Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
ab953bae
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ab953bae
编写于
5月 29, 2018
作者:
Q
Qiao Longfei
提交者:
GitHub
5月 29, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #10973 from jacquesqiao/fix-prefetch
Fix and optimize async distribute lookup table
上级
38af7bca
0858a501
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
83 addition
and
59 deletion
+83
-59
paddle/fluid/framework/selected_rows.cc
paddle/fluid/framework/selected_rows.cc
+20
-15
paddle/fluid/framework/selected_rows.h
paddle/fluid/framework/selected_rows.h
+1
-1
paddle/fluid/operators/detail/grpc_server.cc
paddle/fluid/operators/detail/grpc_server.cc
+4
-7
paddle/fluid/operators/listen_and_serv_op.cc
paddle/fluid/operators/listen_and_serv_op.cc
+1
-0
paddle/fluid/operators/lookup_sparse_table_op.cc
paddle/fluid/operators/lookup_sparse_table_op.cc
+1
-1
paddle/fluid/operators/sgd_op.h
paddle/fluid/operators/sgd_op.h
+6
-2
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+2
-1
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+48
-32
未找到文件。
paddle/fluid/framework/selected_rows.cc
浏览文件 @
ab953bae
...
...
@@ -121,24 +121,29 @@ bool SelectedRows::HasKey(int64_t key) const {
}
std
::
vector
<
std
::
pair
<
int64_t
,
int64_t
>>
SelectedRows
::
Get
(
std
::
vector
<
int64_t
>
keys
,
framework
::
Tensor
*
value
)
const
{
const
std
::
vector
<
int64_t
>&
keys
,
framework
::
Tensor
*
value
)
const
{
PADDLE_ENFORCE
(
value
->
IsInitialized
(),
"The value tensor should be initialized."
);
std
::
vector
<
std
::
pair
<
int64_t
,
int64_t
>>
non_keys_pair
;
int64_t
value_width
=
value_
->
numel
()
/
value_
->
dims
()[
0
];
PADDLE_ENFORCE_EQ
(
value_width
,
value
->
numel
()
/
value
->
dims
()[
0
],
"output tensor should have the same shape with table "
"execpt the dims[0]."
);
for
(
size_t
i
=
0
;
i
<
keys
.
size
();
++
i
)
{
int64_t
index
=
Index
(
keys
[
i
]);
if
(
index
==
-
1
)
{
non_keys_pair
.
push_back
(
std
::
make_pair
(
keys
[
i
],
static_cast
<
int64_t
>
(
i
)));
}
else
{
framework
::
VisitDataType
(
framework
::
ToDataType
(
value_
->
type
()),
TensorCopyVisitor
(
value
,
i
*
value_width
,
*
value_
.
get
(),
index
*
value_width
,
value_width
));
if
(
keys
.
empty
())
{
VLOG
(
3
)
<<
"keys is empty, please check data!"
;
}
else
{
int64_t
value_width
=
value_
->
numel
()
/
value_
->
dims
()[
0
];
PADDLE_ENFORCE_EQ
(
value_width
,
value
->
numel
()
/
value
->
dims
()[
0
],
"output tensor should have the same shape with table "
"except the dims[0]."
);
for
(
size_t
i
=
0
;
i
<
keys
.
size
();
++
i
)
{
int64_t
index
=
Index
(
keys
[
i
]);
if
(
index
==
-
1
)
{
non_keys_pair
.
push_back
(
std
::
make_pair
(
keys
[
i
],
static_cast
<
int64_t
>
(
i
)));
}
else
{
framework
::
VisitDataType
(
framework
::
ToDataType
(
value_
->
type
()),
TensorCopyVisitor
(
value
,
i
*
value_width
,
*
value_
.
get
(),
index
*
value_width
,
value_width
));
}
}
}
return
non_keys_pair
;
...
...
paddle/fluid/framework/selected_rows.h
浏览文件 @
ab953bae
...
...
@@ -82,7 +82,7 @@ class SelectedRows {
* @return a list of pair which contains the non-exists key and the index in
* the value
*/
std
::
vector
<
std
::
pair
<
int64_t
,
int64_t
>>
Get
(
std
::
vector
<
int64_t
>
keys
,
std
::
vector
<
std
::
pair
<
int64_t
,
int64_t
>>
Get
(
const
std
::
vector
<
int64_t
>&
keys
,
framework
::
Tensor
*
value
)
const
;
/*
...
...
paddle/fluid/operators/detail/grpc_server.cc
浏览文件 @
ab953bae
...
...
@@ -177,11 +177,8 @@ class RequestPrefetch final : public RequestBase {
program_
(
program
),
prefetch_ctx_
(
prefetch_ctx
),
req_id_
(
req_id
)
{
if
(
sync_mode_
)
{
request_
.
reset
(
new
VariableResponse
(
scope
,
dev_ctx_
,
false
));
}
else
{
request_
.
reset
(
new
VariableResponse
(
scope
,
dev_ctx_
,
true
));
}
// prefetch always create a new sub scope
request_
.
reset
(
new
VariableResponse
(
scope
,
dev_ctx_
,
true
));
int
method_id
=
static_cast
<
int
>
(
detail
::
GrpcMethod
::
kPrefetchVariable
);
service_
->
RequestAsyncUnary
(
method_id
,
&
ctx_
,
request_
.
get
(),
&
responder_
,
cq_
,
cq_
,
...
...
@@ -198,10 +195,10 @@ class RequestPrefetch final : public RequestBase {
std
::
string
var_name
=
request_
->
OutVarname
();
VLOG
(
3
)
<<
"RequestPrefetch "
<<
var_name
;
auto
var_desc
=
program_
->
Block
(
0
).
FindVar
(
var_name
);
framework
::
Scope
*
local_scope
=
&
scope_
->
New
Scope
();
framework
::
Scope
*
local_scope
=
request_
->
GetMutableLocal
Scope
();
auto
*
var
=
local_scope
->
FindVar
(
var_name
);
InitializeVariable
(
var
,
var_desc
->
GetType
());
executor_
->
RunPreparedContext
(
prefetch_ctx_
,
scope_
);
executor_
->
RunPreparedContext
(
prefetch_ctx_
,
local_scope
);
SerializeToByteBuffer
(
var_name
,
var
,
*
dev_ctx_
,
&
reply_
);
...
...
paddle/fluid/operators/listen_and_serv_op.cc
浏览文件 @
ab953bae
...
...
@@ -207,6 +207,7 @@ static void AsyncUpdateThread(
while
(
!
exit_flag
)
{
const
detail
::
ReceivedMessage
v
=
queue
->
Pop
();
auto
recv_var_name
=
v
.
first
;
VLOG
(
4
)
<<
"async update "
<<
recv_var_name
;
auto
var
=
v
.
second
->
GetVar
();
if
(
var
==
nullptr
)
{
LOG
(
ERROR
)
<<
"Can not find server side var: "
<<
recv_var_name
;
...
...
paddle/fluid/operators/lookup_sparse_table_op.cc
浏览文件 @
ab953bae
...
...
@@ -127,7 +127,7 @@ class LookupSparseTableOpMaker : public framework::OpProtoAndCheckerMaker {
.
SetDefault
(
-
1.0
f
);
AddAttr
<
float
>
(
"max"
,
"(float, default 1.0) "
"Maximu
n
value of uniform random"
)
"Maximu
m
value of uniform random"
)
.
SetDefault
(
1.0
f
);
AddAttr
<
int
>
(
"seed"
,
"(int, default 0) "
...
...
paddle/fluid/operators/sgd_op.h
浏览文件 @
ab953bae
...
...
@@ -96,8 +96,12 @@ class SGDOpKernel : public framework::OpKernel<T> {
return
;
}
size_t
param_row_width
=
param
.
value
().
numel
()
/
param
.
rows
().
size
();
size_t
grad_row_width
=
grad
.
value
().
numel
()
/
grad
.
rows
().
size
();
auto
param_row_width
=
param
.
value
().
dims
()[
1
];
auto
grad_row_width
=
grad
.
value
().
dims
()[
1
];
VLOG
(
4
)
<<
" param rows: "
<<
param
.
rows
().
size
()
<<
" param memory rows: "
<<
param
.
value
().
dims
()[
0
]
<<
" grad rows: "
<<
grad
.
rows
().
size
()
<<
" grad memory rows: "
<<
grad
.
value
().
dims
()[
0
];
PADDLE_ENFORCE_EQ
(
param_row_width
,
grad_row_width
,
"param_row should have the same size with grad_row"
);
...
...
python/paddle/fluid/framework.py
浏览文件 @
ab953bae
...
...
@@ -797,7 +797,7 @@ class Block(object):
Rename variable in vars and ops' inputs and outputs
"""
if
not
self
.
has_var
(
name
):
raise
ValueError
(
"var %s is not in current"
%
name
)
raise
ValueError
(
"var %s is not in current
block
"
%
name
)
v
=
self
.
var
(
name
)
if
type
(
v
)
==
Parameter
:
var_type
=
"Parameter"
...
...
@@ -843,6 +843,7 @@ class Block(object):
self
.
vars
[
new_name
]
=
var
del
self
.
vars
[
name
]
self
.
sync_with_cpp
()
return
var
def
remove_var
(
self
,
name
):
self
.
sync_with_cpp
()
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
ab953bae
...
...
@@ -273,15 +273,25 @@ class DistributeTranspiler:
if
param_grad
[
0
].
name
==
self
.
table_name
][
0
]
table_grad_var
=
self
.
table_param_grad
[
1
]
self
.
table_grad_list
=
[
program
.
global_block
().
create_var
(
name
=
"%s.trainer_%d.pserver_%d"
%
(
table_grad_var
.
name
,
trainer_id
,
index
),
type
=
table_grad_var
.
type
,
shape
=
table_grad_var
.
shape
,
dtype
=
table_grad_var
.
dtype
)
for
index
in
range
(
len
(
self
.
pserver_endpoints
))
]
if
self
.
sync_mode
:
self
.
trainer_side_table_grad_list
=
[
program
.
global_block
().
create_var
(
name
=
"%s.trainer_%d.pserver_%d"
%
(
table_grad_var
.
name
,
trainer_id
,
index
),
type
=
table_grad_var
.
type
,
shape
=
table_grad_var
.
shape
,
dtype
=
table_grad_var
.
dtype
)
for
index
in
range
(
len
(
self
.
pserver_endpoints
))
]
else
:
self
.
trainer_side_table_grad_list
=
[
program
.
global_block
().
create_var
(
name
=
"%s.pserver_%d"
%
(
table_grad_var
.
name
,
index
),
type
=
table_grad_var
.
type
,
shape
=
table_grad_var
.
shape
,
dtype
=
table_grad_var
.
dtype
)
for
index
in
range
(
len
(
self
.
pserver_endpoints
))
]
grad_blocks
=
split_dense_variable
(
grad_list
,
len
(
pserver_endpoints
))
param_blocks
=
split_dense_variable
(
param_list
,
len
(
pserver_endpoints
))
...
...
@@ -400,7 +410,8 @@ class DistributeTranspiler:
attrs
=
{
"axis"
:
0
})
if
self
.
has_distributed_lookup_table
:
self
.
_replace_lookup_table_op_with_prefetch
(
program
,
eplist
)
self
.
_replace_lookup_table_op_with_prefetch
(
program
,
pserver_endpoints
)
self
.
_split_table_grad_and_add_send_vars
(
program
,
pserver_endpoints
)
def
get_trainer_program
(
self
):
...
...
@@ -537,7 +548,7 @@ class DistributeTranspiler:
if
self
.
has_distributed_lookup_table
:
pserver_index
=
self
.
pserver_endpoints
.
index
(
endpoint
)
table_opt_block
=
self
.
_create_table_optimize_block
(
pserver_index
,
pserver_program
,
pre_block_idx
)
pserver_index
,
pserver_program
,
pre_block_idx
,
grad_to_block_id
)
prefetch_block
=
self
.
_create_prefetch_block
(
pserver_index
,
pserver_program
,
table_opt_block
)
...
...
@@ -621,7 +632,8 @@ class DistributeTranspiler:
return
s_prog
# transpiler function for dis lookup_table
def
_replace_lookup_table_op_with_prefetch
(
self
,
program
,
eplist
):
def
_replace_lookup_table_op_with_prefetch
(
self
,
program
,
pserver_endpoints
):
# 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
self
.
prefetch_input_vars
=
None
self
.
prefetch_output_vars
=
None
...
...
@@ -670,7 +682,7 @@ class DistributeTranspiler:
inputs
=
{
'X'
:
self
.
prefetch_input_vars
},
outputs
=
{
"Out"
:
self
.
prefetch_output_vars
},
attrs
=
{
"epmap"
:
eplist
,
"epmap"
:
pserver_endpoints
,
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
})
...
...
@@ -707,11 +719,11 @@ class DistributeTranspiler:
inputs
=
{
'Ids'
:
[
program
.
global_block
().
vars
[
table_grad_name
]]
},
outputs
=
{
"Out"
:
self
.
table_grad_list
})
outputs
=
{
"Out"
:
self
.
t
rainer_side_t
able_grad_list
})
program
.
global_block
().
insert_op
(
index
=
op_index
+
2
,
type
=
"send_vars"
,
inputs
=
{
'X'
:
self
.
table_grad_list
},
inputs
=
{
'X'
:
self
.
t
rainer_side_t
able_grad_list
},
outputs
=
{},
attrs
=
{
"sync_send"
:
True
,
...
...
@@ -750,16 +762,7 @@ class DistributeTranspiler:
return
prefetch_block
def
_create_table_optimize_block
(
self
,
pserver_index
,
pserver_program
,
pre_block_idx
):
def
_clone_var
(
block
,
var
,
persistable
=
True
):
assert
isinstance
(
var
,
Variable
)
return
block
.
create_var
(
name
=
var
.
name
,
shape
=
var
.
shape
,
dtype
=
var
.
dtype
,
type
=
var
.
type
,
persistable
=
persistable
)
pre_block_idx
,
grad_to_block_id
):
# STEP: create table optimize block
# create table param and grad var in pserver program
origin_param_var
=
self
.
origin_program
.
global_block
().
vars
[
...
...
@@ -770,11 +773,11 @@ class DistributeTranspiler:
dtype
=
origin_param_var
.
dtype
,
type
=
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
,
persistable
=
True
)
grad_var
=
_clone_var
(
pserver_program
.
global_block
(),
# parameter must be selected rows
param_var
.
desc
.
set_type
(
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
)
grad_var
=
pserver_program
.
global_block
().
clone_variable
(
self
.
origin_program
.
global_block
().
vars
[
grad_var_name
(
self
.
table_name
)],
persistable
=
False
)
self
.
table_name
)])
# create table optimize block in pserver program
table_opt_op
=
[
...
...
@@ -788,7 +791,7 @@ class DistributeTranspiler:
if
self
.
sync_mode
:
# create grad vars in pserver program
table_grad_var
=
self
.
table_param_grad
[
1
]
table_grad_list
=
[
pserver_side_
table_grad_list
=
[
pserver_program
.
global_block
().
create_var
(
name
=
"%s.trainer_%d.pserver_%d"
%
(
table_grad_var
.
name
,
index
,
pserver_index
),
...
...
@@ -798,11 +801,21 @@ class DistributeTranspiler:
for
index
in
range
(
self
.
trainer_num
)
]
# append sum op for table_grad_list
# append sum op for
pserver_side_
table_grad_list
table_opt_block
.
append_op
(
type
=
"sum"
,
inputs
=
{
"X"
:
table_grad_list
},
inputs
=
{
"X"
:
pserver_side_
table_grad_list
},
outputs
=
{
"Out"
:
[
grad_var
]})
else
:
# in async_mode, for table gradient, it also need to be splited to each parameter server
origin_grad_name
=
grad_var
.
name
splited_grad_name
=
self
.
trainer_side_table_grad_list
[
pserver_index
].
name
if
not
splited_grad_name
.
startswith
(
origin_grad_name
):
raise
ValueError
(
"origin_grad_var: "
+
splited_grad_name
+
" grad_var:"
+
grad_var
.
name
)
grad_var
=
pserver_program
.
global_block
().
rename_var
(
origin_grad_name
,
splited_grad_name
)
lr_var
=
pserver_program
.
global_block
().
vars
[
table_opt_op
.
input
(
"LearningRate"
)[
0
]]
...
...
@@ -818,6 +831,9 @@ class DistributeTranspiler:
outputs
=
outputs
,
attrs
=
table_opt_op
.
attrs
)
# add table parameter gradient and it's block id to grad_to_block_id
grad_to_block_id
.
append
(
grad_var
.
name
+
":"
+
str
(
table_opt_block
.
idx
))
return
table_opt_block
# ====================== private transpiler functions =====================
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录