提交 aad8f4d1 编写于 作者: T tensor-tang

enable image_classification multi-threads ut

上级 abd9ccf3
......@@ -160,7 +160,7 @@ TEST(paddle_inference_api_native_multithreads, word2vec) {
config.use_gpu = false;
auto main_predictor = CreatePaddlePredictor<NativeConfig>(config);
// prepare inputs data
// prepare inputs data and reference results
constexpr int num_jobs = 3;
std::vector<std::vector<framework::LoDTensor>> jobs(num_jobs);
std::vector<std::vector<PaddleTensor>> paddle_tensor_feeds(num_jobs);
......@@ -204,13 +204,64 @@ TEST(paddle_inference_api_native_multithreads, word2vec) {
// check outputs correctness
float* ref_data = refs[tid].data<float>();
EXPECT_EQ(refs[tid].numel(), len / sizeof(float));
EXPECT_EQ(refs[tid].numel(), static_cast<int64_t>(len / sizeof(float)));
for (int i = 0; i < refs[tid].numel(); ++i) {
EXPECT_LT(ref_data[i] - data[i], 1e-3);
EXPECT_GT(ref_data[i] - data[i], -1e-3);
EXPECT_NEAR(ref_data[i], data[i], 1e-3);
}
free(data);
});
}
for (int i = 0; i < num_jobs; ++i) {
threads[i].join();
}
}
TEST(paddle_inference_api_native_multithreads, image_classification) {
constexpr int num_jobs = 4; // each job run 1 batch
constexpr int batch_size = 1;
NativeConfig config = GetConfig();
config.use_gpu = false;
config.model_dir =
FLAGS_dirname + "image_classification_resnet.inference.model";
free(local_outputs[0].data.data);
auto main_predictor = CreatePaddlePredictor<NativeConfig>(config);
std::vector<framework::LoDTensor> jobs(num_jobs);
std::vector<std::vector<PaddleTensor>> paddle_tensor_feeds(num_jobs);
std::vector<framework::LoDTensor> refs(num_jobs);
for (size_t i = 0; i < jobs.size(); ++i) {
// prepare inputs
std::vector<std::vector<int64_t>> feed_target_shapes =
GetFeedTargetShapes(config.model_dir, /*is_combined*/ false);
feed_target_shapes[0][0] = batch_size;
framework::DDim input_dims = framework::make_ddim(feed_target_shapes[0]);
SetupTensor<float>(&jobs[i], input_dims, 0.f, 1.f);
paddle_tensor_feeds[i].push_back(LodTensorToPaddleTensor(&jobs[i]));
// get reference result of each job
std::vector<framework::LoDTensor*> ref_feeds(1, &jobs[i]);
std::vector<framework::LoDTensor*> ref_fetches(1, &refs[i]);
TestInference<platform::CPUPlace>(config.model_dir, ref_feeds, ref_fetches);
}
// create threads and each thread run 1 job
std::vector<std::thread> threads;
for (int tid = 0; tid < num_jobs; ++tid) {
threads.emplace_back([&, tid]() {
auto predictor = main_predictor->Clone();
auto& local_inputs = paddle_tensor_feeds[tid];
std::vector<PaddleTensor> local_outputs;
ASSERT_TRUE(predictor->Run(local_inputs, &local_outputs));
// check outputs correctness
ASSERT_EQ(local_outputs.size(), 1UL);
const size_t len = local_outputs[0].data.length;
float* data = static_cast<float*>(local_outputs[0].data.data);
float* ref_data = refs[tid].data<float>();
EXPECT_EQ(refs[tid].numel(), len / sizeof(float));
for (int i = 0; i < refs[tid].numel(); ++i) {
EXPECT_NEAR(ref_data[i], data[i], 1e-3);
}
free(data);
});
}
for (int i = 0; i < num_jobs; ++i) {
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册
新手
引导
客服 返回
顶部