.
,
(
samples_num
,
1
)).
astype
(
'float32'
)
y_np
=
np
.
random
.
choice
([
0
,
1
],
samples_num
).
reshape
(
(
samples_num
,
1
)).
astype
(
'float32'
)
product_res
=
x_np
*
(
2.
*
y_np
-
1.
)
# keep away from the junction of piecewise function
for
pos
,
val
in
np
.
ndenumerate
(
product_res
):
while
abs
(
val
-
1.
)
<
0.05
:
x_np
[
pos
]
=
np
.
random
.
uniform
(
-
2.
,
2.
)
y_np
[
pos
]
=
np
.
random
.
choice
([
0
,
1
])
product_res
[
pos
]
=
x_np
[
pos
]
*
(
2
*
y_np
[
pos
]
-
1
)
val
=
product_res
[
pos
]
self
.
inputs
=
{
'X'
:
x_np
,
'Y'
:
y_np
}
loss
=
np
.
vectorize
(
modified_huber_loss_forward
)(
product_res
)
self
.
outputs
=
{
...
...
@@ -32,7 +41,7 @@ class TestModifiedHuberLossOp(OpTest):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
,
max_relative_error
=
0.0
05
)
self
.
check_grad
([
'X'
],
'Out'
,
max_relative_error
=
0.0
1
)
if
__name__
==
'__main__'
:
...
...
python/paddle/v2/framework/tests/test_protobuf_descs.py
0 → 100644
浏览文件 @
abdcd828
import
unittest
import
paddle.v2.framework.core
as
core
class
TestOpDesc
(
unittest
.
TestCase
):
def
test_op_desc
(
self
):
prog
=
core
.
ProgramDesc
.
__create_program_desc__
()
self
.
assertIsNotNone
(
prog
)
block
=
prog
.
block
(
0
)
self
.
assertIsNotNone
(
block
)
op
=
block
.
append_op
()
self
.
assertIsNotNone
(
op
)
op
.
set_type
(
"test"
)
self
.
assertEqual
(
"test"
,
op
.
type
())
op
.
set_input
(
"X"
,
[
"a"
,
"b"
,
"c"
])
self
.
assertEqual
([
"a"
,
"b"
,
"c"
],
op
.
input
(
"X"
))
self
.
assertEqual
([
"X"
],
op
.
input_names
())
op
.
set_output
(
"Out"
,
[
"z"
])
self
.
assertEqual
([
'z'
],
op
.
output
(
"Out"
))
self
.
assertEqual
([
"Out"
],
op
.
output_names
())
op
.
set_attr
(
"int_attr"
,
1
)
self
.
assertEqual
(
1
,
op
.
attr
(
"int_attr"
))
self
.
assertTrue
(
op
.
has_attr
(
"int_attr"
))
self
.
assertEqual
(
core
.
AttrType
.
INT
,
op
.
attr_type
(
"int_attr"
))
op
.
set_attr
(
"float_attr"
,
-
1.32
)
self
.
assertAlmostEqual
(
-
1.32
,
op
.
attr
(
"float_attr"
),
delta
=
1e-4
)
self
.
assertTrue
(
op
.
has_attr
(
"float_attr"
))
op
.
set_attr
(
"bool_attr"
,
False
)
self
.
assertFalse
(
op
.
attr
(
"bool_attr"
))
op
.
set_attr
(
"string_attr"
,
"abc"
)
self
.
assertEqual
(
"abc"
,
op
.
attr
(
"string_attr"
))
self
.
assertTrue
(
op
.
has_attr
(
"string_attr"
))
op
.
set_attr
(
"ints_attr"
,
[
1
,
2
,
3
])
self
.
assertEqual
([
1
,
2
,
3
],
op
.
attr
(
"ints_attr"
))
expected
=
[
1.2
,
2.3
,
3.4
]
op
.
set_attr
(
"floats_attr"
,
expected
)
for
e
,
a
in
zip
(
expected
,
op
.
attr
(
"floats_attr"
)):
self
.
assertAlmostEqual
(
e
,
a
,
delta
=
1e-4
)
op
.
set_attr
(
"strings_attr"
,
[
"a"
,
"b"
,
"c"
])
self
.
assertEqual
([
"a"
,
"b"
,
"c"
],
op
.
attr
(
"strings_attr"
))
op
.
set_attr
(
"bools_attr"
,
[
True
,
False
,
True
])
self
.
assertEqual
([
True
,
False
,
True
],
op
.
attr
(
"bools_attr"
))
self
.
assertEqual
(
8
,
len
(
op
.
attr_names
()))
op
.
set_block_attr
(
"block_attr"
,
prog
.
block
(
0
))
self
.
assertEqual
(
0
,
op
.
get_block_attr
(
"block_attr"
))
class
TestProgramDesc
(
unittest
.
TestCase
):
def
test_instance
(
self
):
program_desc
=
core
.
ProgramDesc
.
__create_program_desc__
()
self
.
assertIsNotNone
(
program_desc
)
del
program_desc
program_desc
=
core
.
ProgramDesc
.
instance
()
self
.
assertIsNotNone
(
program_desc
)
self
.
assertIsNotNone
(
program_desc
.
block
(
0
))
del
program_desc
def
test_append_block
(
self
):
prog_desc
=
core
.
ProgramDesc
.
__create_program_desc__
()
self
.
assertIsNotNone
(
prog_desc
)
block_root
=
prog_desc
.
block
(
0
)
self
.
assertIsNotNone
(
block_root
)
self
.
assertEqual
(
block_root
.
id
,
0
)
block1
=
prog_desc
.
append_block
(
block_root
)
block2
=
prog_desc
.
append_block
(
block1
)
self
.
assertIsNotNone
(
block1
)
self
.
assertEqual
(
block1
.
id
,
block2
.
parent
)
self
.
assertEqual
(
block_root
.
id
,
block1
.
parent
)
block3
=
prog_desc
.
append_block
(
block_root
)
self
.
assertEqual
(
block3
.
parent
,
block_root
.
id
)
self
.
assertEqual
(
prog_desc
.
block
(
1
).
id
,
1
)
self
.
assertEqual
(
4
,
prog_desc
.
num_blocks
())
class
TestVarDesc
(
unittest
.
TestCase
):
def
test_shape
(
self
):
program_desc
=
core
.
ProgramDesc
.
__create_program_desc__
()
block
=
program_desc
.
block
(
0
)
var
=
block
.
new_var
(
'my_var'
)
src_shape
=
[
3
,
2
,
10
,
8
]
var
.
set_shape
(
src_shape
)
res_shape
=
var
.
shape
()
self
.
assertEqual
(
src_shape
,
res_shape
)
def
test_data_type
(
self
):
program_desc
=
core
.
ProgramDesc
.
__create_program_desc__
()
block
=
program_desc
.
block
(
0
)
var
=
block
.
new_var
(
'my_var'
)
var
.
set_data_type
(
core
.
DataType
.
INT32
)
self
.
assertEqual
(
core
.
DataType
.
INT32
,
var
.
data_type
())
class
TestBlockDesc
(
unittest
.
TestCase
):
def
test_add_var
(
self
):
prog
=
core
.
ProgramDesc
.
__create_program_desc__
()
self
.
assertIsNotNone
(
prog
)
block
=
prog
.
block
(
0
)
self
.
assertIsNotNone
(
block
)
var1
=
block
.
new_var
(
"var1"
)
var2
=
block
.
new_var
(
"var2"
)
var3
=
block
.
new_var
(
"var3"
)
all_vars
=
block
.
all_vars
()
self
.
assertEqual
(
set
(
all_vars
),
set
([
var1
,
var2
,
var3
]))
var2_re
=
block
.
var
(
"var2"
)
self
.
assertEqual
(
var2_re
,
var2
)
def
test_add_op
(
self
):
prog
=
core
.
ProgramDesc
.
__create_program_desc__
()
self
.
assertIsNotNone
(
prog
)
block
=
prog
.
block
(
0
)
self
.
assertIsNotNone
(
block
)
op1
=
block
.
append_op
()
op2
=
block
.
append_op
()
op0
=
block
.
prepend_op
()
all_ops
=
block
.
all_ops
()
self
.
assertEqual
(
all_ops
,
[
op0
,
op1
,
op2
])
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录