diff --git a/paddle/contrib/inference/test_paddle_inference_api_impl.cc b/paddle/contrib/inference/test_paddle_inference_api_impl.cc index 77be527c5fd9f00ec07a64828668ccce265c567c..8ffe102cb913747dbd61d7b223d76c309ca975df 100644 --- a/paddle/contrib/inference/test_paddle_inference_api_impl.cc +++ b/paddle/contrib/inference/test_paddle_inference_api_impl.cc @@ -160,7 +160,7 @@ TEST(paddle_inference_api_native_multithreads, word2vec) { config.use_gpu = false; auto main_predictor = CreatePaddlePredictor<NativeConfig>(config); - // prepare inputs data + // prepare inputs data and reference results constexpr int num_jobs = 3; std::vector<std::vector<framework::LoDTensor>> jobs(num_jobs); std::vector<std::vector<PaddleTensor>> paddle_tensor_feeds(num_jobs); @@ -204,13 +204,64 @@ TEST(paddle_inference_api_native_multithreads, word2vec) { // check outputs correctness float* ref_data = refs[tid].data<float>(); - EXPECT_EQ(refs[tid].numel(), len / sizeof(float)); + EXPECT_EQ(refs[tid].numel(), static_cast<int64_t>(len / sizeof(float))); for (int i = 0; i < refs[tid].numel(); ++i) { - EXPECT_LT(ref_data[i] - data[i], 1e-3); - EXPECT_GT(ref_data[i] - data[i], -1e-3); + EXPECT_NEAR(ref_data[i], data[i], 1e-3); } + free(data); + }); + } + for (int i = 0; i < num_jobs; ++i) { + threads[i].join(); + } +} + +TEST(paddle_inference_api_native_multithreads, image_classification) { + constexpr int num_jobs = 4; // each job run 1 batch + constexpr int batch_size = 1; + NativeConfig config = GetConfig(); + config.use_gpu = false; + config.model_dir = + FLAGS_dirname + "image_classification_resnet.inference.model"; + + auto main_predictor = CreatePaddlePredictor<NativeConfig>(config); + std::vector<framework::LoDTensor> jobs(num_jobs); + std::vector<std::vector<PaddleTensor>> paddle_tensor_feeds(num_jobs); + std::vector<framework::LoDTensor> refs(num_jobs); + for (size_t i = 0; i < jobs.size(); ++i) { + // prepare inputs + std::vector<std::vector<int64_t>> feed_target_shapes = + GetFeedTargetShapes(config.model_dir, /*is_combined*/ false); + feed_target_shapes[0][0] = batch_size; + framework::DDim input_dims = framework::make_ddim(feed_target_shapes[0]); + SetupTensor<float>(&jobs[i], input_dims, 0.f, 1.f); + paddle_tensor_feeds[i].push_back(LodTensorToPaddleTensor(&jobs[i])); + + // get reference result of each job + std::vector<framework::LoDTensor*> ref_feeds(1, &jobs[i]); + std::vector<framework::LoDTensor*> ref_fetches(1, &refs[i]); + TestInference<platform::CPUPlace>(config.model_dir, ref_feeds, ref_fetches); + } - free(local_outputs[0].data.data); + // create threads and each thread run 1 job + std::vector<std::thread> threads; + for (int tid = 0; tid < num_jobs; ++tid) { + threads.emplace_back([&, tid]() { + auto predictor = main_predictor->Clone(); + auto& local_inputs = paddle_tensor_feeds[tid]; + std::vector<PaddleTensor> local_outputs; + ASSERT_TRUE(predictor->Run(local_inputs, &local_outputs)); + + // check outputs correctness + ASSERT_EQ(local_outputs.size(), 1UL); + const size_t len = local_outputs[0].data.length; + float* data = static_cast<float*>(local_outputs[0].data.data); + float* ref_data = refs[tid].data<float>(); + EXPECT_EQ(refs[tid].numel(), len / sizeof(float)); + for (int i = 0; i < refs[tid].numel(); ++i) { + EXPECT_NEAR(ref_data[i], data[i], 1e-3); + } + free(data); }); } for (int i = 0; i < num_jobs; ++i) {