未验证 提交 a9533953 编写于 作者: Z zhaoyingli 提交者: GitHub

[AutoParallel] fix input order (#49329)

* fix input order

* add unittest

* update cmakelist
上级 4634f0ff
......@@ -202,7 +202,9 @@ class DistributedSaver:
if var_name not in used_outputs:
fetch_vars_names.pop(idx)
dist_feed_vars = [global_block.vars[name] for name in feed_vars_names]
dist_feed_vars = list(
reversed([global_block.vars[name] for name in feed_vars_names])
)
dist_fetch_vars = [global_block.vars[name] for name in fetch_vars_names]
dist_filename = filename + "_dist" + str(rank_id)
......
......@@ -128,4 +128,5 @@ if(WITH_DISTRIBUTE AND WITH_GPU)
py_test_modules(test_cluster_partition MODULES test_cluster_partition)
py_test_modules(test_convert_to_process_meshes MODULES
test_convert_to_process_meshes)
py_test_modules(test_dist_saver MODULES test_dist_saver)
endif()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.distributed.fleet import auto
paddle.enable_static()
class MLPLayer(nn.Layer):
def __init__(
self,
hidden_size=1024,
intermediate_size=4 * 1024,
dropout_ratio=0.1,
initializer_range=0.02,
):
super().__init__()
d_model = hidden_size
dim_feedforward = intermediate_size
weight_attr = paddle.ParamAttr(
initializer=nn.initializer.Normal(mean=0.0, std=initializer_range)
)
bias_attr = None
self.linear0 = nn.Linear(
d_model, dim_feedforward, weight_attr, bias_attr=bias_attr
)
self.linear1 = nn.Linear(
dim_feedforward, d_model, weight_attr, bias_attr=bias_attr
)
self.linear2 = nn.Linear(d_model, 1, weight_attr, bias_attr=bias_attr)
self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
self.dropout = nn.Dropout(dropout_ratio, mode="upscale_in_train")
def forward(self, input0, input1):
out = self.norm(input0)
out = self.linear0(out)
out = out + input1
out = F.gelu(out, approximate=True)
out = self.linear1(out)
out = self.dropout(out)
out = self.linear2(out)
return out
class TestDistSaver(unittest.TestCase):
def test_dist_saver(self):
mlp = MLPLayer()
loss = paddle.nn.CrossEntropyLoss()
optimizer = paddle.optimizer.Adam(
learning_rate=0.00001,
beta1=0.9,
beta2=0.999,
epsilon=1e-08,
grad_clip=None,
)
metric = paddle.metric.Accuracy()
strategy = auto.Strategy()
strategy.auto_mode = "semi"
engine = auto.Engine(mlp, loss, optimizer, metric, strategy=strategy)
inputs_spec = [
paddle.static.InputSpec(
shape=[2, 1024], dtype="float32", name="input0"
),
paddle.static.InputSpec(
shape=[2, 4096], dtype="float32", name="input1"
),
]
engine.prepare(inputs_spec, mode="predict")
temp_dir = tempfile.TemporaryDirectory()
model_filename = os.path.join(temp_dir.name, 'mlp')
engine.save(model_filename, training=False)
with open(model_filename + "_dist0.pdmodel", 'rb') as f:
data = f.read()
program = paddle.static.io.deserialize_program(data)
input_vars = []
for op in program.global_block().ops:
if op.type == "feed":
input_vars.append(op.output_arg_names[0])
else:
break
assert input_vars == ["input0", "input1"]
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册